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The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and
electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic
features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolution-
ary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in
fermentative anaerobicmicroorganisms and likely evolved under selective pressure to couple hydrogen produc-
tion to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-
hydrogenases catalyze hydrogen oxidation as part of energymetabolism andwere likely key enzymes in early life
and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combina-
tion of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and
[NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton
transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is
that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide
and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to pro-
duce these ligands are exclusive to each type of enzyme. Furthermore, thesemechanisms represent two indepen-
dent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical
reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most
profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, struc-
ture, function, biogenesis and diseases.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Hydrogenases utilize hydrogen (H2) as a substrate or produce H2 by
the reduction of protons. The two main types of hydrogenases are clas-
sified by the nature of the metal clusters at their catalytic sites and are
termed [FeFe]- and [NiFe]-hydrogenases [1–15]. Their active sites have
structural characteristics in common including the presence of carbon
monoxide (CO) and cyanide (CN−) groups bound to the iron (Fe)
ions. The [FeFe]-hydrogenase active site cluster is termed the H cluster,
and exists as a regular [4Fe-4S] subcluster bridged to a 2Fe subcluster
unit through a bridging cysteine thiolate. The 2Fe subcluster is also co-
ordinated by the non-protein ligands carbon monoxide, cyanide and
dithiomethylamine, thereby giving it a distinctly organometallic charac-
ter. The Fe atomat the active site of the [NiFe]-hydrogenase has a similar
teins: Analysis, structure, func-
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architecture where one of the Fe ions of the 2Fe subcluster has CO and
CN− ligation but it is bridged to a Ni atom through bridging cysteine
thiolates. TheNi atom is in turn terminally coordinated by two addition-
al cysteine thiolates. In some hydrogenases one of the two terminal cys-
teines is replaced by selenocysteine and these so-called [NiFeSe]-
hydrogenases are considered variations of [NiFe]-hydrogenases. Both
[FeFe]- and [NiFe]-hydrogenases typically contain multiple iron-sulfur
clusters that exist as either cysteine coordinated [4Fe-4S] or [2Fe-2S]
clusters and in some cases there is mixed coordination with a His
substituting for one of the Cys residues. As conduits between the cata-
lyticmetal sites and external electron donors and acceptors, the compo-
sition of these iron-sulfur clusters varies among different phylogenetic
clades that in large part delineate hydrogenases on the basis of physio-
logical function.

In the case of both [FeFe]- and [NiFe]-hydrogenases, the CO and CN−

ligands at their catalytic sites function as strong π-acceptor ligands that
facilitate low-spin, II/I oxidation states of the Fe atoms. In all cases, the
hydrogenases require efficient proton-transfer (PT), and proton-
coupled electron transfer (PCET) to achieve fast H2 activation rates
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turnovers ranging from ~103–104 s−1 [16–19]. This functional necessity
is satisfied by a secondary coordination sphere that includes conserved
polar residues with exchangeable sites for transferring protons to the
redox-active bimetallic clusters [20–23]. In addition, these conserved
residues can also participate in H-bonding interactions to stabilize co-
factor orientations and tune electronic properties. Altogether these ex-
tended interactions are critical for creating a catalytic reaction
coordinate that minimizes high-energy steps, or kinetic barriers that
would otherwise constrain enzymatic function and efficiency.

For the most part, hydrogenases function in recycling reduced elec-
tron carriers that accumulate during anaerobic fermentation through
proton reduction or in couplingH2 oxidation to energy yielding process-
es. The [FeFe]-hydrogenases are typically associated with proton reduc-
tion and [NiFe]-hydrogenases with H2 oxidation, although there are a
number of exceptions [12,24]. Despite sharing the unique features of
CO and CN− ligands to active site Fe ions, the [FeFe]- and [NiFe]-hy-
drogenases are not evolutionarily related and show no sequence simi-
larity [25,26]. The only other example of an enzyme that exists with
diatomic ligands to Fe is themethylenetetrahydromethanopterin dehy-
drogenase also termed Fe-hydrogenase found inmethanogenic archaea.
The Fe-hydrogenase has a single CO ligand to Fe and catalyzes the trans-
fer of a hydride derived from H2 to methenyltetrahydromethanopterin
to form methylenetetrahydromethanopterin [27,28]. In general,
[FeFe]-hydrogenases are found in anaerobic bacteria and are especially
prevalent among the fermentative organisms (e.g., Firmicutes). They
are also found in a number of eukarya including algae and protists but
surprisingly they have yet to be found in cyanobacteria or in the archae-
al domain. In contrast, [NiFe]-hydrogenases are frequently found associ-
ated with cyanobacteria and archaea, in addition to their common
occurrence in a large number of bacteria. A variety of organisms harbor
multiple hydrogenases [25,26,29,30]. In some cases, this may provide
functional redundancy but it is thought in general they likely have dif-
ferent roles. Some bacteria, again largely firmicutes and sulfate reducing
bacteria, even harbor both [NiFe]- and [FeFe]-hydrogenases [25,26].

The [FeFe]-hydrogenases are closely related to a protein found only
in eukaryotes termed Nar1 or Narf [5,31]. This protein has been impli-
cated in having a role in cytoplasmic iron-sulfur cluster biosynthesis
and/or repair, and appears to resemble a minimal [FeFe]-hydrogenase
that lacks a 2Fe subcluster. Homology models of Narf suggest the pres-
ence of an open cavity adjacent to the [4Fe-4S] cubane that could ac-
commodate the 2Fe subcluster [5]. We have proposed [32] that Narf
proteins and [FeFe]-hydrogenases have a common ancestor that more
likely resembles the simpler Narf-like protein and that the biosynthetic
pathway for assembly and insertion of the 2Fe subcluster evolved, at
least in part, in response to the characteristics of the vacant cavity pres-
ent in the ancestral enzyme and fill it with a organometallic cluster ca-
pable of catalyzing new biochemistry. Whatever the merits of this
proposal, in general [FeFe]-hydrogenases do not occur universally in
deeply rooted lineages of ribosomal RNA-based phylogenetic recon-
structions and they are not commonly associated with metabolisms
considered by many to be ancestral (e.g., chemolithotrophy or
methanogenesis). This indicates that it is unlikely that [FeFe]-hydroge-
nases were a property of the Last Universal Common Ancestor (LUCA)
and are perhaps not old from an evolutionary perspective [32].

As discussed below and in contrast to the [FeFe]-hydrogenases
(Table 1), the [NiFe]-hydrogenases are encoded in the genomes of
many Bacteria and Archaea and are frequently detected in deeply root-
ed lineages of both domains. For this reason, one canmake an argument
that [NiFe]-hydrogenases played a key role in the metabolism of the
LUCA [33]. The closest evolutionary relative of [NiFe]-hydrogenases are
proteins involved in respiratory Complex I/NADH dehydrogenase [34,
35]. Subunits comprising NADH dehydrogenase are close relatives of
the so-called group 4 membrane bound [NiFe]-hydrogenases that cou-
ple the oxidation of ferredoxin (Fd) to proton reduction, which is in
turn coupled to generating amembrane potential through ion pumping.
Thismechanism is analogous to themechanism of Complex I in coupling
NADHoxidation andubiquinone reduction to protonpumping. This sug-
gests that ion pumping membrane [NiFe]-hydrogenases are the ances-
tors of modern respiratory Complex I and chemiosmosis.

That both [FeFe]- and [NiFe]-hydrogenases have independently
evolved essentially the same unique solution to catalyzing reversible
H2 oxidation chemistry (carbon monoxide and cyanide ligands to Fe
ions) is somewhat of a surprise. However, evidence for independent
evolutionary origins is also supported in the stark difference in the
mechanisms by which these unique carbon monoxide and cyanide li-
gands are synthesized in their respective cluster maturation pathways
[36–41]. The process by which the CO, CN−, and other nonprotein li-
gands are synthesized, coordinated to iron, and are inserted into the ac-
tive sites of [FeFe]- and [NiFe]-hydrogenases to yield the mature
enzymes, clearly represents two different paradigms in metal cluster
biosynthetic pathways. These two independent paths for the evolution
of these unrelated enzymes perhaps represents one of the most pro-
found cases of convergence evolution and one that is supported by dif-
ferences in the taxonomic distribution of these enzymes, the pathways
required to synthesize active site cofactors, and their physiological roles.

2. Diversity

Our recent screening of 2919 complete bacterial and archaeal ge-
nomes available as of July, 2014 (Boyd, E.S., unpublished data) indicate
the presence of [FeFe]-hydrogenase homologs in 265 of bacterial ge-
nomes (9.1% of total) while 778 (26.7% of total) of those genomes en-
code homologs of [NiFe]-hydrogenases (Table 1). Like previous studies
[25,26,30], we found that [FeFe]- and [NiFe]-hydrogenase homologs
are discretely distributed at thedomain, phylum, and order levels of tax-
onomic classifications. While [FeFe]-hydrogenases are encoded in the
genomes of anaerobic bacteria and anaerobic or phototrophic eukary-
otes, they are not encoded by archaea. In contrast, [NiFe]-hydrogenases
are encoded by both aerobic and anaerobic bacteria and archaea but not
eukarya (Fig. 1).

2.1. Phylogenetic and functional diversity of [FeFe]-hydrogenases

[FeFe]-hydrogenase are delineated from paralogous proteins pres-
ent in eukaryotes, such as Nar1, by the presence of three conserved
cysteine-containing motifs that coordinate the active site H-cluster.
These consist of TSCCPxW (L1), MPCxxKxxE (L2) and ExMxCxxGCxxG
(L3) in [FeFe]-hydrogenase, and although some sequence variation
does occur in these motifs, the cysteine residues shown in bold are es-
sential for coordination of the H-cluster [25]. In addition to variation
in the cluster bindingmotifs, previous studies have noted substantial se-
quence variation in the motifs that contain the cysteine residues that
bind the N- and C-terminal Fe-S cluster and accessory cofactor binding
domains [29,30] (Fig. 2), suggesting potential interactionswith a variety
of redox partners. Due to the substantial N and C-terminal cluster vari-
ation, only the H-cluster is included in phylogenetic reconstructions of
the catalytic subunit, which is termed HydA. Although the branching
order of some H-cluster lineages mirror that of taxonomic reconstruc-
tions, most organisms with hydA encode multiple copies that often be-
long to divergent lineages, implying a number of gene duplications
and horizontal gene transfers during the functional diversification of
this protein class. In addition to variation at the level of primary se-
quence, disparities in the number of [FeFe]-hydrogenase subunits and
their tertiary structure have been identified [29,30].

