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Abstract—An analysis of hydromagnetic flow is examined in a semi-infinite expanse of electrically
conducting rotating Johnson-Segalman fluid bounded by nonconducting plate in the presence of a
transverse magnetic field and the governing equations are modeled first time. The structure of the
velocity distribution and the associated hydromagnetic boundary layers are investigated including
the case of resonant oscillations. It is shown that unlike the hydrodynamic situation for the case
of resonance, the hydromagnetic steady solution satisfies the boundary condition at infinity. The

inherent difficulty involved in the hydrodynamic resonance case has been resolved in the presence
analysis. © 2005 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

In many fluids, such as food, industry, drilling operations, and bio-engineering, the fluids, either
synthetic or natural, are mixtures of different stuff such as water, particle, oils, red cells, and
other long chain molecules; this combination imparts strong non-Newtonian characteristics to
the resulting liquids; the viscosity function varies nonlinearly with the shear rate; elasticity is
felt through clongational cffects and time-dependent effects. In these cases, the fluids have been
treated as viscoelastic fluids. Because of the difficulty to suggest a single model which exhibits
all properties of viscoelastic fluids, they cannot be described as simply as Newtonian fluids. For
this reason, many models or constitutive equations have been proposed and most of them are
empirical or semiempirical. One of the models to account for the rheological effects of fluid is
the Johnson-Segalman model. This model offers a very interesting means for explaining “spurt”,
it seems more likely that the phenomenon is due to the “stick-slip” that takes place at the
boundary [1]. However, the model could very well describe the “shear layers” that have been
observed in experiments [2], wherein the mechanism of “stick-slip” in the interior of the domain
may not be natural to the problem. More recently, Rao and Rajagopal [3] and Rao [4] have
explained the phenomenon of “spurt” by discussing some flows of a Johnson-Segalman fluid.
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After the initiation by Lighthill [5], there has been much work on the subject of laminar
boundary layers which has a regular fluctuating flow superimposed on the mean flow. Owing
to mathematical difficulties, most of them include restrictions on an oscillation amplitude or
a frequency in the course of their theoretical developments. One of the exact solutions of the
Navier-Stokes equation in which no restriction is placed on the amplitude and frequency is ob-
tained by Stuart [6]. In 1982, Rajagopal [7] obtained exact solutions for a class of unsteady
unidirectional flows of a second-grade fluid. In continuation, Hayat et al. [8-10] discussed the
periodic, unidirectional flows of a second-grade fluid. Very recently, Erdogan [11] analyzed the
unsteady flow of a viscous fluid due to an oscillating plane wall. However, the interesting and
important problem of hydromagnetic rotating flow of a Johnson-Segalman fluid on an oscillat-
ing plate has not been treated so far, which has many practical applications in geophysical and
astrophysical problems. Several authors including Soundalgekar and Pop [12], Debnath [13,14],
Singh [15] and Hayat et al. [16] have studied the theory of rotating hydromagnetic viscous fluid
flows in various geometrical configurations.

The main purpose of this paper is to study the hydromagnetic rotating flow at an oscillating
plate. The fluid is assumed to be incompressible, non-Newtonian (Johnson-Segalman), rotating
and electrically conducting and the magnetic field is applied transversely to the direction of the
flow. Examples of non-Newtonian fluids which might be conductors of electricity are flow of
nuclear slurries and of mercury amalgams, and lubrication with heavy oils and greases. This
theoretical study of magnetohydrodynamic (MHD) flow has been a object of great interest due
to its widespread applications in designing cooling systems with liquid metals, MHD generators,
accelerators, pumps, and flow meters. The hydromagnetic flow is generated in the uniformly
rotating fluid system by oscillations of the plate at ¢ = 0t. The governing equations of the
problem are modelled and then solved subject to the relevant boundary conditions. Special
attention is given to the physical nature of the solution and the structure of the boundary layers.
In hydrodynamic situation, the solution remains mathematically valid and physically meaningful
for all values of frequencies except the resonant frequency. Thus, it remains to answer the question
of finding a meaningful solution for the case of resonant frequency. An attempt is made to answer
this question by posing a hydromagnetic boundary layer problem.

2. MATHEMATICAL FORMULATION

We consider the unsteady hydromagnetic flow induced in a semi-infinite expanse of an elec-
trically conducting Johnson-Segalman fluid bounded by an infinite plate at z = 0. A uniform
magnetic field is applied normal to the plate. The fluid as well as the plate is in a state of
solid body rotation with constant angular velocity ) about the z-axis normal to the plate and
additionally, oscillations of frequency « is superimposed on the plate at time ¢t > 0.

