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The paper develops Editor, a language for manipulating semistructured
documents, such as those typically available on the Web. Editor programs
are based on two simple ideas, taken from text editors: ``search'' instructions
are used to select regions of interest in a document, and ``cut 6 paste''
instructions to restructure them. We study the expressive power and the com-
plexity of these programs. We show that they are computationally complete,
in the sense that any computable document restructuring can be expressed in
Editor. We also study the complexity of a safe subclass of programs, show-
ing that it captures exactly the class of polynomial-time restructurings. The
language has been implemented in Java and is currently used in the Araneus
project as a basis for a wrapper-generation toolkit. � 1999 Academic Press

1. INTRODUCTION

It is well known that databases provide a robust technology for querying highly
structured data in a flexible and efficient way. Recently, the manipulation of less
structured information has also become a field of great interest. This is especially
due to the explosion of the World Wide Web [11], which is essentially a large
collection of distributed documents organized as a hypertext. Extending database
techniques to Web documents poses a number of new challenges. First, tools are
needed to explore the huge graph of pages and locate data of interest [29, 30, 36].
Then, once documents have been downloaded, a key problem consists in identifying
relevant pieces of information inside text and extracting them in order to build a
database representation in some data model, which can then be manipulated
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by a query language. This process is often referred to as a wrapping of a data
source [15]. In this paper we focus on this latter aspect: we address the manipula-
tion of textual data and propose a language, called Editor, for searching and
extracting regions in a document. Editor programs are based on two simple ideas,
borrowed from text editors. In fact, editors provide a natural way of interacting
with a document: when the user needs to restructure a document, search primitives
can be used to localize regions of interest inside text, and cut H paste operations to
move regions around. Likewise, in Editor, search instructions are used to select
regions in a document, and cut 6 paste to restructure them.

1.1. The Framework

The fact that the Web organizes information in documents has somehow caused
a shift of perspective on the way data can be accessed and manipulated, so that
traditional database query languages are not well suited to this new framework.
Thus, the design and implementation of new languages capable of manipulating
documents are becoming important research fields.

Indeed, incorporating text into databases is not a new idea [22, 32]. In fact, in
many cases, textual documents are organized according to a precise structure,
usually described using a formal grammar. For example, SGML [27] is a well-known
formalism for describing structured documents. The fact that parsed documents closely
resemble database structures has been used to propose extensions of query languages
capable of manipulating text. However, all of these proposals are based on a form
of grammatical preprocessing of textual information (see [4, 12, 16, 18, 23, 28,
40]). In essence, when the textual database is created, each document is prepro-
cessed to generate suitable data structures, such as the parse tree associated with
the document string or indexes used to access important regions in the text. Then,
query processing is based on these structures.

When applied to the Web context, traditional query techniques for textual data
show their limitations; in fact, in many cases, grammars are not flexible enough
to capture the organization of semistructured documents. This depends on several
factors: on the one hand, the structure is often incomplete or rather implicit; on the
other hand, documents may present heterogeneities and exceptions or even errors.
In fact, browsers do not parse the HTML sources they access, and they attempt to
display the corresponding page even in the presence of errors. As a consequence, it
is rather frequent that HTML pages do not fully comply with HTML grammar
rules. For all these reasons, more flexible means of analyzing text are needed. Also,
restructuring plays an important role here, whereas traditional approaches mainly
focus on searches. Intuitively, restructuring means moving regions of the document
around, adding new ones, and perhaps deleting some. However, it is not clear how
the user should specify the restructuring to be performed and how new documents
��or database structures��must be created starting from existing ones. In essence,
document restructuring can be considered a view definition mechanism to define
derived structures, which seem to be very important in this context.

Our goal in this paper is to introduce a flexible and expressive formalism for
searching and restructuring documents. At the same time, we attempt to meet
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another fundamental requirement, i.e., to study its computational properties. This
is particularly interesting for two reasons: first, to gain a better understanding of
what it means to compute on the Web, as attempted by [5, 37]; second, to
efficiently implement document manipulation primitives, and tune the complexity of
wrapping. There are, indeed, some procedural languages (such as Python [2] or
Perl [41]) extended with powerful text management features; however, it would be
difficult, if at all possible, to study the complexity of such languages. We therefore
introduce a formal computational model for documents, based on an abstract
Editor machine, and a language with a small and yet expressive number of
primitives for managing text.

1.2. Overview of Editor

Editor is a language for searching and restructuring documents. It is based on
a simple model of computation, which involves the basic operations of text editors.
Each program can access a set of documents, considered simply as strings of
symbols over a finite alphabet. Regions, i.e., contiguous substrings in documents,
can be selected using search instructions and modified using replace instructions. A
clipboard is associated with each program; restructurings can be performed using
cut, copy, and paste instructions, which make use of the clipboard.

The search process is based on the use of simple patterns, made of constant
symbols, such as a, b, c, ..., taken from the alphabet, plus a special symbol, *,
called the wild card. Examples of patterns are abc*d*e and <TITLE>*<�TITLE>.
Patterns are matched against documents in a natural way: each alphabet symbol
matches itself, and wild cards match any string. When a document is searched for
strings matching a pattern, in the case of alternatives, the leftmost match is selected.
For example, given a pattern a*b and a string ccaabb, the chosen match is aab.

An important concept in Editor is that of current selection. In fact, as is common
in text editors, cut 6 paste operations on a document implicitly refer to the
currently selected region in the text. In our approach, a region is a document
portion delimited by two positions.1 Regions in documents are selected using search
instructions: whenever a search instruction is executed on a document and a
pattern is specified, the leftmost substring of the document matching the pattern
is selected. Then, clipboard operations on that document implicitly refer to the
currently selected region. Thus, to cut or copy a specific region from some docu-
ment, the user first has to select the region using a search instruction with the
appropriate pattern.