The best characterized [FeFe]-hydrogenases are monomeric,
ferredoxin-dependent enzymes [26]. Examples include the hydroge-
nases from algae, such as Chlamydomonas reinhardtii, and clostridial
species, such as Clostridium pasteurianum. C. reinhardtii [FeFe]-hydroge-
nase HydA1 (CrHydA1) contains only the H-cluster and no additional
iron-sulfur clusters [30]. Like bacteria, algae often encode multiple ho-
mologs of [FeFe]-hydrogenase. However, unlike bacteria, homologs in
a given algal taxon are monophyletic relative to other algal or bacterial



Table 1
Taxonomic distribution of [FeFe]- and [NiFe]-hydrogenase homologs in 2912 sequenced archaeal and bacterial genomes.

Total number
of genomes

Number of genomes with homologs

Domain Phylum [FeFe]-hydrogenase [NiFe]-hydrogenase

Archaea Crenarchaeota 50 0 22
Euryarchaeota 110 0 70
Korarchaeota 1 0 1
Nanoarchaeota 1 0 0
Thaumarchaeota 5 0 0

Bacteria Acidobacteria 7 0 4
Actinobacteria 301 8 72
Aquificae 14 0 13
Armatimonadetes 2 0 0
Bacteroidetes 94 9 12
Caldiserica 1 0 0
Chlamydia 109 0 0
Chlorobi 11 0 10
Chloroflexi 24 11 20
Chrysiogenetes 1 0 1
Cyanobacteria 79 0 43
Deferribacteres 4 0 4
Deinococcus-Thermus 21 0 1
Dictyoglomi 2 2 2
Elusimicrobia 1 0 1
Fibrobacteres 2 0 0
Firmicutes 622 160 86
Fusobacteria 11 2 0
Gemmatimonadetes 1 0 1
Ignavibacteriae 2 2 0
Nitrospirae 4 1 2
Planctomycetes 8 0 1
Proteobacteria 1240 28 497
Spirochaetes 65 20 0
Synergistetes 5 2 3
Tenericutes 89 0 0
Thermodesulfobacteria 2 1 2
Thermotogae 18 18 1
Verrucomicrobia 5 1 2
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HydA, implying independent gene duplications in each of the algal line-
ages [42]. Given the structural simplicity of the C. reinhardtii hydroge-
nase it has become the model for active site maturation studies ([32,
43,44]). Phylogenetic analyses indicate that the H-cluster domain of
algal [FeFe]-hydrogenase is not likely to be ancestral, rather it is likely
that the ancestral enzyme had a single ferredoxin binding domain at
the N-terminus which was lost when these genes were laterally trans-
ferred to algae [32]. The simple algal enzyme containing only the H-
cluster is thought to function during the fermentation of carbohydrate
reserves [45,46] although photosynthetic H2 production was recently
demonstrated under fully aerobic conditions in the alga Chlorella
vulgaris [47].

C. pasteurianum contains [FeFe]-hydrogenases of the ferredoxin
(Fd)-dependent monomeric (M3) structural category [9] (Fig. 2).
C. pasteurianum ferments 3mol glucose to 2mol acetate, 2mol butyrate,
4 mol CO2 and 8 mol H2. In addition, reduced ferredoxin (Fdred) is
Fig. 1.Distribution of [FeFe]-hydrogenase (A) and [NiFe]-hydrogenase (B)mapped on a “univer
in red. Parsimony rules were used to map the ancestral character of extinct lineages (e.g., LUCA
generated by the bifurcating butyryl-CoA dehydrogenase, which helps
to explain how 8 moles of H2 are produced instead of the 6 mol that
would be expected based on thermodynamic considerations [48]. The
Fd-dependent [FeFe]-hydrogenases arewidespread in anaerobic bacteria,
in particular in the phylum Firmicutes [25,29]. More complex, multimeric
[FeFe]-hydrogenases have been identified in Thermotoga maritima,
Thermoanaerobacter tengcongensis and Desulfovibrio fructosovorans
and these have been implicated as NAD(P)H-linked H2 producing
enzymes [49–51]. The trimeric hydrogenase of T. maritima was shown
not to couple H2 formation with the oxidation of reduced Fd or of
NADH when each was used as the sole electron donor. However, the
presence of both reduced Fd andNADHpromoted efficient H2 production
[52]. The key to the formation of H2 from Fd and NADH simultaneously is
the coupling of their energetics; the exergonic reduction of protons by
electrons derived from Fd allows the endergonic reduction of protons
by electrons from NADH. This type of reaction mechanism is called
sal” taxonomic tree of life. Lineages with at least one homolog of each enzyme are overlaid
).



Fig. 2. Schematic representation of the structural variation of [FeFe]-hydrogenase homologs present in sequence databases as adapted from Meyer, 2007 and more recently Calusinska
et al., 2010. The M1, M2, and M3, as reported by Meyer, 2007, correspond to monomeric enzymes with numbers indicating increasing size. “D” denotes a dimeric enzyme, “TR” denotes
a trimeric enzyme, and “TE” denotes a tetrameric enzyme. Panel A illustrates the primary structural classes while panel B illustrates the remarkable structural variation within the M2
structural subclass. Abbreviations: CODH, carbonmonoxide dehydrogenase; TRX: Thioredoxin domain; NuoF: homolog subunit F of NADH dehydrogenase; OX: oxidoreductase domain;
NuoG: homolog of subunit G of NADH dehydrogenase; IDF: Indolepyruvate:ferredoxin domain; ACS: Acetyl CoA dehydrogenase; SLBB: soluble-ligand-binding b-grasp fold domain; RRR:
Rubredoxin–rubrerhythrin–rubredoxin domain; PAS: PAS/PAC domain.
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electron bifurcation and represents the third form of energy conservation
along with substrate phosphorylation and electron transport phosphory-
lation [48,52].

Energy conservation by electron bifurcation was first proposed in
2008 [53] and is defined as an exergonic reaction driving an endergonic
reaction without the involvement of an ion gradient. The clostridial cy-
toplasmic enzyme complex butyryl-CoA dehydrogenase catalyzes the
reduction of crotonyl-CoA (E0′ = −10 mV) to butyryl-CoA with
NADH (E0′ = −320 mV) as the electron donor and this is coupled to
the endergonic reduction of Fd (Em = −410 mV) [53,54]. Reduced Fd
is then recycled to produce H2 (E0′ = −420 mV). As a consequence of
this pair of linked redox reactions, the oxidation of NADH can be
coupled to H2 production and this ultimately leads to the formation of
additional ATP. The discovery of electron bifurcation can explain impor-
tant reactions in anaerobic microbes, such as in clostridia and
methanogens [55].
The heterotrimeric [FeFe]-hydrogenase from T.maritima (Topt 80 °C)
utilizes the exergonic oxidation of Fd [(Em = −453 mV (at 80 °C), [56,
57]] to drive the unfavorable oxidation of NADH (E°′ = −320 mV) to
produce H2 (E0′ = −420 mV). The overall reaction is:

NADH + 2Fdred + 3H+ → 2H2 + NAD+ + 2 Fdox

Although technically this hydrogenase can be called confurcating as
it merges electrons of different potentials, for simplicity reasons the
term bifurcation should be used in all cases where 3 redox reactions
are involved simultaneously, including this type of hydrogenase.
The bifurcating hydrogenases provide new insights into H2

production by anaerobes. For example, Caldicellusiruptor and other
Thermoanaerobacteriales contain two types of hydrogenase, a soluble
multimeric [FeFe]-hydrogenase similar to the T. maritima bifurcating
hydrogenase and a group 4 membrane bound Fd-dependent [NiFe]-
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hydrogenase. These enzymes were proposed to function together to
evolve H2 during sugar metabolism [50]. However, genetic analyses of
T. saccharolyticum showed that the membrane bound [NiFe]-hydroge-
nase appeared not to be involved in H2 production while deletion of
themultimeric [FeFe]-hydrogenase resulted in decreasedH2 production
[58]. This indicates that these organisms also utilize a bifurcating [FeFe]-
hydrogenase for H2 production and the non-bifurcating [NiFe]-hydrog-
enase could have a secondary metabolic role.

Bifurcating [FeFe]-hydrogenases also play a central role in energy
conservation in acetogens [59]. Acetobacteriumwoodii uses a respiratory
system for electron transfer between Fd and NAD as the main energy-
conserving mechanism for autotrophic growth on H2 and carbon diox-
ide [60,61]. However, the mechanism for how reduced Fd is generated
from H2 only became clear through the characterization of its bifurcat-
ing [FeFe]-hydrogenase, which functions to couple H2 oxidation to the
simultaneous production of reduced Fd and NADH [59].

Bifurcating [FeFe]-hydrogenases can in principle function in vivo in
both the production and oxidation of H2, as was recently shown for
a reversible bifurcating hydrogenase in Moorella thermoacetica [62].
During growth on glucose, M. thermoacetica can intermittingly pro-
duce H2 from Fd and NADH via the bifurcating hydrogenase. Like-
wise, this same hydrogenase can utilize produced H2 and CO2 to
perform acetogenesis generating 3mol of acetate per glucosemolecule.
Although M. thermoacetica does not grow well autotrophically on H2

and CO2, it uses the bifurcating hydrogenase to produce reduced Fd to
drive acetogenesis. In addition to Fd- and NADH-dependent hydroge-
nases, a Fd- and NADPH-dependent enzyme was characterized from
Clostridium autoethanogenum cultured on CO and it was proposed that
this hydrogenase functions in the formation of H2 [63]. Moreover, the
genome of C. autoethanogenum encodes two additional [FeFe]-hydroge-
nases that from sequence and genomic context information are likely to
have similar structure to known bifurcating hydrogenases and could
function in providing reduced Fd and NADH during autotrophic growth
on H2 and CO2 [64]. Bifurcating hydrogenasesmight also play an impor-
tant role in the gut microbiota. Ruminoccoccus species, which are in-
volved in the degradation of recalcitrant biomass, contain [FeFe]-
hydrogenases very similar to the bifurcating hydrogenase of T.
maritima [65]. Anaerobic gut-dwelling protists and fungi involved
in biomass degradation also encode [FeFe]-hydrogenases to recycle
their electron carriers that bear a similarity to the bifurcating
[FeFe]-hydrogenases of anaerobic bacteria [66–68]
Fig. 3.Hypothetical depiction of the distribution of specific guilds of organisms and associated [F
reduction of substrates along a gradient in the availability of oxidants. (B) Phylogenetic reconstr
group designations indicated. Figure adapted from Boyd et al., 2014.
2.2. Phylogenetic and functional diversity of [NiFe]-hydrogenases

[NiFe]-hydrogenase aremorewidely distributed taxonomically than
[FeFe]-hydrogenase (Table 1). Representative [NiFe]-hydrogenases
have been isolated from a variety of microorganisms and biochemically
characterized [69,70]. These enzymes are comprised of at least two sub-
units, with the large subunit (LSU) containing theNiFe-catalytic site and
the small subunit (SSU) containing three highly conserved iron-sulfur
clusters that serve to shuttle electrons between the external electron
carrier and the NiFe site. Based on comparison of the sequence motifs
that coordinate the active site, [NiFe]-hydrogenases can be separated
into four distinct functional groups that in general correspond to their
putative physiological role [26]. Intriguingly, phylogenetic reconstruc-
tions of representatives of these enzymes also reveal patterns of cluster-
ing that correspond to variations inNiFe cluster bindingmotifs and their
inferred physiological role [26,29] (Fig. 3).

