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CD16b (FcγRIIIb) is exclusively expressed by human neutrophils and binds IgG in immune complexes. Cell
surface CD16b undergoes efficient ectodomain shedding upon neutrophil activation and apoptosis. Indeed,
soluble CD16b is present at high levels in the plasma of healthy individuals, which appears to be maintained
by the daily turnover of apoptotic neutrophils. At this time, the principal protease responsible for CD16b
shedding is not known. We show that CD16b plasma levels were significantly decreased in patients admin-
istered a selective inhibitor targeting the metalloproteases ADAM10 and ADAM17. Additional analysis with
inhibitors selective for ADAM10 or ADAM17 revealed that only inhibition of ADAM17 significantly blocked
the cleavage of CD16b following neutrophil activation and apoptosis. CD16b shedding by ADAM17 was fur-
ther demonstrated using a unique ADAM17 function-blocking mAb and a cell-based ADAM17 reconstitution
assay. Unlike human CD16, however, mouse CD16 did not undergo efficient ectodomain shedding upon
neutrophil stimulation or apoptosis, indicating that this mechanism cannot be modeled in normal mice.
Taken together, our findings are the first to directly demonstrate that ADAM17 cleaves CD16 in human
leukocytes.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The human IgG Fc receptor CD16 (FcγRIII) consists of two isoforms
(CD16a/FcγRIIIa and CD16b/FcγRIIIb) that are encoded by two highly
homologous genes [1]. However, CD16a is a membrane-spanning pro-
tein, whereas CD16b is linked to the plasmamembrane via a GPI anchor
[2,3]. CD16b is expressed only by neutrophils and it primarily recog-
nizes IgG-containing immune complexes, providing an important link
between innate and adaptive immunity. Immune complexes can also
promote excessive neutrophil activation that results in the release of
high quantities of cytolytic and pro-inflammatory factors leading to
extensive tissue injury, as is the case for neutrophils infiltrating synovial
tissues during rheumatoid arthritis [4].

The surface density of CD16b is rapidly modulated by a complex in-
terplay between mobilization from intracellular stores and proteolytic
release [5]. CD16b proteolysis occurs upon neutrophil activation and
apoptosis [6–8], and the maintenance of soluble CD16b in the plasma
of healthy individuals indicates that its cleavage is a physiological pro-
cess [6]. Serine proteases and metalloproteases have been implicated
in CD16b proteolysis [8–10]; however, the primary enzyme involved
in generating plasma CD16b has yet to be defined. This represents a
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critical step for understanding how CD16b cleavage is regulated and
for identifying potential therapeutic targets in inflammatory diseases.

Several members of the ADAM1 (a disintegrin and metalloprotease)
family of membrane-associated proteases facilitate ectodomain shed-
ding of cell surface proteins [11]. The family member ADAM17 is a
well described sheddase, which is expressed in resting neutrophils
and its enzymatic activity is rapidly induced upon neutrophil activation
and apoptosis [12–15]. Using highly selective small molecule inhibitors,
a unique ADAM17 function blocking mAb, and a cell-based ADAM17
reconstitution assay, we provide the first direct evidence that ADAM17
is a sheddase of CD16b in neutrophils.
2. Materials and methods

2.1. Human subjects and animals

The indicated patients from study INCB7839-202 (ClinicalTrials.gov
Identifier: NCT00864175) were orally administered the selective
ADAM10 and ADAM17 inhibitor INCB7839 (Incyte Corporation,
Wilmington, DE) at 300 mg twice daily for 28 days with trastuzumab
and docetaxel, and plasma samples were collected. These procedures
and peripheral blood collection from normal individuals were
performed in accordance with protocols approved by the Institutional
Review Board at the University of Minnesota and the Incyte Corporation.
Bone marrow neutrophils were isolated from wild-type C57BL/6J mice
and FcγRIIB-deficient mice (C57BL/6J) (Taconic, Germantown, NY) in
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accordance with protocols approved by the Animal Care and Use
Committee of the University of Minnesota.
2.2. Cell isolation and treatment