Example 1.1 [Title]. Given an HTML document HMTLPage, the following
program is used to copy the title of HTMLPage onto a new document called Title:

search(HTMLPage, `̀ <TITLE>*<�TITLE>'');

copy(HTMLPage);

paste(Title);
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The first instruction searches the page, looking for the first region starting with
the string <TITLE> and ending with the string <�TITLE>. The wild card, *, is used
to match any string contained between the tags. When the instruction is executed,
HTMLPage is searched and the title region is selected. Then, the second instruction
copies the selected region to the clipboard, and the third instruction pastes the
clipboard content to Title.

Selections are very important in Editor, since they also act as place-holders; in
fact, in the course of a computation, we keep track of the portions of documents
already examined, and each search starts from the current position, i.e., the first
position following the current selection. If the search succeeds, the new region is
selected. If the end of the document is reached, the search fails and the empty region
following the last document symbol is selected. Then, as it is common in text
editors, subsequent searches start again from the first symbol, that is, the document
is searched in a circular way.

The content of a document can be changed using replace instructions that replace
occurrences of a constant string, S1 , with occurrences of another string, S2 ; when
a replacement has to be made, the first (leftmost) occurrence of S1 is searched in
the document, starting from the current position. If an occurrence is found, it is
replaced with S2 , which becomes the new selected region. Otherwise, the replace-
ment fails and the empty region following the last document symbol is selected.
Note that, also in this case, the document is searched in a circular way; i.e., a subse-
quent search or replace will examine the document starting from the top. As a
special case, a replace instruction in which S1 is the empty string, =, simply inserts
the string S2 into the document right before the current position.

Example 1.2 [Changing the Title]. Suppose we are given an HTML document,
HTMLPage, and want to change its title; we can use a combination of cut and
replace instructions, as follows:

search(HTMLPage, `̀ <TITLE>*<�TITLE>'');

cut(HTMLPage);

replace(HTMLPage, =, `̀ <TITLE>My Title<�TITLE>'');

The program searches the HTML source to locate the title and cuts it to the clip-
board; in this way, the title is removed from the document and the current position
coincides with the very next character. Then, a replace instruction is used to insert
the new title, `̀ My Title''; since the string to replace is the empty string, the new
title is inserted right before the current position.

Searches in a document can be iterated using loop instructions, which have the
form

loop search(D, Pat)

Body

end loop
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where Body is a sequence of instructions. Loops act in a natural way: when the
loop is executed, the first (i.e., leftmost) occurrence of pattern Pat is searched in
document D, starting from the top. If the search fails, that is, no occurrence of the
pattern is found, the body is not executed. Otherwise, the body is executed as long
as occurrences of the pattern are found in D. When, during the search, the docu-
ment end is reached, the search fails and the loop terminates.

Example 1.3 [Table of Contents]. Suppose we are given an HTML document,
HTMLPage, and want to generate its table of contents in a new document, ToC. We
can do this by selecting each first-level header from HTMLPage and pasting it to
ToC, in the following way:

loop search(HTMLPage, `̀ <H1>*<�H1>'')

copy(HTMLPage);

paste(ToC);

end loop;

In this program, the loop is used to iterate the body until the end of document
HTMLPage is reached. When the loop starts, HTMLPage is searched for the first
region that begins with a tag of the form <H1> and ends with a tag of the form
<�H1>. The loop body simply copies the header (along with the tags) to the output
document, ToC. Then, the loop end is reached and HTMLPage is searched again.
Now, the search starts from the position following the selected header, so that the
next header (if any) is selected and the body is executed again. After the last header
has been found, the end of HTMLPage is reached, the search fails, and the loop
terminates.

The previous examples illustrate the basic ideas of the formalism. We now give
a more complex example, showing how Editor can be effectively used to wrap
HTML pages and build database structures.

Example 1.4 [Wrapping Pages]. Consider the page in Fig. 1. It shows a list of
paintings in the Capodimonte Museum in Naples [1]. For each painting, the title
and the painter, plus a link to the corresponding painting page, are reported. We
now want to extract information from the HTML source and generate a table of
tuples with two attributes, title and author, one for each painting in the page. To
do this, we note that items in the list have the form

<LI><A HREF=`̀ ref''> title<�A>(author),

where ref is the URL of the painting page, title is the painting title, and author is
the name of the author; tag <LI> is used in HTML to denote one item in a list,
whereas <A HREF=`̀ ref''> title <�A> indicates to the browser that, by clicking on
the painting title, the page with URL ref is to be accessed. Our objective is to build
a table of rows of the form [title author], in which the two values are separated
by a tabulator, denoted by "t. For example, given the input document PaintList
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File: 571J 162306 . By:XX . Date:19:05:99 . Time:13:53 LOP8M. V8.B. Page 01:01
Codes: 1906 Signs: 1069 . Length: 52 pic 10 pts, 222 mm

FIG. 1. A list of paintings in the Capodimonte Museum.

corresponding to the HTML source of the page in Fig. 1, we would like to generate
the document partially shown in Fig. 2. In the document, square brackets, [, ], are
used as tuple delimiters; the first row contains the attribute names. The program in
Fig. 3 performs this task, returning the output in document Table.

The major part of the program consists in the loop, which searches PaintList
for list items (lines 3�18). Each item is processed as follows: (i) the whole item is
copied to the clipboard and pasted to the temporary document, Temp (lines 4, 5);
(ii) the title is extracted��by eliminating everything up to the symbol > (lines 7, 8),
and then by selecting the string up to tag <�A> (lines 9, 10)��and pasted to the
output document Table (line 11); the final tag is replaced with a tabulator (line
12); (iii) then, with a similar management of details, the author is selected in Temp
(lines 13, 14), pasted to Table (line 15), and cleaned (lines 16, 17).

FIG. 2. A document containing a relation.
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File: 571J 162307 . By:XX . Date:19:05:99 . Time:13:53 LOP8M. V8.B. Page 01:01
Codes: 2077 Signs: 1215 . Length: 52 pic 10 pts, 222 mm

FIG. 3. Editor program for restructuring authors and titles.