2.2.1. Group 1
Enzymeswithin this group are typicallymembrane-bound hydroge-

nases and are found in organisms that use H2 as an energy source. A cy-
tochrome b is often also present to anchor the hydrogenase complex to
the membrane and allow electron transfer to the quinone pool. These
enzymes couple the oxidation of H2 to the reduction of electron accep-
tors such as oxygen, nitrate, sulfate, CO2 or oxidized sulfur compounds
[26]. E. coli contains 2 homologs of this group and one of these (Hya)
is thought to oxidize H2 and transfer electrons to the quinone pool to
provide the cell with additional energy [71]. The sulfate reducing bacte-
rium Desulfovibrio gigas encodes two [NiFe]-hydrogenases. One is a
membrane bound Ech-type group 4 enzyme while the other is a peri-
plasmic group 1 enzyme (HynAB). By mutational analysis it was
shown that the periplasmic hydrogenase is essential for growth on H2

with sulfate and functions to donate electrons from H2 to the quinone
pool via a periplasmic cytochrome c [72]. Aquifex aolicus is one the
most thermophilic bacteria known and it gains energy by oxidizing H2

using low concentrations of oxygen or oxidized sulfur compounds as
electron acceptors [73]. Its genome encodes two trimeric uptake
(group 1) [NiFe]-hydrogenases (MbhI and MbhII) and these have dis-
tinct physiological functions [74]. MbhI is involved in the oxidation of
H2 linked to oxygen reduction while H2 oxidation by MbhII is coupled
to elemental sulfur reduction [75]. A similar H2-oxidizing and elemental
sulfur reducing respiratory system was described in the archaeon
eFe]- and [NiFe]-hydrogenases (designated by “G”) that function to couple the oxidation or
uction of representatives of [NiFe]-hydrogenase and related paralogs (NuoBD,MbxJL)with
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Acidianus ambivalens [76] but its genome sequence is not available and
so the diversity of its hydrogenases is currently not resolved.

2.2.2. Group 2

2.2.2.1. Group 2a. This subgroup includes hydrogenases of cyanobacteria
thatfix dinitrogen (N2) usingnitrogenase. These organisms contain a di-
meric uptake hydrogenase (HupSL) to recapture energy lost as H2 dur-
ing the reduction of N2 [77]. Electrons from H2 are then channeled into
the quinone pool or function to reduce O2 that deactivates the oxygen
sensitive nitrogenase enzyme [78,79]. Mutation of the HupLS genes in
the diazotroph Anabaena siamensis abolished H2 uptake activity and
led to an increase in light-dependent H2 production, presumably due
to the lack of recapture of H2 produced by nitrogenase enzyme in the
absence of the uptake hydrogenase [80].

2.2.2.2. Group 2b. Group 2b consists of H2-sensing regulatory hydroge-
nases that function to signal the availability of H2 to the transcriptional
regulation ofmetabolic hydrogenases, which themselves aremost often
affiliated with Group 1 H2 oxidizing enzymes [25]. A very well studied
model is the H2 oxidizing aerobe Ralstonia eutropha, which contains
three different hydrogenases. In this case its H2 sensing hydrogenase
HoxBC regulates the expression of the membrane bound (HoxKGZ)
and the cytoplasmic NAD-dependent (HoxFUYH) enzymes [81].

2.2.3. Group 3

2.2.3.1. Group 3a. The F420 reducing hydrogenases (Frh) are exclusively
found inmethanogenic archaeawhere they function in coupling the ox-
idation of H2 to the reduction of cofactor F420, thereby supplying reduc-
tant for two steps in the reduction of CO2 to methane [25]. These
enzymes consist of a large subunit (FrhA), a small subunit (FrhG), and
a FAD containing-subunit (FrhB) for electron transfer to F420 [82,83].

2.2.3.2. Group 3b. Group 3b enzymes are tetrameric (αβγδ) and are
found primarily in thermophilic archaea. Their α and δ subunits repre-
sent theminimal [NiFe]-hydrogenase structure, with the two other sub-
units (β and γ) containing iron-sulfur clusters and a NAD(P)/FAD
binding domain [26]. The enzyme from the hyperthermophilic
archaeon Pyrococcus furiosus has been well characterized and shown
to function as an uptake hydrogenase to provide NADPH for biosynthe-
sis, although mutational analysis has shown that it is not required for
growth or for supplying NADPH to other metabolic processes under
standard laboratory growth conditions [84–86].

2.2.3.3. Group 3c. Some archaea, primarilymethanogens, encode a trimer-
ic methyl viologen-reducing hydrogenase (MvhAGD). MvhAGD forms a
complex with heterodisulfide dehydrogenase (HdrABC) that in turn pro-
vides the physiological electron acceptor heterodisulfide CoM-S-S-CoB
[87]. With the discovery of electron bifurcation it became clear that the
MvhADG/HdrABC complex catalyzes the reduction of heterodisulfide
and Fd simultaneously with H2 as reductant at high specific activity,
while in the absence of Fd only low rates are observed [88]. The complex
thus appears to couple the endergonic reduction of Fd (E′≈−500mV) to
the exergonic reduction of CoM-S-S-CoB (E′0 = −140 mV) with H2

(E′0 = −414 mV) as the electron donor, providing a putative mech-
anism by which methanogens conserve energy [55,89].

2.2.3.4. Group 3d. This subgroup consists of bidirectional heteromultimeric
[NiFe]-hydrogenases (HoxHY) that are associated with an additional
NADH oxidoreductase (diaphorase) module, which shows distinct
homology to the NADH inputmodule of Complex I [26]. The bidirectional
hydrogenases are found in aerobic H2-utilizing organisms such as
Ralstonia eutropha, in which they most likely catalyze H2 oxidation and
supply reducing equivalents (NADH) to Complex I for energy generation
or provide reductant for biosynthesis [90]. These bidirectional
hydrogenases are also found in many cyanobacteria where they function
to dispose of excess electrons derived from fermentation and photosyn-
thesis [78]. In the cyanobacterium Synechocystis spp. PCC 6803 it was
shown that the bidirectional hydrogenase could also directly accept elec-
trons from Fd or flavodoxin, which explains the production of H2 by over-
reductionof the Fdpool in the light or fermentativemetabolismunder an-
oxic dark conditions [91].

2.2.4. Group 4
Group 4 [NiFe]-hydrogenases are all membrane-bound and are

mostly Fd-dependent enzymes. These enzymes cluster distinctly from
all the other hydrogenases indicating that they have a separate evolu-
tionary history [25]. The members of this group fall into 3 major sub-
groups: 1) six subunit reversible ion-translocating enzymes termed
Ech (energy converting hydrogenase), which are found in various or-
ders of bacteria and a few archaea [34], 2) a thirteen (or even more)
subunit membrane bound and ion-translocating enzyme (Mbh) with
subunits homologous to Na+/H+ antiporters (Mrp) and these Mrp-
Mbh enzymes are common in the thermophilic archaea [92], and 3) a
variant of the Mrp-Mbh (Eha/ Ehb) present in hydrogenotrophic
methanogens that contains additional subunits (17–20 subunits) and
uses an ion gradient to reduce Fdwith H2 [93]. The group 4 hydrogenases
also include a number of distinct H2-evolving multienzyme complexes
such as the formate hydrogen lyase of E. coli and Thermococcus onnurineus
that oxidizes formate and evolvesH2 [94,95], and the CO-inducedhydrog-
enases of T. onnurineus and Carboxydothermus hydrogenoformans, which
are involved in generating energy fromtheoxidationof CO toCO2 coupled
with the production of H2 [96,97]. The six-subunit energy converting hy-
drogenase (EchA-F) was originally characterized in Methanosarcina
barkeri where it was found to be required for its growth on acetate [98].
This hydrogenase can reversibly generate H2 from reduced Fd with the
concomitant generation/utilization of a proton gradient; homologs of
this enzyme are found among anaerobic bacteria and a few archaea. The
Mrp-Mbh-type energy-converting H2-producing enzymes were first de-
scribed in the hyperthermophilic archaeon P. furiosus [92,99,100]. The
striking difference between Mrp-Mbh and Ech is the presence of the
Mrp-like H+/Na+ antiporter module in the Mrp-Mbh complex and the
subsequent generation of a sodium gradient rather than a proton gradi-
ent. This Fd-dependent enzyme is linked to the glycolytic pathway
found in heterotrophic archaea that is unique in that Fd is the only elec-
tron carrier (NADH is not produced). This allows for the efficient produc-
tion of 4 mol of H2 per mole of glucose [101] The energy converting
hydrogenases of hydrogenotrophic methanogens (Eha and Ehb), are
thought to provide reduced Fd for biosynthesis and to balance the first
step of methanogenesis, the Fd-dependent reduction of CO2 to form
formylmethanofuran [93,102].

The group 4 hydrogenases also contain a subunit core that has close
homologs in three non-hydrogenase enzyme complexes. These are
termed cofactor F420 oxidoreductase (Fpo) found in methanogenic ar-
chaea, a membrane oxidoreductase (Mbx) involved in sulfur reduction
by hyperthermophilic archaea such as P. furiosus, and NADH quinone
oxidoreductase (Complex I, Nuo) found in aerobic bacteria and eukary-
otes [35,52]. In particular, the close relationship between group 4 hy-
drogenases and components of Complex I of the ubiquitous aerobic
respiratory chain highlights the intimate relationship between the evo-
lutionary history of H2 and oxygen respiration [35,52].

2.2.5. Group 5
Recently a group 5 [NiFe]-hydrogenase was proposed based on ge-

nome sequence, phylogenetic reconstructions, and biochemical charac-
terization of an enzyme from Streptomyces spp. that is capable of
oxidizing very low (b1 ppm) levels of H2 [103–105]. It appears that
group 5 hydrogenases are abundant among soil bacteria where they
presumably provide the capability to take advantage of low H2 concen-
trations [106,107]. Group 5 hydrogenases are similar in sequence struc-
ture to the group 1 enzymes in that they also consist of a small and large



Table 2
States identified in [NiFe(Se)]-hydrogenases under H2.