Human peripheral blood neutrophils and mouse bone marrow
neutrophils were isolated as previously described [15,16]. NK cells
were purified using a human NK cell isolation kit (Miltenyi Biotec,
Auburn, CA), as per the manufacturer's instructions, resulting in
>90% enrichment of CD56+CD3− lymphocytes. Cell activation with
PMA (10 ng/ml; Sigma, St. Louis, MO), formyl peptide receptor-like
1 agonist (1 μg/ml; Sigma), human TNFα (5 μg/ml; PeproTech Inc,
Rocky Hill, NJ) or induction of apoptosis with anti-human Fas mAb
CH-11 (500 ng/ml) was performed as previously described [15,17].
Mouse neutrophil activation was induced by formyl peptide receptor-
like 1 agonist or LPS from E. coli O111:B4 (100 μg/ml; Sigma). Mouse
neutrophil apoptosis was induced by mouse TNFα (20 ng/ml;
PeproTech) and cycloheximide (35 μM), which reproducibly induces
apoptosis [18–21]. Mouse TNFαwas initially tittered down to a concen-
tration that caused nominal neutrophil activation during the timeframe
of the assay, as we have previously reported [17]. Some cells were
pre-incubated for 30 min with the broad-spectrum metalloprotease
inhibitor TAPI-I (Peptides International, Louisville, KY) at 50 μM, the
selective ADAM17 specific inhibitors SP26 [22] (MERCK, Whitehouse
Station, NJ) at 5 μM and BMS566394 referred to as inhibitor 32 in Ref.
[23] (Bristol-Myers Squibb Company, Princeton, NJ) at 5 μM, the selec-
tive ADAM10 inhibitor GI254023X (kindly provided by Dr. Andreas
Ludwig, Rhein-Westphalian Technical University, Aachen, Germany)
at 0.5 μM, which is 10-fold selective for ADAM10 over ADAM17 in cel-
lular assays [24], the anti-human ADAM17 function blocking mAb
D1(A12) at 50 nM (kindly provided by Dr. Gillian Murphy, University
of Cambridge, Cambridge, United Kingdom), or isotype-matched nega-
tive control antibody.

The EC2 fibroblast cell line derived from ADAM17-deficient mouse
embryos has been previously described [14,25,26]. The two allelic
forms of CD16b (NA1 and NA2) were amplified from human neutro-
phil cDNA, cloned into the pcDNA3.1 vector (Invitrogen, Carlsbad,
CA), and expressed in a stable manner in EC2 cells using described
procedures [14,26]. The EC2 cells were then reconstituted with
wild-type mouse ADAM17 using a bicistronic retroviral vector
co-expressing eGFP, as previously described [14,26]. Apoptosis was
induced by UV irradiation using a UV-C light source at a dosage of
60 mJ/cm2, followed by incubation at 37 °C in 5% CO2 for 2 h.
2.3. Flow cytometry

Flow cytometric analyseswere performedona FACSCanto instrument
(BD Biosciences), as described [15,16]. Human CD16was detected by the
mAb 3G8 (Biolegend). The mAb 196001 (R&D Systems, Minneapolis,
MN) detects mouse CD16 but not FcγRIV, and the mAb 2.4G2 (Santa
Cruz Biotech, Santa Cruz, CA) detects mouse FcγRIIB, CD16, and
FcγRIV [27]. Mouse L-selectin was detected with Mel-14 (eBioscience,
San Diego, CA). Externalized phosphatidylinositol on apoptotic cells
was detected by fluorochrome-conjugated annexin-V, as per the
manufacturer's instructions (BD Biosciences, San Jose, CA).
Fig. 1. Role of ADAM proteases in the homeostatic maintenance of CD16 plasma levels.
Plasma levels of CD16 from 11 individuals before and after treatment with INCB7839
were quantified by ELISA. Shown in the left plot is the mean±SD. In the right plot,
patient CD16 plasma levels were compared before and after treatment.
2.4. SDS-PAGE and immunoblotting

Western blotting was performed as previously described [14,15].
Human CD16 was detected by the mAb DJ130c (Santa Cruz Biotech,
Santa Cruz, CA), mouse and human caspase-3 was detected by anti-
body #9662 (Cell Signaling, Beverly, MA), and mouse GAPDH was
detected by antibody G9545 (Sigma).
2.5. Cytometric bead assay

Awell established, commercially available human CD16 ELISA is not
currently available. We developed a quantitative immunosorbent assay
using cytometric functional beads A8 andA5 (BDBiosciences) conjugat-
ed with the anti-CD16mAb 3G8 and an IgG1 isotype-matched negative
control antibody, respectively, as per the manufacturer's instructions.
A multiplexed quantitative cytometric bead assay was performed by
flow cytometry, as previously described with some modifications [15].
Briefly, a suspension of A8 and A5 beads was incubated with superna-
tants from treated neutrophils or with human plasma diluted by
2-fold serial dilutions, followed by PE-conjugated anti-human CD16
mAb DJ130c (10 μg/ml). DJ130c detects an epitope distinct from 3G8
[28]. Soluble CD16 concentrations were determined from a standard
curve obtained from serial dilutions of recombinant human CD16b
containing BSA (R&D Systems).