We denote with ListTable(PaintList) the document produced by the
program on input document PaintList. Since ListTable(PaintList) is
essentially a relation with attributes Title and Author, we can think of import-
ing it in a DBMS and querying it using SQL, for example, to know the titles of all
paintings by Michelangelo, as follows:

SELECT Title

FROM ListTable(PaintList)

WHERE Author=`Michelangelo Buonarroti'

As can be seen from this example, the process of extracting a region of interest
from a document usually starts with a search that selects some larger region and
then progressively refines it by successive searches. This may in some cases yield
rather involved programs containing long sequences of search instructions. It could
be possible to shorten these pieces of code by introducing a syntactic sugar that
allows us to ``name'' portions of a pattern inside a search using variables in a way
which is common in pattern-matching languages; for example, with respect to this
painting example, consider the following sequence of instructions:

search(PaintList, `̀ <LI*)'');

copy(PaintList);

paste(Temp);

search(Temp, `̀ <LI*>'');

copy(Temp);
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paste(x);

search(Temp, `̀ *�A>'');

copy(Temp);

paste(y);

search(Temp, `̀ (*)'');

copy(Temp);

paste(z);

As can be seen, the result of the first search is further split into three parts pasted
to documents x, y, z respectively. To considerably reduce the length of the code
one might write

search(PaintList, `̀ <LI*> : x `̀ *<�A>'' : y `̀ (*)'' : z);

With this syntax we mean that as soon as a portion of the pattern is matched
against a document region, the latter is immediately pasted into a document named
as the corresponding variable.

Although very compact, these kinds of instructions introduce some subtleties into
the definition of the syntax and semantics of the language. To simplify the treat-
ment, in the following we will only use the base syntax without variables.

1.3. Contributions of the Paper

Editor is a new formalism for manipulating semistructured data. In this paper,
we study its computational properties. Although very simple, the language has
considerable expressive power. In fact, it can express a wide class of document
restructurings. In our approach, a document is considered a string of symbols over
a fixed alphabet, and a restructuring is a mapping that associates an output docu-
ment with a set of input documents. In the paper we develop an automata-theoretic
algorithm for searching occurrences of our patterns in documents and selecting the
corresponding regions, based on the Aho�Corasick [7] algorithm for finding
occurrences of a string in a text; unlike general regular expressions, the deter-
ministic finite state automaton associated with the pattern can be generated in
linear time, so that patterns can be efficiently matched against documents. Then, we
study the expressive power and the computational complexity of Editor programs.
We concentrate on a specific class of programs, those without nested loops, and
show that they are very expressive; in fact, they are computationally complete, in
the sense that any computable restructuring can be expressed using these programs.
Note that we achieve completeness despite the fact that loops are not nested and
that no explicit conditional instruction is present.

Then, we study the complexity of these programs; we impose a natural restriction
that guarantees safe computations, and we show that the resulting class of programs
captures exactly the class of feasible restructurings, i.e. restructurings computable in
polynomial time. The ptime-expressibility result represents an interesting contribution.

460 MECCA AND ATZENI



In fact, Editor programs can be considered a string counterpart of loop programs
[26, 38], a formalism for computing over integers. However, the complexity of loop
programs jumps from linear time to exponential time, so that, unlike Editor
programs, there is no known restriction of loop programs capturing polynomial
time computations.

We have implemented an extension of Editor as a set of Java classes for manag-
ing documents.2 We effectively use the formalism in the Araneus project [8, 9, 35]
as a basis for a two-way view definition process: on one hand, we wrap HTML
pages to build relational views over a Web site, which can then be queried using
any database query language; on the other hand, we define new Web pages from
data in the database, thus building derived sites. In our experiments, the formalism
has proven to represent a natural and effective means to reason and compute about
documents. Far from being a limitation, the procedural nature of the language
makes it a flexible tool in analyzing semistructured data, capable of dealing with
partial or implicit structures, and even coping with errors in the text. In fact, we
believe that the cut 6 paste approach Editor is based upon can be extended to the
manipulation of other kinds of data. For example, we plan to extend the language
in order to manipulate multimedia data, in the spirit of [33].

The rest of the paper is organized as follows. Sections 2, 3, and 4 are devoted to
the formal development of Editor; they formalize the computational model, the
syntax, and the semantics, respectively. Section 5 studies the expressive power of the
formalism and Section 6 establishes the complexity results. Finally, in Section 7 we
show how the language can be used as a programming language for the Web.

2. EDITOR PROGRAMS AND EDITOR MACHINES

In this section we develop the syntax and semantics of Editor. As a preliminary
step, we formalize the model of computation that Editor programs are based upon,
called an editor machine.

We fix an alphabet of symbols, 7, and some special symbols, not contained in
7: f, the left (or top) delimiter; d, the right (or bottom) delimiter; and *, the
wildcard. We also fix a set of document names, used to denote documents. A docu-
ment is a finite string over 7; when manipulated in our framework, the document
string is considered preceded by the top delimiter, f, and followed by the bottom
delimiter, d. Delimiters act essentially as start- and end-of-file characters. An editor
machine works on a simple data structure: a finite set of documents, plus a special
document, called the clipboard, initially empty. The computation of the machine
consists of the execution of an Editor program, that is, a sequence of editor instruc-
tions. During the computation, each document has a state, consisting of its selected
region (or current selection), which also determines the current position in the
document, as follows.

Definition 1 [Regions and Positions]. To each document D=fa1a2 } } } an d
of length n there correspond numeric positions from 0 and n+1; the top delimiter,
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f, has position 0; the bottom delimiter, d, has position n+1. A region is a pair
of positions (i, j ) with 0�i< j�n+1; i and j are called the left and right delimiters
of the region, respectively. To each region (i, j ) we can associate a substring of
the document, namely ai+1 } } } aj&1 . Regions of the form (i, i+1) denote empty
substrings.