Catalytic state Oxidation
state

EPR
(g-values)

FTIR
(cm−1)

Ligand

Ni Fe νCO νCN

aNi-SI II II Silent 1943 2075, 2086 H2O
Ni-C III II 2.21, 2.15, 2.01 1961 2074, 2085 H−

Ni-R II II Silent 1948 2061, 2074 H
bNi-L I II 2.28, 2.11, 2.05 1911 2048, 2062 H+

a Ni-TR for [NiFeSe] hydrogenases.
b Photoproduct observed after illumination at b200 K.
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subunit and associate with the membrane, but lack a potential cyto-
chrome containing membrane anchor and as of yet have no identified
redox partner. Thus, while appearing to be biochemically similar to
group 1 H2-oxidizing enzymes, the group 5 enzymes are distinct from
the group 1 enzymes in that these are oxygen resistant enzymes and
their [NiFe] binding motifs are different [103].

3. Hydrogenase mechanism

3.1. [NiFe(Se)]-hydrogenases

3.1.1. Catalytic site structure, coordination sphere and H2 activation
mechanism

X-ray structures of both [NiFe]- and [NiFeSe]-hydrogenases poised
in various active and inactive states have been collected and these
have provided detailed insights into cofactor arrangements and coordi-
nation environments [13,24,108–115]. The bimetallic cofactor of
[NiFe(Se)]-hydrogenase is composed of Ni and Fe atoms bridged by a
pair of Cys thiolates. Two CN- and one CO complete the coordination
of the iron ion to create a subsite resembling the 2Fe subcluster of the
[FeFe]-hydrogenase H cluster (Fig. 4). A second pair of Cys thiolates
completes the coordination of the Ni atom, one of which is replaced
by selenocysteine in [NiFe(Se)]-hydrogenases. Surrounding the Ni-Fe
cluster are conserved Arg, His and Glu residues, the functional groups
of which create a network of exchangeable sites near or within H-
bonding distance to the Ni-Fe cluster illustrated in Fig. 4A. Mutagenesis
of the nearby Arg, Glu and His residues leads to loss or attenuation of
catalytic activity, consistent with their proposed function in proton
transfer (PT) and/or H-bonding interactions with the [NiFe] cluster
[116,117]. In addition, electron nuclear double resonance (ENDOR)
spectroscopy and high-resolution crystallography have shown that the
Se/S groups that coordinate Ni can function as a base to accept protons
during PT and H2 activation [6].

3.1.2. [NiFe(Se)-hydrogenase oxidation states under H2 activation
Detailed summaries and overview of the various crystallographic,

paramagnetic (e.g., EPR, ENDOR), and infrared (IR) spectroscopic prop-
erties of catalytic intermediates of [NiFe(Se)]-hydrogenases have re-
cently been extensively reviewed [6,12,118,119]. There are several
reasonably defined catalytic states observed in the different classes of
[NiFe(Se)]-hydrogenases (Table 2). Notwithstanding the significant ex-
perimental and theoretical studies applied to the mechanism of
[NiFe(Se)]-hydrogenases, definitive experimental evidence for the site
of H2 binding is lacking, thoughmostmodels support Ni in this function
[89,90]. Reaction intermediates isolated under catalytic conditions have
Fig. 4. X-ray structures of binuclear cofactors of the hydrogenase catalytic sites. (A) The NiFe clu
ter. Images rendered fromPDB codes 2FRV ([NiFe] hydrogenase) [266] and 3C8Y ([FeFe] hydrog
black font) and conserved, exchangeable groups (dashed lines, purple font) are labeled. Ni, nic
been modeled into a mechanism of activation, but many of the details
are unresolved [6,118,120,121].

In the resting state of [NiFe(Se)]-hydrogenases, Ni-SI, the Fe center
lies within H-bonding distance of the Ni, whereby H2 binding and het-
erolytic cleavage at NiII would be facilitated by PT to result in a μ-
hydride intermediate (Fig. 5) [122]. Alternatively, experimental and
theoretical models propose initial H2 binding and activation can occur
at the Fe site, when the Ni is modeled as high spin NiII [120,121,123].
Cleavage is proposed to result in PT to one of the coordinating thiolate
or selenate groups, and subsequently to nearby conserved Glu [116].
The resulting hydride is bound to the Ni-C (or Ni-R) intermediate and
based on spectroscopic analysis together with density functional theory
(DFT) calculations, it is proposed to adopt a bridging conformation be-
tween theNi and Fe atoms [122,124,125]. Much of the detail on reaction
intermediates of [NiFe]-hydrogenases has relied on studies of a subset of
the [NiFe(Se)]-hydrogenases. Thus, it is quite possible for unique as-
pects to emerge from future studies of a more diverse array of enzymes.

3.2. [FeFe]-hydrogenases

3.2.1. Catalytic site structure and coordination sphere
Two x-ray crystal structures of [FeFe]-hydrogenases from Clostridi-

um pasteurianum (CpI) and Desulfovibrio desulfuricans (DdH) revealed
the active site H cluster (Fig. 4B), a unique [6Fe-6S] organometallic clus-
ter comprised of a [4Fe–4S] subcluster and 2Fe subcluster, which are
linked through a protein cysteine thiolate ligand [8,9,126]. The geomet-
ric and electronic properties of the 2Fe subcluster are closely connected
to the [4Fe–4S] subcluster by strong spin coupling exchange through
the Cys thiolate ligand between the two subclusters [127–132].

Reduction of protons to H2 occurs at the 2Fe subcluster site, which
includes a proximal Fe atom (Fep) and distal Fe atom (Fed) (in relation
to the [4Fe–4S] cubane), each bound to a terminal CO and CN− ligand,
bridging/semi-bridging CO ligand, and a bridging dithiolate ligand. A
ster of [NiFe(Se)]-hydrogenases. (B) The 2Fe subcluster of the [FeFe]-hydrogenase H clus-
enase CpI from Clostridium pasteurianum).[267] The H-bonding interactions (dashed lines,
kel; Se, selenium; Fe, iron.



Fig. 5.Model of the H2 binding, and the initial activation steps, catalyzed by [NiFe(Se)] hydrogenases. Scheme (A) proposed by Bruschi, M., et al. [120]. Scheme (B) is a summary of acti-
vation proposed by Wu and Hall [121]. Green signifies electron transfer reactions.
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ligand exchangeable coordination site also resides at Fed and is a poten-
tial site for the formation of hydride intermediates [7]. The CO and CN−
ligands promote reversible heterolytic H2 cleavage and stabilize low
spin states of the two Fe atoms of the subcluster [10,133]. The CN− li-
gands further fine-tune the energy levels of the frontier orbitals of the
[4Fe–4S] and 2Fe subcluster moieties, which helps make possible fast
electron transfer (ET) between the two subclusters during catalysis
[134]. The functional bridgehead group of the dithiolate ligand was re-
cently confirmed as an amine [135,136], an assignment previously sug-
gested fromanalysis ofDdH [137] and advanced EPRmethods [127], and
theoretical models to function in PT to Fed during H2 activation [138].

In the enzyme, the H cluster resides in a hydrophobic pocket where
nearby residues participate in H-bonding interactions to the diatomic li-
gands of the 2Fe subcluster [8,126,139]. The surrounding protein frame-
work finely-tunes the H-cluster and is considered to play an important
role in regulating its catalytic activity, electronic properties, and poten-
tial hydride binding sites [14,23,130,140–143]. Within the catalytic site
are several conserved, charged residues that form the secondary coordi-
nation sphere, with exchangeable groups proposed to function in the
transfer of protons, water coordination, and bonding interactions with
the H cluster (Fig. 4B) [7,14,23,139,144].

3.2.2. The emerging role of [4Fe-4S] in the [FeFe]-hydrogenase catalytic cycle
Recent spectroscopic investigations of the minimal algal [FeFe]-hy-

drogenase CrHydA1, have put focus on the [4Fe-4S] and its role as an ET
relay during catalysis (Fig. 6, and Table 3). Initial spectroelectrochemical
FTIR and EPR investigations on DdH led to identification of a “super-re-
duced” [149], or Hsred, H cluster state, which was later confirmed in
CrHydA1 and assigned as a [4Fe–4S]1+–FeIFeI [150,153]. Further EPR
and FTIR studies of CrHydA1 under reducing conditions provided evi-
dence for multiple H cluster intermediates containing a reduced [4Fe–
4S]1+ during both catalytic H2 activation and proton reduction. This im-
plicated a role as an electron mediator between 2Fe and Fd [148,154].
X-ray spectroscopy alongwith DFT on CrHydA1 found that for a complete
model of the H-cluster, the LUMO resides over the [4Fe–4S] subcluster
and is close in energy to the HOMO localized on Fed of 2Fe, further
supporting its role as an initial relay into the 2Fe subcluster during H2 ac-
tivation [155].

These forms of H-cluster reduced states with [4Fe–4S]1+ have led to
revisions [148,150] of earlier models for H2 activation by [FeFe]-
hydrogenases [156]. Formally, H2 activation was principally based on
PT/ET transitions between the Hox ([4Fe–4S]2+–FeIIFeI) and Hred ([4Fe–
4S]2+–FeIFeI) states. These two redox states of the H cluster were
assigned from early spectroscopic studies of more complex [FeFe]-hy-
drogenases containing additional FeS cofactors, or “F clusters” [128,
129,157–160]. Thus, it is possible that trapping of [4Fe–4S]1+ intermedi-
ates in these enzymes was prevented by ET between the H cluster and F
clusters during H2 activation. Alternatively, it is possible that some of
these intermediates that have been observed in CrHydA1 might be
unique to this enzyme due to its lack of F clusters.

The role of Hsred as a catalytic intermediate has come under question
recently based on protein film voltammetry (PFV) studies of CrHydA1.
In one case, CrHydA1was observed to inactivate at low potentials, lead-
ing to the hypothesis that Hsred might not be catalytically relevant [149,
161]. This observation differs from the high catalytic currents of en-
zymes at the low reduction potentials (b500 mV vs. NHE) [150,162,
163], conditions that enrich for theHsred state in spectroelectrochemical
FTIR [152]. Clearly, identification of a [4Fe–4S]1+ in CrHydA1 under
different reducing conditions indicates that oxidation of H2 is a tight-
ly coupled two-electron, two-proton reaction, and facile intramolec-
ular ET steps to F clusters of more complex [FeFe] hydrogenases
likely prevented the earlier detection of a [4Fe-4S]1+ oxidation
state. Mutants where PT is blocked or disrupted could be a useful
strategy towards capturing reduced states and transient intermedi-
ates during catalysis [156].