3. Results and discussion

3.1. Effect of an ADAM inhibitor on plasma CD16 levels

INCB3619 is a potent and selective inhibitor that targets both
ADAM10 and ADAM17 when compared with a panel of matrix
metalloproteases and ADAM family members [29,30]. The second-
generation inhibitor INCB7839, which has a specificity profile identical
to INCB3619 [31], has been examined in clinical trials in HER2-
positive metastatic breast cancer patients, and found to cause a marked
reduction in plasma levels of the ADAM product, soluble HER2 [32].
Using clinical samples from those studies,we assessed the plasma levels
of soluble CD16 pre- and 28 days post-treatment with INCB7839. As
shown in Fig. 1, CD16 plasma levels were significantly reduced in
patients following INCB7839 treatment, with the highest level of reduc-
tion being 67%. These data suggest that human plasma CD16 levels are
regulated by ADAM10 and/or ADAM17 activity.

3.2. Effects of selective ADAM10 and ADAM17 inhibitors on CD16
shedding

We next examined the effects of other hydroxamate-based
metalloproteinase inhibitors on CD16 shedding, which differ in their
selectivity for ADAM10 and ADAM17. GI254023X is an ADAM10 in-
hibitor that blocks ADAM10, but not ADAM17, in cells at a concentra-
tion ranging from 0.2 to 1 μM [33,34]. Using GI254023X within this
concentration range, we found the inhibitor had little to no effect
on the down-regulation of CD16b surface expression upon neutrophil
treatment with PMA, a cell activator that induces robust CD16b
shedding [8,9,35,36]. SP26 is a highly potent inhibitor as well, but
with a selectivity more than 10,000-fold greater for ADAM17 than
ADAM10 [22]. SP26 selectivity has been assessed in cellular assays
and in vivo [33]. SP26 markedly attenuated CD16b down-regulation
from PMA-activated neutrophils (Fig. 2A). BMS566394 is another
highly selective ADAM17 inhibitor, again with a potency orders of



Fig. 2. ADAM17 inhibitors block CD16 shedding upon leukocyte activation. A. Human
peripheral blood leukocytes were activated with PMA in the presence or absence of
TAPI, SP26, BMS566394 (BMS), or GI254023X (GI) for 30 min at 37 °C. Relative
CD16b and CD16a expression levels on neutrophils (top panels) and NK cells (bottom
panels), respectively, are shown. Negative control antibody staining of untreated cells
is shown as a dashed line. The x-axis=Log 10 fluorescence. Data are representative of
at least 3 independent experiments using leukocytes isolated from separate donors. B.
Peripheral blood neutrophils were activated with formyl peptide (FP) or TNFα in the
presence or absence of BMS566394 (BMS) or TAPI for 30 min at 37 °C. Cell supernatant
levels of soluble CD16b were quantified by ELISA. Shown is the mean (±SD) of 3–5
independent experiments. *, pb0.05 versus formyl peptide or TNFα treatment alone.
C. Alignment of the extracellular juxtamembrane regions of human and mouse CD16
and mouse FcγRIV. Dashes indicate gaps introduced to maximize homology. The
arrowhead indicates the putative CD16b cleavage site [36] and the asterisk indicates
the CD16b GPI-linkage site [50,51]. The alignment of human and mouse CD16 is
based on the amino acid sequence comparison described by Mechetina et al. [52].
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magnitude higher for ADAM17 [23]. BMS566394 also blocked the
down-regulation of CD16b surface expression upon neutrophil
activation with PMA (Fig. 2A). Moreover, BMS566394 blocked
CD16b shedding by neutrophils activated with the physiological acti-
vators formyl peptide and TNFα (Fig. 2B). The broad-spectrum
metalloprotease inhibitor TAPI did not further block CD16b shedding
(Fig. 2A,B), indicating a predominant role by ADAM17 in cleaving
CD16b.

CD16 expression occurs at high levels in human NK cells as well,
but these cells express the transmembrane form (CD16a) and not
the GPI-linked form (CD16b) [1]. CD16a also undergoes efficient
ectodomain shedding by an unknown metalloprotease upon cell
activation [37]. Similar to CD16b in neutrophils, inhibition of
ADAM17, but not ADAM10, blocked the down-regulation of CD16a
upon NK cell activation (Fig. 2A). Hence, both the GPI-linked and trans-
membrane forms of CD16 appear to undergo ectodomain shedding by
ADAM17 upon cell activation. A putative cleavage site in the extracellu-
lar juxtamembrane region of CD16b has been identified between amino
acids Val-196 and Ser-197 proximal to the GPI-linkage site [10,36].
CD16b differs from CD16a by six amino acids in the extracellular do-
main [38]. However, none of these amino acid alterations occur at the
putative CD16b cleavage site (Fig. 2C), indicating that the two CD16
isoforms may be cleaved by ADAM17 at the same location. Serine pro-
teases have also been implicated in CD16b proteolysis [8–10]. In con-
trast to the plasma membrane-associated ADAMs, serine proteases
appear to be released upon azurophil degranulation and their digestion
of CD16b has been reported to produce nonfunctional proteolytic frag-
ments [10]. Serine proteases are not involved in CD16b proteolysis
following neutrophil apoptosis [8], consistent with their being little
degranulation during this process.