In the following, we blur the distinction between a region and the corresponding
document substring. In each document at any step of the computation there is a
selected region. Initially, the selected region of each document is (0, 1). It then
changes as an effect of executing instructions. The current selection also serves as
a placeholder; in fact, if the current selection is (i, j), the current position coincides
with j; that is, it corresponds to the first position following the selected region.

Example 2.1 [Selections and Positions]. Consider document fabcdefd.
Here is a list of selected regions with the associated positions.

Curr. selection Sel. region Curr. position

fa bcde fd (1, 6)=bcde 6 (f)

fabcde f d (5, 7)=f 7 (d)

fIabcdefd (0, 1)== 1 (a)
fabcd Iefd (4, 5)== 5 (e)

The following section introduces the class of instructions executable by an editor
machine.

3. SYNTAX

In order to introduce the syntax of editor instructions, we first introduce the
notion of pattern, i.e., a string of alphabet characters and wildcards, for example,
abc*d or *<�h*>.

Definition 2 [Patterns]. Given an alphabet 7, a pattern over 7 is a nonempty
string over 7 _ [*] not ending with the wildcard, *.

Let us now devote our attention to editor instructions; for each instruction, we
give the syntax and the intuitive semantics. The precise semantics will be developed
in the next section.

Definition 3 [Editor Instructions]. There are six editor instructions:

1. The search instruction has the form search(D , Pat); intuitively, it is used
to search document D for occurrences of Pat.

2. The replace instruction has the form replace(D , S1 , S2), where D is a
document and S1 , S2 are strings over 7; it is used to replace occurrences of string
S1 with S2 in document D.

3. The cut instruction has the form cut(D); it removes the selected region
from document D and overwrites it to the clipboard.
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4. The copy instruction has the form copy(D); it overwrites the selected
region of D to the clipboard.

5. The paste instruction has the form paste(D); it pastes the clipboard
content to document D.

6. The loop instruction has the form

loop search(D, Pat)

Body

end loop

where Body is any finite sequence of editor instructions; loops are used to iterate
the body as long as occurrences of pattern Pat are found in D.

Definition 4 [Editor Programs]. An Editor program is a finite sequence of
editor instructions.

Since loop bodies may contain any editor instruction, loops may be nested. In
the following sections, we devote our attention to programs without nested loops.

4. SEMANTICS

We now want to define the semantics of Editor. In order to simplify the presen-
tation, we concentrate on programs in which loops are not nested; we shall see that
these programs are computationally complete, so that introducing nested loops
does not increase the expressive power. The semantics of a program can be defined
operationally based on the effect of its instructions on the associated machine. In
order to define the latter, we first have to define the notion of matching a pattern.

4.1. Pattern Matching

Patterns are matched against document regions in a rather standard way. Given
a pattern Pat: (i) each symbol of Pat in 7 matches itself; (ii) the wild card, *,
matches any string of alphabet symbols, including the empty string.

When a document is searched, the document string is scanned from left to right
and the leftmost matching region is chosen, defined as follows: Among all regions
matching the pattern, the leftmost matching region is the shortest among those that
have the minimum initial position, i. Consider, for example document fddababaccd
and pattern `̀ a*ba*c''; the matching regions are: (2, 9)=ababac, (2, 10)=
ababacc, (4, 9)=abac, (4, 10)=abacc. Among them, consider those starting at
the earliest position, i.e., (2, 9), (2, 10); the leftmost one is (2, 9), corresponding to
ababac.

We have developed a specific pattern-matching algorithm for searching a docu-
ment. The algorithm is an evolution of the traditional automata-theoretic algorithm
for searching (constant) strings in a text, due to Aho and Corasick [7]. We have
extended the algorithm to manage our restricted form of regular expressions, as
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follows. Given a document D and a pattern Pat to be searched for in D, the algo-
rithm is as follows. First, we construct the (deterministic) finite state automaton
[31, 21] associated with the regular expression Pat; each wildcard is considered a
term of the form (s1 | s2 | } } } | sn)*, where s1 , s2 , ... are all the symbols in 7. Then, the
automaton is run on the document string starting from the current position in D;
i.e., the first examined symbol coincides with the current position. If the final state
of the automaton is reached, the matching process ends and the occurrence is selected.
If the last position of D is reached, the search fails and we say that the selection moves
to the end of D; that is, region (n, n+1) is selected. The pattern-matching algorithm
is detailed in the Appendix.

It is worth noting that our algorithm needs to inspect each document symbol
only once while simulating the automaton. Moreover, the size��i.e., the number of
states��of the finite state automaton is linear with respect to the size of the pattern.
Note that this is not true for general regular expressions: in that case, the deter-
ministic finite state automaton may have exponential size with respect to the size
of the pattern [6, 21]. The linear size of the associated deterministic automaton is
an important property of our patterns, which allows for efficient implementations.
Although our patterns are less expressive than general regular expressions, we shall
see in the following sections that this does not reduce the expressive power of the
formalism. In fact, searches are ``embedded'' in our programming language, so that,
by successive simple searches, arbitrarily complex structures can be recognized.

With these ideas in mind, we now define the semantics of nonnested programs as
follows.

4.2. Semantics of Nonnested Programs

The semantics of Editor programs can be defined in terms of the semantics of
its instructions; first, when the execution of a program starts, the current selection
in each document coincides with the region (0, 1); then, instructions refer to the
current selection and current position in a document. In fact, whenever a document
is searched, the search starts from the current position; that is, the character corre-
sponding to the current position is the first character to be examined. If the search
succeeds, then the new region is selected; otherwise, the end of the document is
reached and the selection moves to the end. In this case, region (n, n+1) is selected.
However, to allow further searches, documents are treated circularly; that is, the
top delimiter, f, is considered as immediately following the bottom one. In this
way, after the selection has moved to the end, the next search can start again from
the beginning of the document. Note that, without this circular behavior, each
document symbol could be examined only once, thus reducing the expressibility of
the formalism.