The unsteady hydromagnetic flow in a rotating coordinate system is governed by the equation
of motion, continuity equation, and the Maxwell equations in the form,

paa—Y+(V.V)V+QQxV—I—Qx(er) =V.o+jxB, )
divV =0, (2)

divB =0, curl B = ppjeurl E = —66—1?, (3)
j=a(E4+V xB), (4)

where V = (u,v,w) is the velocity field, j is the electric current density, B is the total magnetic
field so that B = Bg + b, b is the induced magnetic field, E is the total electric field, p is
the density, o] is the electric conductivity, ., is the magnetic permeability, and r the radial
coordinate,

r?=a? 442 (5)
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The Cauchy stress tensor ¢ in a Johnson-Segalman fluid is given by [17],

o=—pl+T, (6)

T =2uD +8, (7)

S+/\<§+(V-V)S+S(W—aD)+(W—aD)TS):2nD, (8)
_1 T _lip_ypT _

D_Q(L+L), W—Q(L L"), L=vV. (9)

where p is the pressure field, A is the relaxation time, u and 7 are the viscosities, and “a” is called
the slip parameter.

It should be noted that for a = 1, 1 = 0, model (6) reduces to the Maxwell model and when
A =0, the model reduces to the Navier-Stokes fluid.

We define the stress tensor and velocity as

Srz Szy Sez U
S(z,t)={ Syz Syy Syz | » Vizt)y={ v |. (10)
Sz:c Szy Szz 0

We assume that the induced magnetic field produced by the motion of an electrically conducting
fluid is negligible. The assumption is justified since the magnetic Reynolds number is small, which
is generally the case in normal aerodynamic applications. Since no external electric field is applied
and the effect of polarization of the ionised fluid is negligible, we also can assume that the electric
field E = 0. Under thesc assumptions and using (1), (3)-(6), and (10), we have

du Op 0S:, 9u 9
9 =_2Z —_— 11
”[at Q”] oz T as THaz 0B (11)
v _ Op  0Sy. 5%y 2
P |:—8'? —+ QQU} = -a—y + D= M@ — O'BO’U, (12)
op 9S,.
_ 9 13
0 oz + 0z’ (13)
with
p=p—2r202, (14)
0S5,z ou ]
- 28| =0, 15
S“+/\[at (1+a)5-8 | (15)
08y, (1+4a) [Ou v ]
—_——-— P p— Y = 6
Sey + A [ 1 5 52 Syz + 8252” 0, (16)
08z,  (1—a) [Ou ov (14+a)du, ] ou
TPz = ikl _ g — 7
SI”LA{ ot T 2 {azS”*azS“f} 2 0:0| =g (17)
0Syy v, ]
Syy+/\{ 5t —(1+a)$syz_ =0, (18)
0S,;  (l—a) [Ou Ov (1+a)dv_ ] v
et i _ - = 75— 19
Sy + A [ ot 2 0z Szy + 0z Suy 2 0z Szz_ 1 0z’ (19)
oS Ou v |
22 —a){ ==8p + =8y, 4| =0, 20
S”*%m (1 a){az +azy}_ (20)
and equation of continuity is identically satisfied.
The boundary conditions are taken as
u+iv="Uj [cei‘” + de_io‘t] , onz=0, t>0, (21)
u,v — 0, as z — o0, t>0, (22)

where ¢ and d are complex.
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3. DIMENSIONLESS ANALYSIS

Introducing
¥ = %x oo * %z «. Y «_ Y
- v 1 Yy = v Y, v u = an vo= ?07 03
(+m)Ug° 2 R

where v(= n/p) is the kinematic viscosity.
Equations (11)—(13), (15)—(20) and boundary conditions (21) and (22) now take the following
form,