3.2.3. H2 binding and activation at the H cluster; activation at Fed
II

The resting state of theH clusters in CpI,DdHand CrHydA1 are formal-
ly assigned to a mixed-valent 2Fe subcluster paired to a diamagnetic
[4Fe–4S]2+ subcluster based on the collective EPR/FTIR spectra of oxi-
dized states (Hox) of various enzymes (Table 2). Oxidation state assign-
ments of the Fed/Fep pair in the Hox state, and the localization of the
unpaired spin, are currently under debate [127,132,164] (Fig. 6). Never-
theless, there is agreement that the initial step of H2 binding occurs at
the open coordination site of Fed in the FeII oxidation state. Evidence in
support of this comes from spectroscopic studies on 57Fe labeled DdH
poised in Hox and CO-inhibited states [127]. The effect of CO on Hox was
used to interpret the effect of H2 binding on the H cluster electronic
state. CO binding induced stronger couplings between the [4Fe–4S]
cubane and the 2Fe subcluster, consistent with a shift of the unpaired



Fig. 6. Model for the H2 binding and activation steps by [FeFe]-hydrogenases. Two alternative schemes are presented based on DFT and spectroscopic studies of [FeFe]-hydrogenases.
Scheme (A), the resting Hox state is assigned as a [4Fe–4S]2+ subcluster and a 2Fe subcluster as FepII/FedI based on FTIR and EPR spectra and DFT calculations of oxidized CpI and CrHydA1
[132,146,148,149], and involves a diferrous 2Fe intermediate for H2 binding and activation[166]. Scheme (B), the resting Hox state is assigned as [4Fe–4S]2+ and 2Fe as FepI /FedII

[6,127,150,152], where H2 binding and activation occurs on a mixed valent 2Fe at the FeI site. Green identifies intramolecular ET steps. The initial PT step of H2 activation from Fed to
the bridgehead amine ligand is shown in red.
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spin from the 2Fe subcluster toward [4Fe–4S] (e.g., electron exchange
from Fed → Fep). More recently pulse EPR studies on isotopically labeled
H cluster with 13C15N ligands support assignment of the unpaired spin in
the Hox state to Fed and delocalization of the spin over both Fe ions upon
CO binding, a picture also consistent with a shift of unpaired spin toward
[4Fe–4S] [164]. A completely synthetic H cluster mimic has also been
shown to proceed via a FeI → FeII transition of a diiron/dithiolate subsite
to accomplish H2 binding and activation [165]. In this example of bio-
inspired chemistry, the diferrous state of the diiron subsite was induced
via oxidation by a covalently attached ferrocene acting as a functional
mimic of the [4Fe–4S] subsite. The intramolecular ET step led to binding
and activation of H2 at the open coordination site of the FedII site, similar
to themechanism based on enzyme studies as proposed in Fig. 6, Scheme
B [166].
Table 3
Redox states identified in [FeFe]-hydrogenases under H2.

Catalytic state Oxidation state EPR
(g-values)

2Fe [4Fe-4S]

Fep Fed
aHox II I 2+ 2.10, 2.04, 1.9
bHox I II 2+ 2.10, 2.04, 1.9
cHred I I 2+ Silent
dHred I I 2+ Silent
eHred I I 2+ Silent
fHsred I I 1+ ND
gHsred I I 1+ 2.08, 1.94, 1.8
hHsred I I 1+ Broad 2.3–2.0

aBased on [145–149]. bBased on [127,150,151]. cBased on [148]. dBased on [23,150,152,153]. eB
signifies unresolved assignments for CO/CN modes.
3.3. Common functional themes

3.3.1. Catalytic bias and electron-transfer reactions
Under electrochemical PFV or biochemical assays with redox dyes of

varying potentials, different hydrogenases have been shown to possess
differences in catalytic bias, or reaction directionality [12,167,168]. The
degree of reaction bias, or extent that H2 production or oxidation is fa-
vored, is intrinsic to each particular hydrogenase [167,169–171]. This
property has implications in the function of hydrogenase in a metabolic
network, which is how the H2 activation step is coupled to specific
redox partners. Most or all members of each enzyme class have been
shown by PFV to operate near to the thermodynamic potential of the
H2/2H+ redox couple. Structural factors that control enzyme reaction
bias, and to what degree these are enzyme specific, remain ongoing
FTIR (cm−1) Fed Terminal Ligand

νCO νCN

9 1964, 1940, 1802 2089, 2071 H2O
9 1964, 1940, 1800 2088, 2072 H2O

1916, 1891, 1792 2038, 2034 H+

1935, 1891, 1793 2083, 2070 Open (H)
1965, 1916, 1894 2079, 2041 H+

1955, 1932, 1883 NA NA
8 1954, 1919, 1882 2070, 2026 H+

7 1933, 1883, ? 2085, ? H+

ased on [10,149,150,152,153]. fBased on [149]. gBased on [150,152]. hBased on [148], “?”



Fig. 7. Thiocyanate biosynthesis in [NiFe]-hydrogenase maturation. HypF acts on
carbamoylphosphate (I), converting it first to carbamate (II), and then to
carbamoyladenylate (III). The carbamoyl functional group is then mobilized to a cysteine
on HypE's C-terminus (IV), where it is converted to thiocyanate (V).
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areas of investigation. Several hypotheses have been proposed for how
bias might be controlled based on differences in the enzyme structures.
Onemodel for bias control is based on the differences in the potential of
the electrons entering the catalytic site [170,172]. Thus, the evolution of
enzyme and accessory cluster diversity has a significant role in tuning
the catalytic function of the particular hydrogenase to couple to a
given metabolic pathway. Other possible controlling factors of reaction
bias are proton availability [23], midpoint potentials of the 1e− oxi-
dized/reduced forms of bimetallic clusters, role of secondary sphere co-
ordination environment [173] and the accessibility of metal oxidation
states and electronic structures [168].

3.3.2. Low spin, low-valent Fe(CO)(CN) centers and H2 activation
A functional theme that has emerged from theoretical and

model compound studies of hydrogenase catalytic sites is the role
of a FeI/II(CO)(CN) center in enzymes that function inH2 binding and ac-
tivation. The functional importance of the Fe site in [NiFe]-hydroge-
nases is perhaps less obvious than for the [FeFe]-hydrogenases where
H2 binding and activation occur directly at a Fe(CO)(CN) subsite. For
both enzyme families, inclusion of this organometallic functional
group as a component of the bimetallic catalytic sites is likely required
to keep the respective metal centers in low-spin, low valence states,
where the reaction coordinate for H2 activation is thermodynamically
favored [174–176].

4. Maturation

4.1. [NiFe]-hydrogenase active site assembly

Six hyp genes denoted hypA–hypF (and their associated homologs)
are required for biosynthesis and insertion of the NiFe(CN)2CO catalytic
cluster into the large subunit of [NiFe]-hydrogenases.

4.1.1. The synthesis of thiocyanate: HypE and HypF
HypC, D, E, and F proteins are involved in Fe(CN)2CO biosynthesis

and are absolutely required for maturation of [NiFe]-hydrogenases
[177–179]. The cyanide ligands of the active site cluster are derived
from carbamoylphosphate in a series of reactions involving HypE and
HypF (Fig. 7) [180]. HypF is amonomeric protein of ~82 kDa that utilizes
carbamoylphosphate as substrate and first converts it to carbamate and
then to carbamoyladenylate (in an ATP-dependent step) before finally
transferring the carbamoyl functional group to the C-terminal cysteine
residue of HypE (Fig. 7I–V) [180,181]. The intermediates that are pro-
duced by HypF are quite unstable, however, a mechanism for their for-
mation is suggested by the HypE-HypF complex, a heterotetrameric
structure comprised of a HypE dimer (monomeric size is ~35 kDa)
flanked by two HypF molecules [182]. The structure supports a mecha-
nism in which the N-terminal, HypF acylphosphatase domain hydro-
lyzes carbamoylphosphate to carbamate and inorganic phosphate;
carbamate is transferred through an internal channel to the YrdC do-
main where ATP is bound and carbamoyladenylate formation occurs
with release of pyrophosphate [182,183]. Carbamoyl group transfer to
the C-terminal cysteine of HypE, with the liberation of AMP, occurs
within the C-terminal Kae1-like domain [182]. The Kae1-like domain
of HypF binds a mononuclear Fe ion via two His and two Asp, in similar
fashion to other ASKHA superfamily members like Kae1 and TobZ [182,
184–186]. In HypF, this Fe ion coordinates the carbamoyladenylatemoi-
ety, promoting the transferase reaction [182].

The thiocarboxamide group bound to HypE's terminal Cys is con-
verted to thiocyanate in a manner reminiscent of reactions catalyzed
by formylglycinamide ribonucleotide amidotransferase (PurL) and
aminoimidazole ribonucleotide synthetase (PurM); HypE, PurL, and
PurM all utilize ATP to form phosphoryl anhydride intermediates
[187–189]. In the case of HypE, the thiocarboxamide oxygen group
is within van der Waals distance of the γ-phosphate group of ATP and
is optimally positioned for in-line attack [190]. The thiocarboxamide
group is proposed to become activated via deprotonation by an active
site H2O molecule. This H2O hydrogen bonds to Lys134 which in
turn is in close proximity to an Arg residue that decreases its effec-
tive pKa to approximately 5.1, allowing Lys134 to act as a general
base [190]. Following the in-line attack of ATP, ADP is released and
a thiocarbamic phosphoryl anhydride species is formed [189,190].
This iminophosphate intermediate is then activated for dephosphor-
ylation via deprotonation of the imino nitrogen by a conserved
Glu272 residue [190]. The resulting thiocyanate bound to Cys at
the C-terminus of HypE is on a flexible loop that not only permits
the insertion of the critical cysteine residue near the carbamoylation
active site in the Kae1 domain of HypF, but then also facilitates deliv-
ery of the thiocyanate to the HypC-HypD complex where delivery of
CN− to iron occurs (Fig. 8) [180,189,191].