Instructions are executed as follows.

1. When a search instruction search(D, Pat) is executed, document D is
searched for a region matching pattern Pat; the search starts from the current
position. If there are occurrences of the pattern following the current position, the
leftmost match is selected; otherwise, the selection moves to the end.
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2. When a replace instruction replace(D, S1 , S2) is executed, (i) if S1 is
the empty string, then S2 is inserted in D right before the current position, and
this occurrence of S2 is selected; (ii) otherwise, document D is searched for an
occurrence of string S1 ; the search starts from the current position. If there are
occurrences of the string following the current position, then the leftmost one is
replaced with S2 , and this occurrence of S2 is selected; otherwise, the selection
moves to the end.

3. When a cut instruction cut(D) is executed, the selected region of D is
removed from document D and overwritten to the clipboard. If the selection is a
nonempty region (i, j ), the new selection is (i, i+1). As a special case, if the selec-
tion is empty, the document is not changed and the instruction has the only effect
of emptying the clipboard.

4. When a copy instruction copy(D) is executed, the selected region of D is
overwritten to the clipboard; the document is not changed. As a special case, if the
selection is empty, the clipboard becomes empty.

5. When a paste instruction paste(D) is executed (assume i is the current
position), if the clipboard is nonempty, its content is pasted to document D right
before position i; the pasted region becomes the current selection. If the clipboard
is empty, the document is not changed and the new selection is the empty region
(i&1, i).

6. When a loop instruction loop search(D, Pat) Body end loop is
executed,

v the current selection in D is moved to the top, that is, to region (0, 1); in
this way, when the loop starts, document D is searched starting from the beginning;

v the search instruction search(D, Pat) is evaluated; the search starts
from the current position and may either fail or succeed ; it succeeds if an occurrence
of pattern Pat is found before reaching the bottom delimiter; it fails if (i) the
current position in D is the bottom delimiter or (ii) no occurrence of pattern Pat
is found before reaching the bottom delimiter;

v if the search succeeds, then the leftmost match is selected, the loop body
is executed, and the search is evaluated again, starting from the current position;

v if the search fails, then the loop terminates.

Note that (i) the loop document, D , is examined from the beginning; in fact, when
the loop starts, the current position in D is moved to the first document symbol;
(ii) at every loop iteration, the search instruction is evaluated again; the loop
terminates if and when the search reaches the end of D.

5. EXPRESSIVE POWER

We now study the expressive power of nonnested programs, in terms of document
restructurings.
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Definition 5 [Document Restructuring]. Given an alphabet 7 and the set 7*
of documents over 7, a document restructuring r of arity k is a partial mapping from
the k-fold cartesian product of 7* to 7*:

r: (7*)k � 7*.

A restructuring r is computable if it is partial recursive.

Editor programs turn out to be very expressive even without nested loops. In
fact, we have the following result:

Theorem 1 (Expressive Power). Nonnested Editor programs express the class
of computable document restructurings.

Proof. Based on the operational semantics developed in Section 4, it is easy to
see that each restructuring expressible in Editor is a computable one. We shall now
prove the converse, that is, that for each computable restructuring, there is an
Editor Program without nested loops computing it.

In fact, each computable restructuring, r, is computed by a Turing machine, M,
such that, on input D: (i) if r(D) is defined, M terminates with output r(D); (ii) if
r(D) is not defined, then M hangs. Without loss of generality, we can assume that
M has only one tape.3 We shall simulate the computations of M using a program
Pr without nested loops. We encode a configuration of the Turing machine as a
document as follows. In addition to symbols in the machine alphabet, 7M , we use
some extra symbols. Suppose the machine has k states, q1 , q2 , ..., qk ; then we
encode each state using a string of two symbols containing a special symbol, q, plus
the state number, as follows: q1, q2,... qk. Without loss of generality, we
assume that symbol q does not belong to the machine alphabet. Square brackets,
[, ], are used to denote the tape left and right delimiters; * is used to denote the
blank. Suppose that the content of the machine tape is b1 b2 } } } bm , that the tape
head is currently scanning symbol bi , and that the machine is in state qj . We repre-
sent this configuration by the sequence [b1b2 } } } bi&1qjbibi+1 } } } bm*]; a single
blank symbol, *, follows the last character on the tape.

To compute a restructuring, our program performs three tasks: it constructs
the initial configuration of the Turing machine, it simulates the Turing-machine
computation, and it extracts the output from the final configuration. These tasks
are carried out as follows.

Suppose Tape is the input document of size n. The first step of the simulation
is the generation of the encoding of the initial configuration as follows:

replace(Tape, =, `̀ [q0'');

search(Tape, `̀ 8'');

replace(Tape, =, `̀ *]'');
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Note how a special symbol, 8, not used elsewhere, is used in the search instruction
to force the selection to the end of Tape. After generating the initial encoding, we
are ready to simulate the Turing machine. We use replace instructions to simulate
machine moves, as follows:

Transition Instructions

(qi , a) � (qj , b, stay) replace(Tape, `̀ qia'', `̀ qj! b'');
(qi , a) � (qj , b, right) replace(Tape, `̀ qia'', `̀ bqj!'');
(qi , a) � (qj , b, left) replace(Tape, `̀ a1qia'', `̀ qj! a1b'');

replace(Tape, `̀ a2qia'', `̀ qj! a2b'');
} } }
replace(Tape, `̀ an qia'', `̀ qj! anb'');

where a1 , a2 } } } an are the symbols in 7M

(qi , *) � (qj , b, right) replace(Tape, `̀ qi*'', `̀ bqj! *'');
(qi , a) � (qh , b, stay) replace(Tape, `̀ qia'', `̀ b'');

We use a special symbol, ``!'', not in 7M , to signal the fact that a replacement has
been made; that is, a move has been simulated. Transitions in which the head does
not move or moves to the right are straightforward; whenever the head moves to
the left, we have to use a different replace instruction for each alphabet symbol ai ;
this is because only constant strings can be replaced. Blanks require special atten-
tion; in fact, in order to simulate a right infinite tape, whenever the rightmost blank
symbol is overwritten, a new blank is added to allow for further moves to the right.
Finally, note that when the final state, qh , has been reached, the string qh is not
written to the tape.