Ou* ap*  pd*ur
90yt = — py %
g~ BV a0z *“L%* =e — VU5, (24)
ov* op* O 0
) QQ* x _ L _S* _ *
g + P + 8 3 +¢6z* e — NU™, (25)
0p*
0= 5 + ¢> S:., (26)
82F* ) *(9F* M 83F* 02 . e .
g Y G T g T g (5 TIS) - NE 27)
* a * * 6 *] _
Sy, +We [(ws —(1+ )5“8 -| =0, (28)
. . 1+a Ju* ]
Sz, +We [675*5“’ < 5 ) {g‘-SyZJr 7, *S } =0, (29)
d 1—a\ (Ou ov* 1+a\ du 1 106w
S, +We S; — S Sz 8 | =,
we [at* = ( 2 >{8z* =¥ g Iy} ( 2 >8z* =| T 58
- (30)
%) av* ., ]
* W * e —
Sy + [(‘%* Sy — (14 a) 52 0 | 0, (31)
d l—a ou* ov* 14+a\ ov* _, ] 1 0v*
Sy, +We S — i « | = 2%V
* [Bt* W’L( 2 ){Bz*s + 55 } ( > )az*szz Py
: (32)
. d du* _, 61}* v 1]
Szz + We |:at* Szz ( ) { oz* S Oz* Syz}‘ - 0’ (33)
u* +iv* = ce™t +de ™ onz*=0, t*>0, (34)
w*, v* - 0, as z" — o0, t*>0, (35)
where N B2
Vo uw+n oDBgY
= — W, =22 =1 =07 36
w U027 € v ) d) /,7 b N pU02 ? ( )
Fr ="+, (37)

in which W, is the Weissenberg number (ratio of the relaxation time of the fluid to a characteristic
time with the flow), ¢ is the ratio of the viscosities, and N is the Hartmann number. The
compatibility equation (27) is obtained by eliminating §* from equations (24)—(26).

4. ANALYTICAL SOLUTION

It is known that the analysis of the flow of the non-Newtonian fluids is more challenging math-
ematically and computationally. In closed form, the analytical solutions governing the flow of
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non-Newtonian fluids are not possible. In general, the order of the differential equation(s) char-
acterizing the flow of these fluids is more than the number of the available boundary conditions.
Thus, the adherence boundary condition is insufficient for determinacy. The difficulty is further
accentuated by the fact that non-Newtonian parameters of the fluid usually occurs in the coef-
ficient of the highest derivative. In the past, the usual attempt to solve this difficulty centered
around seeking a perturbation solution assuming the non-Newtonian fluid parameter to be small;
the classical paper being by Beard and Walters [18]. One may also refer, for example, to [19-23]
for other problems in various geometries. Teipel [24] and Ariel [25] obtained an exact numerical
solution of the problem in reference [18]. Their investigations revealed that perturbation sclution
is only valid for small values of non-Newtonian parameter less than the some “critical value”.
Therefore, the solution by perturbation technique gives only a trend as the fluid shows departure
from the Newtonian nature or the fluid is slightly non-Newtonian. Since we have an interest in
finding the perturbation solution so the present analysis is limited only to indicate the trend of
the flow for the non-Newtonian fluid and is not a solution for the non-Newtonian fluid per se.

We note that equations (24)-(33) are nonlinear partial differential equations. Therefore, to
carry out the perturbation, we shall assume all the functions can be expanded as

U=Us+ W0 +..., (38)
where ¥ in turn stands for the functions u*, v*, p*, F*, and S*. Substituting form (38) for the

functions uv*, v*, p*, F*, and §* into (24) to (35), (37), and equating the terms at O(1), O(W,),
and O(W2), we obtain, respectively, the following.

ORDER 1.
oug . apg 02y N
at’? —2Q ’UOZ—'a?S-I"d)aZ—*g—NUO, (39)
dug . . op¢ 8% .
T +20 uO:—a—ZerdaE*—S—NUO, (40)
opg
= 41
0 Oz’ (41)
0?F; OF3 Py
2i0") —~ = 9 42
Ot*oz* + (I + 27) Oz* ¢ 82+’ (42)
Sa:cz = SE)k:ty = SE)kyy = ngz = 07 (43)
1 Oug
= 44
S()zz ¢ 9z* ’ ( )
1 0v
Sr =0 45
Oyz ¢ dz*’ ( )
F§ = ug +ivg, (46)
Fy = ce™t” 4 de” onz*=0, t*>0, (47)
Fy—0, as z¥ - oo, t* > 0. (48)
ORDER W,.
ouj apy ?%uy 5Pu
_ P e * 49
T I P P e e (49)
o} op; 8%vt 53
20 u = — - ———— — Nv} 50
o TN dy* +¢8z*2 Ot* 9z e (50)
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apr 8 |[oug\®  [oup\?
ozx (1-a) Oz* <(’)z* + Oz* ’
0?Fy OF} PFr NAEY
N+ 2iQY* L g1 _ -0
gras TN U G = G T g
g _ 1+a\ [Ouf 2
lzx — ¢ 82* ’
14+ a\ Ouj Ovg
117" ¢ 8z* Oz’
o _L[ow 0%
Slzz = 1) B0z |’

sin=(° )(3”5)2
lyy 92* ’
o oy 0%v}

vz ™ 5 102 9t*dz*

. l—a Ouf > ovg ?
= (5 |(35) - (55) .