Fig. 8. Fe(CN)2CO biosynthesis and large subunit processing in [NiFe]-hydrogenase maturation. Thiocyanate delivery from HypE to the HypC–HypD complex results in HypC dissociation.
The Fe(CN)2CO unit bound to HypD (E. coli amino acid numbering) is then transferred to the large, precursor subunit of [NiFe]-hydrogenase. While the source of CO is unresolved, recent
biochemical evidence has been presented showing the association of CO2with HypC (seemain text), suggesting that HypCdelivers Fe–CO2 to HypDwhere it is reduced to CO. Accordingly,
CO2 is shown here to be bound to the HypC–HypD complex.While HypC is known to associate with the apo-precursor form of the hydrogenase large subunit and has been proposed to be
involved in iron mobilization to the hydrogenase [192–194], it is not shown to do so here as the addition of cyanide from HypE would effectively replace the ligand environment of the
HypC–HypD complex that is provided by HypC; it is possible that following its dissociation at this stage, HypC associates with the apo-hydrogenase large subunit, fulfilling its role as a
chaperone protein [193,195,202,203]. Following insertion of Ni2+, a short C-terminal peptide is proteolytically processed, affording the mature [NiFe]-hydrogenase enzyme.
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4.1.2. Fe(CN)2CO cofactor biosynthesis: HypC and HypD
Proteins in the HypC family of proteins are approximately 10 kDa in

size and associate with HypD and a precursor form of the hydrogenase
large subunit, and also form a ternary complex with HypD and HypE
[36,192–197]. HypC is structurally simple, being comprised of a C-
terminal α-helix joined to a β-barrel in what is known as an OB-fold
[196,198,199]. HypD proteins are approximately 40 kDa in size and con-
tain a unique C-terminal CX14CX6CX16C motif in domain III that coordi-
nates a [4Fe–4S] cluster, whereas domains I and II are both
characterized as Rossmann folds [194,199,200]. The cluster environment
in domain III shares similarities with the ferredoxin:thioredoxin reduc-
tase system wherein a redox cascade is created that involves the [4Fe–
4S] cluster and a pair of cysteine residues that are in close proximity to
it, although these Cys residues are not absolutely conserved in all HypD
isoforms [197,199,201]. The redox cascade is extended to four other con-
served motifs in HypD (CGXHXH, GPGCPVCX2P, GFETT, and PXHVSX3G)
and this conduit has been proposed to play a role in the mechanism of
iron cyanation [195,196,199].

Co-expression studies revealed that substoichiometric amounts of
HypEwere associatedwith a HypC–HypD complex and that this complex
accepted CN− from HypE; CN− was not transferred to either HypC or
HypD when they were expressed singly, suggesting that the HypC–
HypD complex shared coordination of the CN− group (Fig. 8) [194]. The
exact details of diatomic ligand coordination to Fe at this stage ofmatura-
tion are not fully resolved and a consensus model has not yet been
attained. Structural characterization of the HypC–D–E ternary complex
provides a picture for how the conserved motifs of HypD create the scaf-
fold for Fe-cyanation; amodel is proposedwherein Cys38 fromHypD and
Cys2 of HypC (Thermococcus kodakarensis numbering) bind an Fe ion
along with two CN− ligands and two unresolvedmoieties [196]. Spectro-
scopic characterization of anaerobic preparations of HypC–HypD com-
plexes containing substoichiometric amounts of HypE from E. coli [195]
and HypC–HypD complexes from both Ralstonia eutropha and E. coli
[197] show FTIR bands that correspond to an Fe(CN)2CO species similar
to that observed in [NiFe]-hydrogenase. Importantly, the characterization
of the HypC–HypD complex reported by Soboh et al. revealed the
existence of two labile Fe ions in addition to the [4Fe–4S] cluster, and
also showed an IR feature at 2337 cm−1 assigned to vCO2; Cys41 in
HypD was shown to be required for the coordination of CN−, CO, and
CO2, presumably to one of the labile Fe ions [195]. Analysis of anaerobical-
ly purified HypD showed that it contained FTIR bands associated with a
CO and two CN− groups, consistent with the presence of an Fe(CN)2CO
moiety; no 2337 cm−1 CO2 feature was present (Fig. 8) [202].

Insight into the significance of CO2 was provided in a subsequent re-
port that examined individually purified HypC along with its E. coli ho-
molog HybG [203]. Characterization revealed that under anaerobic
conditions the proteins contained ~0.3 mol Fe per mol protein and ex-
hibited single FTIR bands arising from CO2. Evaluation of variant HypC
proteins conclusively demonstrated that both Cys2 and His51 were ab-
solutely required for Fe and CO2 coordination [203]. This observation
coupled with the presence of the 2337 cm−1 feature in the HypC–
HypD complex suggests that HypC delivers Fe–CO2 to HypD where the
CO2 is reduced to CO (Fig. 8) [195,203]. Importantly, these results and
others suggest that metabolic CO2 is the source of the CO ligand, al-
though this has yet to be experimentally demonstrated [203,204].

In the case of HypD, Cys41, Cys69, and Cys72 are all critical for syn-
thesis of the intermediate Fe(CN)2CO cluster [202]. Collectively, these
data suggest a model wherein Cys2 and His51 of HypC and Cys41 and
His44 of HypD (E. coli numbering) come together to coordinate a pre-
cursor Fe ion in a tetrahedral environment; addition of the CO and the
CN− ligands results in HypC dissociation and addition of His201 to ac-
complish formation of the octahedrally coordinated Fe(CN)2CO unit
on HypD (Fig. 8) [202,203]. The assignment of His44 and His201 as
the fourth and fifth ligands is not established and it is also possible
that Cys69 and Cys72 perform this function [202].

4.1.3. Insertion of Ni2+: HypA and HypB
Two of the hyp gene products, HypA and HypB, are involved in ac-

quiring and inserting Ni2+ and studies have shown that these proteins
are not absolutely required because addition of Ni2+ during anaerobic
growth restores hydrogenase activity in mutant cell lines [178,179,
205,206]. The insertion of Ni2+ into the large subunit occurs only after



1361J.W. Peters et al. / Biochimica et Biophysica Acta 1853 (2015) 1350–1369
the Fe(CN)2CO moiety is present (Fig. 8) [36,207]. HypA is a 140 amino
acid protein that exists in both monomeric and dimeric states [208].
HypA coordinates a single Ni2+ ion with micromolar affinity via an N-
terminal MHEmotif [208–210], and also binds Zn2+ through the cyste-
ine thiolates of a zinc fingermotif [208].While the Ni2+ and Zn2+ bind-
ing domains are independent of one another, the presence of Ni2+

appears to help dictate the orientation of these two domains, likely as
a mechanism to mediate protein-protein interactions [201,208,210].
Moreover, HypA exhibits low sequence conservation outside of the
Ni2+ and Zn2+ motifs; this mirrors the sequence diversity in both
HypB and [NiFe]-hydrogenase, all three of which putatively interact
during Ni2+ delivery [201].

HypB is a Ni2+-metallochaperone that has GTPase activity, which is
essential to achieve complete hydrogenase maturation [36,211,212].
Several HypB homologs exist with varying sequence-based metal bind-
ing properties. For example, E. coli HypB contains a high affinity, Ni2+

binding N-terminal CXXCGC motif (which is not absolutely conserved)
and a C-terminal GTPase domain that can bind either Ni2+ or Zn2+

[213–215]. HypB dimerization is Ni2+-dependent and its GTPase activ-
ity is modulated bymetal binding [216]. The structure of the nucleotide
bound Methanocaldococcus jannaschii enzyme shows two Zn2+ ions
bound at the dimer interface, utilizing a combination of cysteine
thiolate, histidine imidazole, and H2O as ligands [214]. Structural analy-
sis of the nucleotide bound form of Helicobacter pylori HypB, on the
other hand, reveals a single Ni2+ ion bound at the dimer interface via
the tetrathiolate coordination of Cys106 and Cys142 from each mono-
mer, whereas in the absence of nucleotide His107 becomes a metal li-
gand [217]. Cys142 is part of the GTPase Switch II motif and is likely a
ligand to bothNi2+ and Zn2+ bound forms of HypB regardless of the nu-
cleotide bound state [217]. This enables Cys142 to couple GTP hydroly-
sis with metal binding and delivery, potentially providing a mechanism
wherein HypB distinguishes between Ni2+- and Zn2+-loaded forms,
precluding delivery of zinc to the large subunit during maturation
[214,217,218].

While the molecular mechanism for Ni2+ transfer to the large cata-
lytic subunit is not yet fully resolved, delivery of nickel in vivo is likely
modulated by protein-protein interactions and evidence for HypA,
HypB, SlyD (a Ni2+ metallochaperone in E. coli), and HycE (the large
subunit of hydrogenase 3 in E. coli) complexes have been reported
(Fig. 8) [219–224]. HypB's interaction with the large subunit requires
the presence of HypA, providing support for HypA being the docking
protein between HypB and HycE in the nickel delivery step [210,219,
220]. Moreover, HypA selectively removes Ni2+ from the GTPase do-
main of HypB and this metal release appears to be stimulated by GTP
hydrolysis [225]. Despite the observation that Ni2+ binding to HypB
partially inhibits the GTPase activity of HypB [217], it is presumed that
complex formation in vivo alleviates this retardation andpromotes nick-
elmobilization [225]. Along these lines, it has been demonstrated that in
E. coli, SlyD delivers Ni2+ to HypB and heterodimer formation between
these proteins promotes GTP hydrolysis by HypB [226]. This provides a
mechanism whereby SlyD acts to mediate the delivery of Ni2+ to the
large subunit via the GTPase activity of HypB; the favorable interaction
between SlyD and the GDP-bound form of HypB may help drive the
Ni2+ insertion process and overcome any thermodynamic barriers as-
sociated with metal ion delivery [215,221,226].