The overall simulation is performed by a loop:

loop search(Tape, `̀ q'')

replace(Tape, `̀ 8'', `̀ 8'');

replace(Tape, `̀ qia'', `̀ qj!b'');

replace(Tape, ..., ...);

}}}

replace(Tape, ..., ...);

replace(Tape, `̀ 8'', `̀ 8'');

replace(Tape, `̀ !'', =);

replace(Tape, `̀ 8'', `̀ 8'');

replace(Tape, `̀ ['', `̀ ['');

end loop;
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The loop iteratively searches for the symbol q on the tape and so terminates as
soon as the halting state, qh , is reached, since at that point, the symbol q no longer
appears on the tape, and so the search fails.

Each execution of the body of the loop performs exactly one move. The special
symbol ``!'' is used to guarantee that at most one move is performed: it is inserted
at each replacement, after the encoding of the state, and so prevents the execution
of subsequent replace instructions; the ``!'' is then removed at the end of the body
of the loop. At the same time, we can say that each execution of the body performs
at least one move, since there is one replace instruction for each pair (nonfinal
state, alphabet symbol), and the body is executed whenever the state is not the final
one. Each replace examines the tape starting from the first symbol, because of the
first instruction of the loop body, replace(Tape, `̀ 8'', `̀ 8''), which has the
only effect of moving the selection to the end, so that the next instruction can
examine the tape from the beginning.

Therefore, we can claim that the execution of the loop completely simulates the
computation of the Turing machine.

Finally, we decode the output in document Output, as follows:

search(Tape, `̀ [*]'');

copy(Tape);

paste(Output);

replace(Output, `̀ ['', =);

replace(Output, `̀ *]'', =);

It is not hard to see that program Pr consisting of the instructions above correctly
simulates the computation of machine M. Formally, we have the following result:
for any input D, program Pr terminates on D if and only if M halts on input D;
if Pr terminates on input D, then Output=r(D). K

There are two important points to note about this result. First, Editor has in
fact an iteration mechanism (the loop instruction), but no explicit if�then�else
instruction. Thus, in the proof, we need to simulate conditional instructions using
the rather implicit if�then�else computation associated with searches; nevertheless,
completeness can be achieved. Second, nested loops do not increase the expressive
power, so that the hierarchy of expressiveness due to nested loops collapses to the
first level.

Since accepting a language L essentially means computing a partial mapping L
from 7* to [ yes, no], such that, for each document D , L(D )= yes if and only if
D # L, the following result is a consequence of Theorem 1.

Corollary 1. Nonnested Editor programs accept the class of recursively
enumerable languages.

Theorem 1 and Corollary 1 show that nonnested programs have considerable
expressive power, being able to simulate the computation of any Turing machine.
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Thus, arbitrarily complex structures can be recognized using simple patterns. We
now want to investigate the converse, that is, how an Editor program can be
executed on a Turing machine, and study the complexity of this simulation. This
is interesting since we are comparing what can be considered a random access
computer over strings, the editor machine, with a Turing machine, whose only
mode of accessing data is inherently sequential.

In order to discuss the computational complexity of the simulation, we introduce
a natural cost model for editor machines, in which time costs are calculated on the
basis of the number of editor instructions being executed. Despite the fact that
searches or cut and paste instructions may access several document characters, we
count each search, replace, cut, copy, and paste instruction as a single time unit.
A loop costs as many units as the number of instructions in the body times the
number of loop iterations. Time costs are defined in terms of input sizes, defined as
the sum of the lengths of the input documents.

Definition 6 [Time Cost of Editor Programs]. An Editor program, P, runs
with time cost t on inputs D1 , D2 , ..., Dn , if t is the total cost of its instructions; the
latter is defined as follows: (i) the cost of each search, replace, cut, copy, and paste
instruction is one; (ii) the cost of a loop instruction is the total cost of the loop
body (plus one) times the number of loop executions. An Editor program has time
cost f (n) if, on each input of size n, it runs with time cost at most f (n).

Similarly, we define the space cost of a program as the space used to store
documents during the simulation.

Definition 7 [Space Cost of Editor Programs]. An Editor program, P, runs
with space cost r on inputs D1 , D2 , ..., Dn , if r is the sum, for all used documents,
of the maximum document lengths during the computation. An Editor program
has space cost f (n) if, on each input of size n, the program runs with space cost at
most f (n).

We can now prove the following fundamental result:

Theorem 2 (Complexity). For each nonnested Editor program of time cost
O( f (n)) and space cost O(g(n)), there is a deterministic multitape Turing machine
that executes the program in time O(g(n) f (n)).

Proof. In order to prove the claim, we shall describe the Turing machine and
prove that it can execute search, replace, cut, copy, and paste instructions in linear
time with respect to the size of the involved documents.

Suppose for the sake of simplicity that the Editor program manipulates k
documents, D1 , D2 , ..., Dk . In this case, the Turing machine has 3k+2 tapes.4

Three tapes are used for each document Di . The first tape, named Ti , contains the
actual document string, plus the top and bottom delimiters. The second and third
tapes are used to mark selections in the document; we use unary strings to encode
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positions in the document and to mark regions: The second tape, named Ti, left ,
indicates the left delimiting position, and the third tape, Ti, right , the right delimiting
position. Two more tapes are needed: one for the clipboard, named TC , and one
to be used as a service tape, TS .

