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Six different formulations equivalent to the statement that. for n > 2. the sum 
Cl_ I (-l)kS(n, k) # 0, where the S(n, k) are Stirling numbers of the second kind. 
are shown to hold. Using number-theoretic methods, a sufftcient condition for the 
above statement to be true for a set of positive integers n having density 1 is then 
obtained. It remains open whether it is true for all n > 2. The equivalent statements 
then yield information on the irreducibility of the polynomials x;;’ , S(n. k) I” ’ 
over the rationals, the nonreal zeros for successive derivattves (d/dz)” exp(e”). a 
gap theorem for the nonzero coefficients of exp(-e’), and the continuous solution 
of the differential-difference equation f(x) = 1, 0 < x c I, f’(x) = -1s 1 f(s - I ), 
I <x < co. where [ 1 denotes the greatest integer function. 

1. INTRODUCTION 

An interesting problem, having arithmetic, combinatorial, and function- 
theoretic ramifications, is the determinations of the zero coefficients in the 
Taylor expansion 

exp(1 -e’)= : A,z’. 
n=O 

There is a remarkable variety of different formulations of this problem. One 
of our main results, which we establish in Section 3, is the following: 

THEOREM 1. For each n > 2, the following are equivalent: 

(a> CL1 ( -l>ks(n, k) f 0. 
(b) The polynomial Q,,(f) = xi,, S(n, k) tk-’ is irreducible over the 

rationals. 

(c) Given thaf exp(-e’) = Cka,o akzk, then a, # 0. 

(d) The integral-valued entire function A(z), defined by 
A(z) = e CrEo (-l)kk’/k!, does not vanish at z = n. 
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(e) The continuous solution, on [O, co), of the differential-difference 
equation 

f(.x1 = 1, o<x < 1, 

f’(x)=-Ix]f(x- l), 1 <s<co, 

is not zero at .Y = n. 

(f) (d/dz)” exp(e”) has no real zeros. 

In (a) and (b), the S(n, k) are the Stirling numbers of the second kind, 
defined by S(n, 1) = S(n, n) = 1 and recursively by S(n + 1, k) = 
S(n, k - 1) - kS(n, k). In (d), the terms are to be evaluated on the principal 
branch and in (e), 1x1 is the greatest integer function. 

It is well known 13 ] that exp(t(e’ ~ 1)) is the exponential generating 
function of the polynomials S,(t), where 

(1.1) 

that is. 

exp(t(e’ - 1)) = f S,(t) z”/n!. 
,, 0 

(1.2) 

Moreover, the s,(t) generalize 13, 13 1 the well-known Bell numbers B,, 
defined by B, = S,,(l). For a positive integer m, it can be shown that s,,(m) 
counts the number of ways in which n distinct objects can be placed in n 
boxes of m distinct colors. 

The S,(-1)/e are the coefficients of the function given in (e). It can be 
shown by the methods given in Rota [ 12 I that S,(-1) counts the difference 
between the numbers of partitions of a set of n elements into even and odd 
numbers of congruence classes. The S,(-1) of (1.1) is the sum 
Cz=, (-l)“,!?(n, k) given in (a) of Theorem 1. 

The arithmetic (congruence) properties of S,(t), as well as the asymptotic 
behavior of A(z) in (b) and the solution of the differential-difference equation 
in (e), provide a variety of methods for investigating the extent to which the 
equivalent forms in Theorem 1 are in fact true. 

The example exp(e”) in part (f) is interesting for function-theoretic 
reasons and (c) can be viewed as a gap theorem on the nonvanishing coef- 
ficients for the entire functions exp(-e’). We comment further on this in 
Section 5. 

It has recently been shown 15 ] that in an asymptotic density sense, (e) of 
Theorem 1 is true for “almost” all n, by using rather deep methods in 
analytic function theory. We provide in Section 4 a sufficient condition using 
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elementary number-theoretic arguments. Some of the other equivalent 
conditions in (a)--(f) may provide easy alternative proofs. It remains an open 
question whether or not any of the equivalent statements (a)-(f) are in fact 
true for all n > 2. We conjecture that these statements are true. Further 
comments about this will be given in Section 7, the concluding remarks. 