4.1.4. Ni2+ dependent proteolysis and active site closure
In afinal step to accomplishmaturation of the large catalytic subunit,

a peptide on the C-terminus is processed (Fig. 8). Peptide length varies
somewhat among different hydrogenases; a peptide of approximately
15 residues ismost commonly cleaved althoughmaturation of E. coli hy-
drogenase 3 results in the removal of 32 residues [191]. The peptide ex-
tension of the large subunit is necessary for interaction with HypC, and
its presence helps keep the large subunit in an open conformation for
both Ni2+ and Fe(CN)2CO insertion [192,193,227]. The endopeptidases
in E. coli that mature the three cognate [NiFe]-hydrogenases are HyaD
(hydrogenase 1), HybD (hydrogenase 2), and HycI (hydrogenase
3) [228]. These enzymes recognize the DPCXXCXXH/R consensus
motif that helps coordinate the active site metal center in [NiFe]-hy-
drogenase; the proteases cleave between the basic His/Arg and the non-
polar Met/Ile/Val/Ala residues [229–232]. Nickel promotes the
recognition of the binding motif by the proteases and explains why
cleavage only occurs after Ni2+ has been inserted [233]. Structural char-
acterization of HycI suggests that two conserved Asp residues may be
critical for Ni2+ coordination, implying that HycI functions via metal-
based activation wherein the Ni2+ ion polarizes the carbonyl oxygen
of the peptide bond, which in turn fosters hydrolysis by H2O [191,
234]. Upon cleavage of the C-terminal peptide, a conformational change
in the active site environment is induced which effectively internalizes
the NiFe(CN)2CO moiety and affords the active enzyme [36].
4.2. [FeFe]-hydrogenase active site assembly

4.2.1. Identification of the maturation machinery
Three genes denoted hydE, hydF, and hydG are found in all organisms

expressing [FeFe]-hydrogenase (HydA) and the expression of active
HydA in E. coli requires coexpression with HydE, HydF, and HydG [40,
235]. Activation of HydA expressed singly (HydAΔEFG) is accomplished
via addition of E. coli lysate mixtures containing HydE, HydF, and
HydG together; H2(g) generation under these experimental conditions
does not require exogenous small molecules, leading to the conclusion
that the maturase enzymes utilize ubiquitous small molecules present
in the cellular matrix to assemble the H-cluster [38,235]. Sequence an-
notation coupled with preliminary biochemical characterization dem-
onstrated that HydE and HydG both belong to the radical S-adenosyl-
L-methionine (SAM) enzyme superfamily, while HydF is an FeS cluster
bindingGTPase [40,235–237]. Pointmutations in the radical SAMmotifs
of HydE and HydG, as well as the FeS cluster and GTPase regions of
HydF, all proved to be deleterious to achieving HydAΔEFG activation,
meaning that HydE, HydF, and HydG functionalities are indispensable
for proper H-cluster synthesis [235].
4.2.2. Activation of HydAΔEFG requires a preformed [4Fe–4S] cluster
Spectroscopic and structural characterization of the monomeric

[FeFe]-hydrogenase I of the green algae Chlamydomonas reinhardtii
(CrHydA1) has provided important insights into the maturation pro-
cess. The enzyme CrHydA1ΔEFG, obtained from a strain that lacks the
genes encoding the three maturation proteins HydE, HydF, and HydG,
contains the [4Fe–4S] cubane of the H-cluster [32,238]. Importantly,
CrHydA1ΔEFG is readily activated by E. coli lysate containing HydE,
HydF, and HydG. Moreover, the metal-free form of the protein must
first be chemically reconstitutedwith iron and sulfide prior to successful
activation by lysate [238]. These results show that activation by the
maturase enzymes requires a preformed [4Fe–4S] cluster that is pre-
sumably synthesized by the endogenous iron sulfur cluster assembly
machinery of the cell, and also suggest that HydE, HydF, and HydG
come together to synthesize the 2Fe subcluster component of the H-
cluster [32,238]. In vitro labeling studies provide additional support for
this model, as activation of CrHydA1ΔEFG by 57Fe-labeled HydE, HydF,
and HydG lysates demonstrate the incorporation of 57Fe into only the
2Fe subcluster of the H-cluster [239].

Comparison of the CrHydA1ΔEFG structure to that of CpI HydA pro-
vides insight into 2Fe subcluster insertion [32]. An electropositive chan-
nel filledwith H2Omolecules runs from the protein surface to the active
site cavity of CrHydA1ΔEFG; this channel is absent in the mature CpI
HydA structure, which contains two ordered loop regions that effective-
ly shield the H-cluster from solvent. The loop regions in CrHydA1ΔEFG

are splayed open, providing clear access to the active site cavity for
2Fe subcluster insertion, which may either be electrostatically- or
entropically-driven [32,139,240].
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4.2.3. HydF is an iron sulfur cluster binding GTPase
HydF is a 47 kDamonomeric protein that binds FeS clusters and hy-

drolyzes GTP to GDP [237,241]. The purified state of this protein is a
compositemixture of dimers and tetramers and structural characteriza-
tion of the metal-free enzyme has suggested that FeS cluster(s) bind at
subunit interfaces [242]. Both FeS- and GTP-bindingmotifs are essential
for maturation in the Ca system [235]. Moreover, among the three
maturase enzymes, only purified HydF when expressed in a genetic
background of HydE and HydG (HydFEG) could activate HydAΔEFG. This
activation was achieved in the absence of exogenously added proteins
or small molecules, suggesting that HydF bound a precursor form of
the H-cluster needed to achieve maturation [243].

Spectroscopic comparison of HydFEG to HydFΔEG revealed that both
proteins bound [4Fe–4S]+ clusters, but HydFΔEG samples contained ad-
ditional LMCT features in UV-Vis spectra and an overlapping axial com-
ponent in EPR spectra that are thought to arise from a [2Fe-2S]+ cluster
[241,243]. Preparations of CaHydFEG revealed the existence of Fe–CN−,
Fe–CO, and Fe–CO–Fe species via FTIR spectroscopy [241,244]. These
moieties were absent in HydFΔEG, suggesting that HydE and HydGmod-
ified a [2Fe–2S] cluster precursor bound to HydFΔEG to produce the 2Fe
subcluster of the H-cluster [41,241].

The FeS cluster states of both wild type and variant forms of HydF
have been examined from various species and all of the results provide
evidence for [4Fe–4S] cluster binding to HydF [237,241,244–249]. The
coordination environment for the [4Fe–4S] cluster utilizes three con-
served cysteine residues; the fourth coordination site appears to be var-
iable, either being a histidine in the case of Ca HydF or a labile/
exchangeable ligand in Thermotoga maritima (Tm) and Thermotoga
neopolitana (Tn) HydF [242,246,248–250]. The observation and signifi-
cance of [2Fe–2S]+ cluster binding by HydF is still an open issue.
While similar overlapping axial signals to those initially reported [241]
have now been observed in reduced preparations of both Ca and Tn
samples, it has been suggested this signal arises from a radical in close
proximity to the [4Fe–4S]+ cluster [248,249,251]. Regardless, multiple
lines of evidence support the notion that the 2Fe subcluster bound by
HydF resembles the H-cluster, and may potentially even be directly
linked to the [4Fe–4S] cubane present on HydF [245,251].

While the exact role of GTP hydrolysis in [FeFe]-hydrogenase matu-
ration remains unresolved, it is clear that the GTPase activity of HydF is
not associatedwith the activation step ofHydAΔEFG byHydFEG [241]. In a
manner reminiscent of HypB [217], the GTPase activity of HydF is gated
by different monovalent cations and these regulate GTP hydrolysis by
~40-fold. HydF therefore belongs to a subclass of GTPase enzymes
wherein an alkali metal substitutes for the “arginine finger” of the part-
ner GTPase activating protein [241]. The ability of HydFEG to mature
HydAΔEFG is unaltered by HydF being in either a “GTPase-on” or a
“GTPase-off” state, as established by accomplishing the activation in
various alkali containing buffers [241]. However, it was observed that
the rate of GTP hydrolysis was stimulated when HydF was assayed in
the presence of either HydE or HydG, leading to the hypothesis that
the production of GDP could be coupled to gating the protein–protein
interactions associated with 2Fe subcluster assembly [241]. Experi-
ments designed to probe protein–protein interactions between the
maturases revealed that HydE and HydG do not bind to HydF concur-
rently, suggesting that the radical SAM enzymes associate with the
same binding site on HydF [252]. Moreover, HydE and HydF bind to
one another with an order of magnitude higher affinity than HydG
binds to HydF and addition of GTP during dissociative phases causes en-
hanced detachment rates for both HydE–HydF and HydG–HydF com-
plexes. [252]. Collectively, these results implicate GTP binding and
hydrolysis as providing a mechanism for gating the interactions be-
tween HydE and HydG with the scaffold/carrier HydF, and this may be
linked to nucleotide dependent structural changes in HydF.

While the majority of reports provide support for the indispensable
nature of HydF duringmaturation [38,40,235,241,243,244], results with
Shewanella oneidensis maturases suggest that HydF is nonessential.
Specifically, the in vitro CpI HydAΔEFG activation studieswith this system
concluded that HydG is the only maturase enzyme absolutely required
[247]. Interestingly, HydAΔEFG activation experiments using compounds
designed to mimic the 2Fe subcluster show that these analogs can not
only be loaded into a [4Fe–4S] cluster containing form of Tm HydF, but
that this charged HydF can then fully mature HydAΔEFG [135]. A subse-
quent study demonstrated that the 2Fe biomimetic analogs could load
intoHydAΔEFG in the absence of HydF, showing that HydF is not required
for in vitro activation [136].

4.2.4. HydG and diatomic ligand biosynthesis from tyrosine
HydG contains a CX3CX2C N-terminal motif identifying it as a mem-

ber of the radical SAM superfamily of enzymes [40,253]. This 55 kDa
monomeric protein exhibits high similarity to ThiH, an enzyme involved
in thiamine pyrophosphate synthesis that cleaves L-tyrosine into p-
cresol and dehydroglycine (DHG) [253,254]. Like ThiH, HydG also uti-
lizes L-tyrosine as substrate and forms p-cresol (Fig. 9) [255]. HydG is
differentiated from ThiH, however, in the existence of a 90 amino acid
C-terminal extension containing a CX2CX22C motif that harbors an ac-
cessory [4Fe–4S] cluster. The presence of the C-terminal [4Fe–4S] clus-
ter is essential for [FeFe]-hydrogenase maturation, and the formation
of the diatomic products CO and CN− [37,164,235,256]. Diatomic ligand
production during HydG catalysis was demonstrated both by
derivatizing CN− into a 1-cyanobenz[f]isoindole adduct [37] and by
trapping CO via binding to deoxyhemoglobin [256]. Both of these di-
atomic species formed on the same time scale and it was hypothesized
that they could be formed in a single step via a decarbonylation reaction
involving DHG [37].

Analysis of HydG variant proteins demonstrated the absolute re-
quirement of the C-terminal [4Fe–4S] cluster for formation of CO, al-
though CN− was still detected in variants containing either single or
double pointmutations to residues in the CX2CX22Cmotif [257,258]. As-
sessment of a variant in which the three cysteines of the CX3CX2C N-
terminal motif were altered to alanine revealed that SAM coordination
to the enzyme occurs exclusively at the N-terminal cluster, despite the
apparent site-differentiated nature of the C-terminal [4Fe–4S] cluster
[258]. Evaluation of ΔCTD HydG, a variant that is missing the C-
terminal domain, shows that the enzyme still acts as a tyrosine lyase
[257–259]. Collectively, the results show that SAM binding and cleav-
age, with subsequent H-atom abstraction from tyrosine, and the gener-
ation of p-cresol andDHG, all occur within the core TIMbarrel fold [251,
258].