3.3. Role of ADAM17 in CD16b cleavage during neutrophil apoptosis

Neutrophils are the most abundant leukocyte in humans. These
cells are short-lived and their turnover is governed by apoptosis,
which occurs on the order of 1011 cells per day in the average adult
[39]. CD16b undergoes shedding upon the induction of neutrophil
apoptosis [6–8], and considering that the vast majority of plasma
CD16 is derived from neutrophils [6,40,41], this process may account
for the homeostatic maintenance of plasma CD16 [8,42]. Fas is a key
death receptor expressed by neutrophils and induction of this physi-
ological signaling pathway resulted in substantial CD16b shedding
(Fig. 3A and B). Indeed, by immunoblotting we observed a significant
decrease in cell-associated CD16b and a corresponding increase in the
levels of soluble CD16b in the cell supernatant (Fig. 3B). Similar
to neutrophil activation, selective inhibitors of ADAM17, but not
ADAM10, greatly impaired CD16b shedding by apoptotic neutrophils,
and additional inhibition was not observed with a broad-spectrum
metalloprotease inhibitor (Fig. 3A and B). In light of limitations in
specificity by small molecule inhibitors, we also utilized a specific
ADAM17 inhibitory mAb generated by phage display that contains in-
dividual antibody variable domains to two distinct ADAM17-specific
epitopes [43]. In Fig. 3C, we show that the ADAM17 inhibitory mAb
also blocked CD16b shedding by apoptotic neutrophils.

As an additional approach to investigate CD16b shedding by
ADAM17, we used immortalized fibroblasts derived from ADAM17-
deficient mice. CD16b occurs in two allelic forms termed NA1 and
NA2, which are 95% homologous [1,44], and we expressed both
forms in a stable manner in the ADAM17-null cells. The cells were
then transduced with a bicistronic retroviral vector containing
wild-type ADAM17 and GFP, which are expressed in a proportional
manner [14,26]. In order to directly compare cells expressing and
lacking ADAM17, GFP+ cells (expressing ADAM17) and GFP− cells
(lacking ADAM17) within the same population were assessed for
their expression levels of CD16b-NA1 and CD16b-NA2 before and
after the induction of apoptosis. The GFP+ cells demonstrated a sig-
nificant down-regulation in surface expression of CD16b-NA1 and
CD16b-NA2 upon the induction of apoptosis, whereas the GFP−

cells lacking ADAM17 maintained high levels of both forms of
CD16b (Fig. 4). We confirmed the induction of cell apoptosis, in
part, by assessing the activation of caspase-3 (Fig. 4).

3.4. Ectodomain shedding of CD16 in mouse neutrophils

Unlike humans, only one gene encodes for CD16 in the mouse, and
this is expressed as a transmembrane protein with an extracellular
region highly homologous to mouse FcγRIIB [38]. A literature review
failed to reveal whether mouse CD16 shedding has been directly

image of Fig.�2


Fig. 3. ADAM17 inhibitors block CD16b down-regulation by apoptotic neutrophils.
A. Neutrophils were treated with the anti-Fas antibody CH-11 in the presence or
absence of TAPI, SP26, BMS566394 (BMS), or GI254023X (GI) for 6 h at 37 °C. Cell
apoptosis was assessed, in part, by caspase-3 activation. Detergent lysates from
CH-11-treated and untreated neutrophils cells were subjected to Western blotting
with antibodies to caspase-3 or GAPDH (loading control). The anti-caspase-3 antibody
detects full-length caspase-3 (pro-caspase-3) and activated caspase-3 (cleaved
caspase-3). B. Neutrophils were treated as described above and detergent lysates
(left figure) as well as cell media supernatants (right figure) from equivalent cell
numbers were subjected to Western blotting with antibodies to CD16 or GAPDH
(loading control). The histogram plots and immunoblots are representative of 3 inde-
pendent experiments using neutrophils isolated from separate donors. Densitometric
data are from 3 separate experiments (expressed as mean±SD) and shown as percent
of control. *, pb0.05 versus control. C. Neutrophils were treated with the anti-Fas
antibody CH-11 in the presence or absence of D1(A12) (indicated as D1) for 6 h at
37 °C. Data are representative of at least three independent experiments using
neutrophils isolated from separate donors. Cell supernatant levels of soluble CD16b
were also quantified by ELISA. Shown is the mean (±SD) of three independent exper-
iments. **, pb0.01 versus CH-11 treatment alone.