* * .
Fi =i +iv7,

Ff =0, onz*=0, t*>0,
Ff —0, as 2" — o0, t">0.
ORDER 1 SOLUTION.

We seek a periodic solutions of the form,

* * zwt * —iwt™
Fi = Fie™t 4 Flye= ™t

This together with (42), (47) and (48) gives a solution of the following form,

Fg — Ce(iwt*—)\mz*) + de—(iwt'-{-)\ozz*),

with
N +i@ +uw))/?

Aot, Aoz = ‘¢— ;
. 20* +w 1/2

Aot = ( % ) (o1 +iBo1) ,

20" —w\ /2 ,
Aoz = <—é‘¢—w> (o2 + 1502) ,
1

/2 N
a1 = [\/’731 +1+ 701} ) Yo1 = m,

vz
o1 = {\/“/31 +1- ’701] =—,
Qo1

12 N
_ | /2 - —
Qo2 = [ Yor 1+ /02] ;o o2 =g

1/2 1
Boz = [\/7324'1—’702} =—.
Qo2
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ORDER W, SOLUTION.
Let us take
= Fret + Fe ™t (67)
Substituting (67) into (52), we have two ordinary differential equations for F}; and F}, and

solutions of these equations satisfying the corresponding boundary conditions derived from (60)
and (61) are obtained and the expression for Fy is given by

s *
Fy = —2&2); [CA01€(M**’\‘“Z') — d)\02€7(m‘+’\°2z')] (68)

and finally, the expression for F* up to O(W.,) is of the following form,

F*z*t")=c |i1 — M] eliwt™ —A012") +d |:1 + Mil e~ (1wt +A022") (69)

2¢ 2¢
5. CONCLUDING REMARKS

We present the oscillatory solution for the rotating flow of a Johnson-Segalman fluid bounded
by a rigid plate. The time-dependent governing equations of this boundary value problem are
expressed in terms of nondimensional parameters. The Weissenberg number W, and Hartmann
number N appear as the significant physical scales. Perturbation solutions up to Q(W,) for the
flow have been constructed. The following results are found from (69).

e It is noted that structure of the associated magnetohydrodynamic boundary layers on the
plate are qualitatively similar to those of the classical hydrodynamic Stokes and Ekman
layers.

e The thicknesses of the boundary layers are

L g/ ) and e/ (207 — w)]V2.
Qo1 Qo2
Clearly, these thicknesses are in the combination of hydrodynamic and hydromagnetic
boundary layers and are smaller than the classical Stokes and Ekman layers.
o The thicknesses of the boundary layers in the hydrodynamic case are [2¢/ (2Q* + w)]
and [2¢/ (20" — w)]"/? and these correspond to the case of [26] when p = 0.
e The most important feature of (69) is that unlike the hydrodynamic situation for the
resonant case, (69) satisfies the boundary condition at infinity for all values of frequencies

1/2

including the resonant frequency. Consequently, the associated boundary layers remain
bounded for the resonant case. The physical implication of this conclusion is that for
the case of resonance, the unbounded spreading of the oscillations away from the plate is
controlled by the external magnetic field. Consequently, the hydromagnetic oscillations
are confined to the ultimate boundary layers. This observation holds for both Johnson-
Segalman and Newtonian fluids.

e The results for rotating and conducting Maxwell fluid can be recovered as a special case
from the present analysis by taking 4 =0 and a = 1. Moreover, if A =y =0 and a =1,
we are left with the results governing the flow of rotating and conducting Newtonian fluid.

e Finally, the consideration of the vorticity vector,

v Ou
curl V = (—5;, 5’0) ,

leads us to the conclusion that the rotation generates vorticity.

e It is remarked that the present study only predicts the trends of the flow for a Johnson-
Segalman fluid and that for a full revelation of all the characteristics of the flow an alternate
study, possibly a numerical one is required.
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