Suppose the program P has m instructions. The Turing machine states are
partitioned into m groups, each implementing a single instruction, as follows:

v To execute a cut instruction of the form cut(Di ), (i) Ti, left , the left
delimiter for the current selection in Di , is used to locate the current selection; (ii)
the selection is then overwritten to the clipboard tape, TC ; (iii) when the end of the
selection is reached, the remaining part of Ti is overwritten to the service tape, TS ;
(iv) then, the service tape content is overwritten to tape Ti following the left
delimiter of the old selection; tapes Ti, left , Ti, right are correspondingly updated to
reflect the new selection. The execution clearly takes linear time with respect to the
size of tape Ti .

v To execute a copy instruction of the form copy(Di ), (i) the left delimiter
for the current selection in Di , Ti, left , is used to locate the current selection; (ii) the
selection is then overwritten to the clipboard tape, TC ; tapes Ti, left , T i, right are
correspondingly updated to reflect the new selection. The execution takes linear
time with respect to the size of tape Ti .

v To execute a paste instruction of the form paste(Di), (i) Ti, right , the right
delimiter for the current selection in Di , is used to locate the current position; (ii)
the part of Ti following the current position is overwritten to the service tape, TS ;
(iii) tape Ti, right is used to move the head of tape Ti to the current position; (iv)
the content of tape TC is overwritten to tape Ti ; (v) the content of the service tape
TS is appended to Ti ; tapes Ti, left , Ti, right are correspondingly updated to reflect the
new selection. The execution takes linear time with respect to the size of tape Ti .

v Replace instructions of the form replace(Di , S1 , S2) are executed as
follows: If S1 is not empty, there is first a set of states implementing the (deter-
ministic) finite state automaton associated with S1 ; it is used to identify the first
occurrence, if any, of the string starting from the current position in tape Ti . If no
occurrence is found, the selection is moved to the end, changing the content of
tapes Ti, left , Ti, right ; otherwise, as soon as an accepting state is reached, the search
stops and the region is marked using tapes Ti, left , Ti, right . The remaining part of
tape Ti is then copied to the service tape. Starting from the left delimiter, S2 is then
overwritten to tape Ti , its end is marked to become the new selection, and the
service tape content is overwritten to tape Ti immediately following it. The execu-
tion clearly takes linear time with respect to the size of Ti . If S1 is the empty string,
the left delimiter in Ti, left is moved up to the symbol immediately preceding the
position in Ti, right and S2 is inserted using a similar technique.

v Search instructions of the form search(Di , Pat) are executed by simulat-
ing the deterministic finite state automaton associated with pattern Pat (see the
Appendix) and then proceeding in a way similar to that for replace instructions.
This can be done in linear time with respect to the size of Ti .
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Now, suppose that each loop instruction is implemented in the straightforward
way, that is, by first searching the document and then executing the body if the
search succeeds, until the search fails. It is apparent that the Turing machine has
to simulate O( f (n)) instructions; each instruction takes time at most O(g(n)), and
thus the whole simulation is carried on in time at most O( f (n) g(n)). K

This theorem will be used in the following section to discuss the complexity of
a family of programs based on their space and time cost.

6. TERMINATION AND COMPLEXITY

Due to the presence of loops, Editor programs may not terminate. This is shown
in the following example.

Example 6.1 [Nontermination]. Suppose we are given an empty document, D,
and consider the following program:

replace(D, =, `̀ abc'');

loop search(D, `̀ b'')

search(D, `̀ x'');

search(D, `̀ a'');

end loop;

The program does not terminate, since the loop execution goes on indefinitely. This
is due to the interaction between loops and circularity. In fact, document D is
initially empty. After the execution of the replace instruction, it contains the string
abc. When the loop is started and search(D, `̀ b'') is evaluated, the second
symbol in the document is selected. Then, the loop body is executed; instruction
search(D, `̀ x'') fails, since D only contains the string abc. Thus, the selection
moves to the end. Then, search(D, `̀ a'') is executed. Since the document is
treated circularly, the search starts from the first symbol, and the a is selected. So,
when the loop search, search(D, `̀ b''), is evaluated again, the search succeeds,
the b is selected, and the loop body is executed. In this way, the selection is
``trapped'' between a and b and the execution goes on indefinitely. With a similar
technique it is possible to write programs that, using paste or replace instructions,
generate documents of unbounded length.

In order to avoid these undesirable behaviors, we shall impose a natural condi-
tion on our programs. The condition consists in requiring that, inside the body of
a loop, the status (i.e., the content and the current selection) of the loop document,
D, cannot be modified. This corresponds to requiring that the only instructions
involving D in the loop body be copy instructions; in fact, any other instruction
would either modify the document or affect the current selection. Thus, we define
the class of safe programs as follows:
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Definition 8 [Safe Editor Programs]. An Editor program P is safe if, for
each loop instruction

loop search(D, Pat)

Body

end loop

in P, the loop body does not contain any search, replace, cut, paste, or loop
instruction involving document D.

We have the following result:

Theorem 3 (Termination of Safe Programs). Every safe program terminates.

Proof. The proof is based on the observation that each instruction in a safe
program can be executed in finite time. This is immediate for all instructions but
loops. As far as loops are concerned, note that, in a safe program, neither the loop
document nor the current selection can be modified by the loop body. At each loop
iteration, the document is searched for a new occurrence of the specified pattern
following the current position. Moreover, in a safe loop, each symbol of the loop
document is examined exactly once and no circularity is possible. In fact, when the
search reaches the document end, the loop terminates. Since the loop document
has finite size, and thus contains a finite number of pattern occurrences, the loop
terminates after a finite number of executions. K

We now want to study the computational complexity and the expressive power
of safe programs without nested loops. We define the complexity of a restructuring
r as the complexity of computing r(D) on a multitape Turing machine, measured
with respect to the length of document D. A language L is said to express a class
of restructurings c if (i) each restructuring expressible in L has complexity in c and,
conversely, (ii) each restructuring with complexity in c can be expressed in L.