2. PRELIMINARIES 

In Sections 3 and 4 we require results on the congruence properties 
modulo primes for the polynomials S,(U), for u an integer, as given by 
Touchard [ 131 and Chinthayama and Gandhi 121. They are 

Sn+p(4 = S”, 1(u) + UPS,(U) (mod P), (2.1) 

S kp’+AU) = S,(U)(P(U) + uPtY (mod P), (2.2) 

where by the right-hand side of this expression we mean to expand by the 
binomial theorem and drop superscripts to subscripts, 

s~:,k,p’(u) = 17 (S(u) + rUp)kr (mod P)? 
r 

(2.3) 

where the index r runs over the same set of positive integers, and 

S n+(pP--l)l(p-*,@) = ups, (mod P). (2.4) 

Letting u = -1, denoting S,(-1) by An, and defining A ,, = 1, we get the 
obvious reductions 

A nip- (An+, -An) (mod P)? (2.1’) 

A kp,+ n = A .(A - tjk (mod P), (2.2’) 

A x,k,pr = 1) (A - rlkr (mod P). (2.3’) 

and 

A nt(pP-I)l(P-L)= -A, (mod P). (2.4’) 

Comtet (3, p. 2111 gives the following useful rule for calculating the S,(U) 
by using differences 

US,(U) = d”S,(u)l,: L 3 S,(u) = 1, (2.5) 
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where d” is the nth difference taken with respect to k. It follows easily that 

A nil=- A,,= 1. (2.5') 

Facts (i) and (ii) can be used to establish Lemma 1, which will be used in 
the proof of Theorem 1. 

(i) The polynomial s,(t) = xi=, s(n, k) tk has only real nonpositive 
and simple roots [ 10, Vol. II, Ex. 62.1, p. 44 1. 

(ii) (d/dz)“F(e”) = i”[s(rz, 1) .‘(eiZ) eiZ + . . . + s(n, n) F(“)(eii) e’“‘] 
(an analog of [ 10, Vol. I, Ex. 209, p. 441). 

LEMMA 1. The roots of the nth derivative of exp(e”) are given b), the 
points z = -i log It:“‘1 + n(21- 1), I E Z, where the fr’, k = l,..., n, are the 
zeros of s,,(t). (Take z = co when tin’ = 0.) 

Using (2.5), we have obtained the values of A,, for 0 < n < 110. We give 
the following list of beginning A,,: 

n 012345678 9 10 

A,, l-l 0 1 1 -2 -9 -9 50 267 413 

n 11 12 13 14 15 

A,, -2,180 -17,721 -50,533 110,176 1.966.797 

3. PROOF OF THEOREM 1 

(a)o (b) Since Q,(t) has leading and constant coefficients 
s(n, 1) = s(n, n) = 1, it follows that the only possible rational zeros of Q,, 
are kl. As s,(t) = [Q,,(t), it again follows from (i), Section 2, that 
Q,,(-1) # 0. So we have 

Q, irreducible over the rationals 

-Q,(-l)+O 

u ,$, (-l)“s(n, k)#O by (1.1). 

(a) o (c) From (1.2) we have exp(1 - e’) = CrYo S,(- 1) z”/n!. Thus 
(d) a, = e-Is,,-1)/n!. The desired result follows immediately, since 
S,(-l)=C,"~,(--l)kS(n, k) by (1.1). 
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(a) o (d) We expand exp( 1 - e’) and compare the coefftcients of z”/n!. 
On the one hand, exp(1 - e’) = CrEO S,(-1) zk/k!. On the other hand. 

exp( 1 - e’) = e c (- l)“enz/n! 
n-0 

= e c ((-l)“/n! kTo $zk) 
n = 0 

00 
=e G x (-l)‘n”/n! 

k-0 i n-0 

Therefore A, = S,(-1) = e CF:o (-l)“n”/n!. 
In addition, for z complex, we define the function A(z) by 

A(z) = e C,“=. (-1)nn2/n!. Then A is an entire function of z and A(k) = A, 
for k a positive integer. Since A, is an integer, for k a positive integer, A(z) is 
integer valued for z a positive integer. Thus (a) and (d) are equivalent. 

(a) o (e) Clearly, the continuous function satisfying 

f(x) = 1 for x E 10, 11, 

f’(x) = -[.ulf(x’- 1) for 1 <x < 00 
(3.1) 

is piecewise polynomial. We define a sequence of polynomials (q,,(y)) on 
10, 11 by the relationship 

4,(Y - n) = C-1 U(r) for n<~j<n+ 1. (3.2) 

The transformation J - n =x leads in a straightforward manner to the con- 
ditions 

40(x) = 1, ogx< 1, (3.3) 

q,,(O) = -s,-,(l)3 (3.4) 

43) = v, I (XL o<x,< 1, (3.5) 

where we have made use of the continuity off(x) and where q;(O) and q:(l) 
are to be interpreted as right- and left-hand derivatives, respectively. 