Spectroscopic characterization of intermediate species formed dur-
ing catalysis provided direct evidence for heterolytic Cα–Cβ tyrosine
bond cleavage, with generation of a p-cresolate radical and DHG
(Fig. 9) [260]. Stopped-flow FTIR studies were used to monitor the
fate of DHG to formation of either Fe–CO–CN or Fe–(CO)2CN moieties.
It was assumed that these species formed at the site differentiated Fe
of the accessory [4Fe–4S] cluster although there is no direct experimen-
tal evidence for this [164]. In separate experiments, 57Fe was used to
track iron transfer from HydG to HydA, suggesting that the C-terminal
[4Fe–4S] cluster in HydG becomes cannibalized to form the Fe–CO–CN
building blocks of the 2Fe subcluster [164]. Furthermore, it is known
that all five diatomic ligands of the H-cluster are derived from tyrosine
[261], suggesting that multiple rounds of HydG catalysis are necessary
for 2Fe subcluster formation. The mechanistic details of this process
are unknown but must be resolved to delineate the role of HydF as a
scaffold/carrier protein during biosynthesis [251].

4.2.5. An undefined role in H-cluster biosynthesis: HydE
In contrast to the extensive experimental data supporting the pro-

posed roles of HydF and HydG in H-cluster biosynthesis, the role of
HydE, a member of the radical SAM superfamily of enzymes, is still un-
known. It has been suggested thatHydE functions in anobservatory role
during maturation, possibly acting as a chaperone and assisting HydF
during translocation of the 2Fe subcluster species [247]. It seems



Fig. 9.Maturation scheme detailing hypothetical 2Fe subcluster biosynthesis in [FeFe]-hydrogenase maturation. HydG reductively cleaves SAM into methionine and a 5′-deoxyadenosyl
radical species; following H-atom abstraction from the para phenolic position, tyrosine undergoes heterolytic Cα− Cβ bond cleavage to generate a p-cresolate radical and dehydroglycine.
CO and CN− are subsequently formed from dehydroglycine by an unknown mechanism involving the site-differentiated, C-terminal [4Fe-4S] cluster of HydG. Stopped-flow FTIR studies
have shown the existence of Fe–CO–CN species that form during HydG catalysis (see main text), leading to the hypothesis that the C-terminal cluster is cannibalized during biosynthesis.
Maturation of the 2Fe subcluster is completed via dithiomethylamine synthesis by HydE. HydF acts as a scaffold or carrier protein during the assembly process and transfers the 2Fe sub-
cluster to HydAΔEFG to achieve [FeFe]-hydrogenase activation.
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much more likely, however, that HydE utilizes a common metabolite
and synthesizes the bridging dithiomethylamine ligand (Fig. 9). Evi-
dence in support of this comes from the absolute requirement of HydE
to achieve [FeFe]-hydrogenase activity in E. coli lysate experiments
[38,40,235,238] and the difficult chemistries often associated with rad-
ical SAM enzymes [253]. HydE is a 42 kDa monomer and contains a
CX3CX2C N-terminal motif, like other radical SAM enzymes [40,253].
However, it shows high sequence similarity to themethylornithine syn-
thase PylB [236,251,262], rather than to enzymes like BioB that catalyze
a sulfur insertion reaction [263]. While the significance of HydE's rela-
tionship to PylB is difficult to currently gauge, it is possible that it is an
indication that these enzymes exhibit mechanistic parallels.

Multiple X-ray crystal structures of HydE exist and these include
SAM and 5′-deoxyadenosine/methionine bound states [263–265]. The
global architecture of HydE shows the existence of an internal electro-
positive cavity spanning the breadth of the (βα)8 TIM barrel fold.
Three anion binding sites were observed within the internal cavity
and SCN− also binds here, potentially representing a pathway whereby
a small molecule product(s) traverses from the top to the bottom of the
barrel where delivery to amaturation partner protein occurs [263]. Sur-
face plasmon resonance experiments indicate that HydE and HydF bind
to one another with high affinity and even exist as a fused gene product
in some organisms [40,252]. Regardless of these experimental findings,
the substrate and mechanism of HydE in H-cluster biosynthesis remain
unresolved. Although it is somewhat tenuous to assign it a role in
dithiomethylamine synthesis, this seems the most likely given the pre-
cedence in the literature for the chemistries associated with HydF and
HydG [251]. An intriguing aspect of HydE's presumed chemistry relates
to the source of the sulfurs in the 2Fe subcluster. Futureworkwill hope-
fully resolve if the sulfurs are derived from HydE's substrate or if they
are cannibalized from HydG's C-terminal cluster.

4.2.6. Mechanistic parallels and differences between [NiFe]- and
[FeFe]-hydrogenase biosynthesis

[NiFe]- and [FeFe]-hydrogenases are a superb example of conver-
gent evolution and it follows that their biosynthetic pathways exhibit
both commonalities and differences. Generally, it is straightforward to
see that both active site assembly pathways require multiple matura-
tion proteins involved in intricate chemical transformations. Moreover,
each system utilizes a key scaffold protein that belongs to the same sub-
class of GTPase enzymes, which are activated by alkali metals. The for-
mation and transfer of Fe-diatomic species among proteins is also an
intriguing aspect shared by these systems, despite the fact that the
source of these diatomic ligands is disparate. [FeFe]-hydrogenase as-
sembly requires the involvement of two radical SAM enzymes, a feature
that noticeably distinguishes it from [NiFe]-hydrogenase maturation.

5. Future frontiers of hydrogenase research

Hydrogenases are unique enzymes and the recent insights into their
diversity, mechanism, and maturation have revealed many surprises
that represent highly unique aspects of bioinorganic chemistry, as sum-
marized here. Although a number of questions have been answered
through the surge of recentwork in this area, these exciting newdiscov-
eries also serve to open the door for perhaps more lines of inquiry than
they have closed. It is likely that hydrogenases will have a central role in
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clarifying the newly discovered mechanism of energy conservation
termed electron bifurcation ([48]). In many systems these bifurcating
reactions are likely key points for controlling and balancing electron
flow in metabolism and a better fundamental understanding of these
processes could potentially provide the basis for proactively controlling
electron flow for the production of biofuels in engineered systems.

The striking functional diversity of [FeFe]-hydrogenases and [NiFe]-
hydrogenases has interesting evolutionary implications and the further
characterization of representatives of the various diverse classes of
these enzymes will lead to more fascinating evolutionary insights.
Most would agree that aspects of hydrogen metabolism must have
been a component of the metabolism of early life and this appears to
be supported for the [NiFe]-hydrogenases but arguably not for the
[FeFe]-hydrogenases. The traditional dogma and natural impetus is
that hydrogenase must be ancient or even must be primordial because
of the perceived importance of hydrogen metabolism for early life.
However, in the case of [FeFe]-hydrogense, the available data including
their taxonomic occurrence among extant organisms is inconsistent
with an ancient origin. This begs the question of whether [NiFe]-hy-
drogenases and [FeFe]-hydrogenases are both ancient, or primordial,
and what the selective pressures might have been to independently
evolve so-called functionally redundant enzymes. Further analysis of
hydrogenase diversity in the context of their modes of metabolism
could provide important new clues into hydrogenase ancestry as well
as the ancestry of chemiosmosis and respiration. One driving force
will likely be the close evolutionary relationship between one specific
type of [NiFe]-hydrogenase (the group 4 energy-conserving enzymes)
and the ubiquitous complex I of the aerobic respiratory chain. How
did the latter evolve from a presumably H2-metabolizing ancestor?

Additional insight gained into the relationship between sequence
variations and the respective physiological roles for hydrogenases
have potential to further identify the key structural determinants for ca-
talysis. Hydrogenases are intriguingmodels for proton coupled electron
transfer reactions and these are in some regards very special enzymatic
reactions.We are taught in general chemistry of the separation between
thermodynamics and kinetics in chemical reactions and that catalysts
by definition exert the influence solely on the rates of reactions and
don't influence whether a reaction is thermodynamically favorable.
However for enzymes involved in proton coupled electron transfer re-
actions there is clear evidence that the properties of the enzymes them-
selves can influence the local concentration of substrates and/or
products of a reaction and thereby its thermodynamic equilibrium.
The chemical character and availability of proton donors and acceptor
groups in the active site and the oxidation-reduction potential of active
site metal and accessory clusters can essentially tune the concentration
of protons and electrons and influence the equilibrium of hydrogenase
reactions. The extent of this influence is not well understood and the
simplicity of the hydrogenase reaction makes this an ideal model sys-
tem for delineating the degree of this control, potentially significantly
impacting biotechnology particularly in the area of biofuel production.

For [NiFe]- and [FeFe]-hydrogenases, as detailed in this review, there
have been significant advances in our understanding of nonprotein li-
gand biosynthesis and protein maturation. The fact that diatomic li-
gands are generated from different sources and by different enzymatic
reactions is intriguing given the unique nature of these ligands in biolo-
gy. Why two independent mechanisms evolved to generate these li-
gands is unknown. This could be related to the physiology of their
respective evolutionary ancestral organisms or the differences in the
structures of the active site cluster and the requirement for different ra-
tios of CO and CN− for each class. There is, however, still much more
work to be done. The illumination of thepathways for nonprotein ligand
biosynthesis can be linked to a classic metabolic pathway elucidation
problem inwhich the substrates are not defined and as suchpresent sig-
nificant challenges to researchers. Advances over the last decade have
succeeded in identifying the substrates for carbon monoxide and cya-
nide synthesis but there are still a lot of mechanistic details that need
to be resolved. For the [NiFe]-hydrogenase diatomic ligand biosynthesis,
the existence of Fe–CO2 FTIR bands both in HypC alone and when HypC
is in a complex with HypD has led to the recent hypothesis that HypC
delivers an Fe–CO2 group to HypD where the CO2 is reduced to CO. Ex-
perimental validation is needed, both for the transfer and delivery of
this species from HypC to HypD, as well as for the source of the CO li-
gand being CO2. For [FeFe]–hydrogenase diatomic ligand biosynthesis
the presence of Fe–CO/CN species which form during HydG catalysis
leads to the hypothesis that the C-terminal cluster is cannibalized in
this process and that the iron-diatomic group(s) are then mobilized to
HydF. Clearly for [FeFe]-hydrogenase H cluster biosynthesis, as de-
scribed herein, there are differing perspectives on aspects of the mech-
anism of H cluster assembly. Some of this likely reflects differences in
experimental designs, in particular how the H cluster maturation pro-
teins are expressed and analyzed. It will be the challenge of the next
generation of maturation studies to delineate the relevant insights
being gleaned for all the expected approaches in the context of physio-
logical or in vivo assembly.

The culmination of the new insights into hydrogenase diversity,
mechanism, and maturation presented herein should have one con-
vinced of the amazing qualities of hydrogenases as complex iron sulfur
enzymes that span evolutionary time andwhich played a key role in the
physiological diversification of life. These enzymes provide a one stop
model system for studies of the evolution of early life processes, control
of biological electron flow in metabolism, proton coupled electron
transfer reactions in biological systems, complex metal cluster assem-
bly, and the origin of modern day aerobic respiration.
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