Fig. 4. ADAM17 reconstitution restores CD16b shedding during apoptosis. ADAM17-
deficient EC2 cells expressing NA1-CD16b or NA2-CD16b were transduced with a
bicistronic retroviral vector for co-expression of ADAM17 and GFP. EC2 cells expressing
NA1- or NA2-CD16b were also transduced with an empty retroviral vector (vector).
Apoptosis was induced by UV light exposure. GFP-expressing cells (GFP+) and
non-GFP-expressing cells (GFP−) were each electronically gated and the relative
expression levels of NA1-CD16b and NA2-CD16b were determined. Mean fluorescence
intensity (MFI) of NA1-CD16b and NA2-CD16b staining from three experiments are
expressed as mean±SD. *, pb0.05 versus GFP− EC2 cells. Detergent lysates from
UV-treated and untreated EC2 cells were subjected to Western blotting with anti-
bodies to caspase-3 or GAPDH (loading control).

Fig. 5. Mouse neutrophils do not efficiently shed CD16. Bone marrow neutrophils were
either untreated or treated with formyl peptide (FP) or LPS for 30 min at 37 °C to
induce activation, or TNFα and cycloheximide (CHX) for 180 min at 37 °C to induce
apoptosis. Cell staining by antibodies was determined using flow cytometry. Mouse
CD16 was detected by the mAb 196001 and mouse CD16 and FcγRIV were detected
by the mAb 2.4G2. Cell apoptosis was assessed by annexin-V reactivity. Negative
control antibody staining of untreated cells is indicated (dashed line). The x-axis=
Log 10 fluorescence. Data are representative of at least 3 independent experiments
using leukocytes isolated from separate mice.
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examined. Of interest is that following the induction of neutrophil
activation or apoptosis, we did not observe a significant down-
regulation in CD16 surface expression (Fig. 5). L-selectin in humans
and mice is a well established ADAM17 substrate [15,45,46], and in
contrast to mouse CD16, mouse L-selectin underwent an appreciable
down-regulation in surface expression upon neutrophil activation
and apoptosis, indicating ADAM17 induction (Fig. 5). It is unlikely
that potential anti-CD16 antibody reactivity with FcγRIIB confounded
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our findings considering that mouse neutrophils express little to
none of this receptor [47]. In addition, neutrophils obtained from
FcγRIIB-deficient mice failed to down-regulate their CD16 upon acti-
vation or apoptosis (data not shown). Mouse neutrophils also express
high levels of FcγRIV, which has been proposed to be an orthologue of
human CD16a [38]. We are not aware of a commercially available
antibody specific to FcγRIV, but staining by the mAb 2.4G2, which
detects CD16 and FcγRIV on mouse neutrophils [27], also did not
decrease following the induction of neutrophil apoptosis (Fig. 5).
Taken together, these findings reveal that mouse CD16, which func-
tions differently than human CD16, is not regulated by ectodomain
shedding. Indeed, there is little amino acid sequence similarity be-
tween the cleavage region of human CD16 and the corresponding
juxtamembrane region of mouse CD16 or FcγRIV (Fig. 2C).

3.5. Conclusions

Our findings are the first to directly demonstrate that ADAM17 is a
sheddase of CD16b in human neutrophils. Ectodomain shedding of
CD16b upon neutrophil activation may be an important tuning mech-
anism to rapidly control the receptor's surface density and neutrophil
stimulation by immune complexes. CD16b shedding during neutro-
phil apoptosis, however, may have an anti-stimulatory role by reduc-
ing neutrophil activation by the inflammatory milieu. Indeed, CD16b
joins an increasing list of activating receptors on the surface of neu-
trophils cleaved by ADAM17 upon neutrophil apoptosis, which in-
cludes TNF-RI, TNF-RII, IL-6R, and L-selectin [15,48,49]. ADAM17
induction during apoptosis by senescent neutrophils may also be a
key mechanism underlying the homeostatic maintenance of plasma
CD16b in healthy individuals (see Graphical abstract). It is tempting
to speculate that plasma CD16b may serve as an inflammation buffer
that reduces the potential of activating circulating neutrophils by
physiological immune complexes.
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