The unique solution of (3.3)-(3.5) can be shown, by direct verification, to 
be given by 

qk(O) Xn- k, 
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where q,(O) = -qn-,(l). It then follows that 

qk(o). 
with qO(0) = 1, from (3.3). 

By comparing (3.6) and (2.5’), it is clear that q,(O) = A, or, equivalently, 
by (3.2) and (l.l), thatf(n) = (-1)” X:-1 (-l)“S(n, k). 

(f) u (b). By Lemma 1, a zero of (d/dz)” exp(e”) is real if and only if 
+l or -1 is a zero of Q,(t). But by (i) in Section 2, all zeros of Q,,(f) are 
negative. 

4. NUMBER-THEORETIC RESULTS 

The modular recurrences (2.1’)(2.4’) can be used to obtain a lower bound 
on the relative number of nonzero A, (= S,,(-1)). Using (2.4’) the 
antiperiods, modulo 2, 3, 5, and 7, are found to be 3, 13, 781, and 137, 257, 
respectively. These numbers have no common divisors; thus the antiperiod of 
the sequence of 4-tuples of residues mod 2, 2, 5, and 7, simultaneously, is the 
product of the antiperiods, which is 4,180,710,963. Within one antiperiod, 
the number of zero residues was found, by calculation, to be 1, 4, 156, and 
19,608 for p = 2, 3, 5, and 7, respectively. From these facts and the relative 
primacy of the antiperiods, we determine that there are 12,235,382 
simultaneous zero residues mod 2, 3, 5, and 7 in one antiperiod, resulting in 
a relative frequency of 0.0029266. We restate this result as follows: In 
Theorem 1, (at(f) are true for more than 99.7 percent of integers n > 0. 

After a previous version of this paper was written, Edrei [5 1 informed one 
of the authors that he had shown that for h(z) exp(-e’) = CF==o a,,~‘, where 
h is an entire function of finite order with further suitable restrictions, a, # 0 
for 100% of the values of n with a possible exceptional set, the exceptional 
set being asymptotically determined. His methods were entirely function- 
theoretic in nature. For the special case h(z) = 1, we give, following a 
preliminary lemma, a purely arithmetic sufficient condition based on the 
congruence properties stated in Section 2 for the A, defined by (1.2) for 
t=-I. 

LEMMA 2. Let p be a prime for which the minimum period of the A,, 
(mod p) is 2( pp - 1 )/(p - 1). Then all solutions of 

Y = n+p - Y IIt1 - Y” (mod P) (4.1) 

contain the same number 2(ppP ’ - 1 )/( p - 1) of zero residues in one period. 

409!96/1 4 



48 LAYMAN AND PRATHER 

Proof. By (2.1’), one solution of (4.1) is given by the sequence An. It has 
recently been shown by one of us [S] that under the stated hypothesis this 
sequence contains in one period exactly two runs of p - 1 consecutive zeros 
of the form 0, 0 ,..., 0, a and 0, 0 ,..., 0, --a, one delayed (p” - 1 )/( p - 1) after 
the other. By linearity, a solution y, of y, of (4.1) is given by 

y, = bA ” (mod P>, (4.2) 

where b E { 1, 2, 3 ,..., p - 1). When b ranges over ( 1, 2, 3 ,..., (p - 1)/2}, 
(p - 1)/2 translation-distinct solutions of (4.1) are generated. Together, 
these solutions contain [(p - 1)/2]]2(p” - l)/(p - l)] =pp - 1 distinct p- 
tuples. This is exactly the number of distinct p-tuples of integers (mod p), 
excluding the zero p-tuple 0, O,..., 0, so all solutions of (4.1) must be of the 
form (4.2). Therefore all solutions must contain the same number of zeros in 
one period. Since the zero p-tuple is missing, one period of each of the 
(p - 1)/2 translation-distinct solutions must together contain pp ’ 
occurrences of each nonzero residue and pp-’ - 1 zero residues. Thus any 
one solution contains 2(ppp ’ - l)/(p - 1) zeros in one period. 

THEOREM 2. Let A,, be the sequence defined by 

exp(1 -e’)= f A”$ 
n=0 

and let z(N) denote the number of zero A, for n = 1, 2,..., N. If there exist 
arbitrarily large primes p for which the minimal period of A, (mod p) is 
2(pp - I)/(p - l), then 

lim z(N)= 0. 
N -cc N 

Proof. By Lemma 2, there are 2(pp ’ - 1 )/( p - 1) zero residues A,, 
(mod p) in one minimal period of length 2(pp - l)/(p - 1). Denoting this 
minimal period by l,, we have, for each k = 1, 2 ,..., 

Wp) < L 
klp P ’ 

It follows that taking N and p sufficiently large we may make z(N)/N 
arbitrarily small, completing the proof. 
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5. CONNECTIONS WITH COMPLEX FUNCTION THEORY 

We define two classes of entire functions as follows: 

(R) functionsf for whichf, f ‘, and f” have only real zeros. 

(L) f(z) = AZ” exp(--az* + bz) n, (1 - z/zn) exp(z/z,), where A is a 
constant, a > 0, b and the z, are real, and C, 1 z, I-* < co. 

The class (L) is the Laguerre-Polya class. 
Recently, Hellerstein and Williamson [ 6, 71 verified an old conjecture of 

Polya by proving that the only entire functions real on the real axis which 
satisfy (R) are those in (L). The requirement that j- be real on the real axis is 
necessary because of the example g(z) = exp(e”) in (f) of Theorem 1 (see 14, 
Theorem 3 I). It is well known that all the zeros of the successive derivatives 
of functions of the form (L) are real. In contrast, g satisfies the hypothesis 
(R) but does not have the form (L). 

Hypothesis (c) of Theorem 1 is of interest in connection with the general 
result of Renyi [ 111 that at least half of the coefficients of a periodic entire 
function do not vanish. Edrei’s result 15 ] of course shows that for exp(-e’) 
almost all coefficients do not vanish. 

6. THE ZEROS OF S,(X) 

We give some general information about the zeros of the polynomials 
Q,,(t) = Cz=, S(n, k) tk- ‘. By use of the elementary symmetric relations and 
letting tr’ > t:!, > 3 .. > ty’ denote the zeros of Q,(t), we have 

S(n, 1) = 1 = ff:“’ ... t?‘, (6.1) 

-S(n, n - 1) = (t:n) + . . . + t;‘). (6.2) 

Noting that Q,(t) = 1 + t, we get from (6.1) that for each n > 3, Q,(t) has 
a zero in (-1, 0), since otherwise, the product of all the zeros is not il. 
Thus Q,(t) must have zeros in (--co, -1) for n > 3, for the same reasons. 
Furthermore, Comtet 13, p. 2081 gives the following formula for S(n, k): 
Expand (1 + 2 + . . . + k)n-k by the multinomial theorem and afterwards 
suppress the multinomial coefficients. Taking k = n - 1, we get S(n, n - 1) = 
(1+2+,.. + (n - 1))’ = n(n - 1)/2 - n2/2, and hence the average of the 
zeros goes to -co as n + co, by (6.2). Moreover, as it is well known [3] that 

WW[e’S,Wl = S,+ lW e’, the negative roots of S, and S,, r interlace. 
The above gives some information on the distribution of the roots of each 

S,(t). A question arises about the distribution of the set of all zeros of the 
P,(f), n = 1, 2, 3 )... . In order to answer this question, we first state a 
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definition due to P6lya 19 1. A point z belongs to the final set off if every 
neighborhood of z contains zeros of infinitely many derivatives off. 

Very recently, Edrei [5) has shown that the final set for exp(-e’) consists 
of the lines J’ = 2771, I E L. Since ei’ = e-ei”iZ’, Edrei’s result implies that the 
final set of eiZ consists of the vertical lines x = (21+ 1)7c, 1 E L. This result, 
together with the obvious fact that s,(t) = tQ,(t), has the following 
important consequence by Lemma 1. 

THEOREM 3. The set of all the zeros of the polynomials S,,(t), n = 1, 2,..., 
is dense on (--03,0]. 

7. CONCLUDING REMARKS 

As we have seen, while the set of roots of all the polynomials s,(t) are 
dense on (-co, 01, by Theorem 3, no rational number -r, r > 0, r # 1, can 
be a zero of any of the s,(t). Consequently, it is clear for these values of r 
that all the coefficients of exp(r(e’ - l)), given in (1.2), are nonzero. So 
r = -1 is the hard case. If (a)-(f) are not true for all n > 2, there must be 
some polynomial Q,(t), as given in (e) of Theorem 1, that is reducible over 
the rationals, the existence of which would itself be of interest. 

The various equivalent conditions in Theorem 1 may provide yet other 
approaches to this problem. One possibility is provided by the differential- 
difference equation of (e) in Theorem 1. In fact, deBruijn 111 has determined 
the class of continuous solutions of the problem g’(t) = tg(t - l), t > 0, 
related to the Bell numbers S,(l). A determination of the asymptotic 
behavior of the continuous solution of the equation f’(t) = -It If (t ~ 1) in 
(e) would be of considerable interest for S,(-1). 
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