Our objective is to characterize the class of feasible restructurings, i.e., the class
of restructurings computable in polynomial time. Unfortunately, even without
nested loops, safe programs may generate documents of exponential size; that is,
they may have an exponential space cost. Based on Theorem 2, we know that their
deterministic time complexity is therefore (at least) exponential. This is shown in
the following example.

Example 6.2 [Exponential Size]. Suppose we are given a document D contain-
ing n occurrences of the symbol *, plus two delimiters, [, ], that is, D=
[**** } } } *], and consider the following program:

search(D, `̀ [*]'');

copy(D);

paste(D1);

loop search(D, `̀ *'')
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search(D1, `̀ [*]'');

copy(D1);

paste(D1);

replace(D1, `̀ ]['', =);

search(D1, `̀ x'');

end loop;

The program is safe and does not contain nested loops; it generates a document D1
of exponential size with respect to n. In fact, the first three instructions simply
duplicate in D1 the content of D, so that, when the loop starts, D1 has size n+2.
Then, each execution of the loop body doubles the length of D1 by copying the
content of D1 to the clipboard and then pasting it to itself. The replace instruction
removes extra delimiters; the final search has the only effect of moving the selection
to the end. Since the loop body is executed exactly n times, one for each * in D,
the final size of D1 is 2n+2.

In order to further restrict our programs and capture polynomial time computa-
tions, we introduce another condition that avoids these exponential behaviors. In
fact, the reason the size of D1 in Example 6.2 grows exponentially is that at each
loop iteration the clipboard is used to double the size of the document generated
at the previous iteration. In essence, the clipboard acts as a feedback device through
which the content of document D1 can be pasted to itself. To disallow this feedback,
we introduce the class of simple programs, as the class of programs in which loops
do not contain search instructions. In this way, the clipboard size cannot grow
during the loop execution.

Definition 9 [Simple Programs]. A program is simple if loops do not contain
search instructions.

Safe simple programs have polynomial time complexity. In fact, we have the
following fundamental result:

Theorem 4 (ptime Expressibility). The class of safe simple Editor programs
expresses exactly ptime, that is, the class of document restructurings computable in
polynomial time.

Proof. We shall first prove the complexity upper bound and then the
expressibility lower bound.

v Complexity. We first show that simple safe programs can be executed in
polynomial time. In order to do this, first we study the time and space cost of these
programs, and then, based on Theorem 2, we show that they can be executed in
polynomial time using a Turing machine.

In the following, we use D0 to refer to the input document and D1 , D2 , ... to refer
to other documents; C denotes the clipboard. Given a document D, we refer to its
size as size(D). In order to study the time and space cost of programs, we partition
them in blocks of instructions; a block is either (i) a sequence of instructions not
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containing loops or (ii) a single loop. We are interested in the input�output
behavior of these blocks, so that we shall indicate by size(D, j ) the size of docu-
ment D after the execution of block j and by T( j ) the time cost of the computation
of block j.

�� Blocks without loops. Consider first a block containing a single nonloop
instruction. Suppose that, initially

size(Di )=O(n) (i=0, 1, 2, ...), size(C)=O(n).

After the block is executed, the size of the clipboard and of each input document
is linear with respect to the input size. Now, a simple case by case analysis shows
that, for a block j containing k instructions but no loops, we have

size(Di , j)=O(n) (i=0, 1, 2, ...), size(C, j )=O(n), T( j)=k.

Thus, every finite sequence of editor instructions without loops has time and
space cost that are linear with respect to the size of the original inputs.

�� Loop blocks. Let us now consider a block j containing a single loop.
Suppose we have initially that

size(Di)=O(n) (i=0, 1, 2, ...), size(C)=O(n).

Let us consider the execution of a loop of the form loop search(Dx , Pat) Body
end loop. We know that, since the program is safe, simple, and nonnested, the
loop body is a block containing p instructions with no loops or searches; thus, any
execution of the body requires time cost p+1. Since the loop is iterated at most
O(n) times, the total time cost is O(n). Let us now discuss how the space cost
changes as an effect of executing the body. We know that the body cannot contain
search instructions; thus, the clipboard size cannot increase during the loop execu-
tion. Copy and cut instructions do not make the size of documents grow, and
replace instructions can make it grow at most of a constant size; thus, we need to
consider only paste instructions. Each of these appends the clipboard content to
some document, Dh . We know that, initially, size(Dh)=O(n). After each execution
of a paste instruction, the size grows by an additive term of O(n), so that, after the
first body execution we have size(Dh)=O(n)+cn; after the second execution, we
have size(Dh)=O(n)+2cn; after the i th execution, we have size(Dh)=O(n)+icn.
Since the loop can be executed at most O(n) times, when the loop execution
terminates we have that size(Dh)=O(n)+O(n)n=O(n2); thus,

size(Di , j )=O(n2) (i=0, 1, 2, ...), size(C, j )=O(n) T( j)=O(n).

Based on these considerations it is easy to study the behavior of a program.
Suppose the program has l loops; then, the program has at most 2l+1 blocks.
l blocks loop1 , loop2 , ..., loopl correspond to loops, and l+1 blocks to instructions
not containing loops. Based on the formulas developed above, we have that the
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overall time cost is linear with respect to the size of the input document and the
overall space cost is polynomial. In fact, for each document Dj , j=0, 1, 2, ..., we
have the following:

size(Dj , loop1)=O(n2), T(loop1)=O(n)

size(Dj , loop2)=O(n4), T(loop2)=O(n2)

size(Dj , loop3)=O(n8), T(loop3)=O(n4)

} } } } } }

size(Dj , loopl) =O(n2 l
), T(loopl)=O(n2 l&1

).

Thus, since l is a constant, the whole program has polynomial time and space cost.
By Theorem 2, it has polynomial deterministic time complexity.

v Expressibility. We must now show that every restructuring in ptime can
be computed by a safe program without nested loops. Any such restructuring is
computed by a Turing machine, M, that runs in polynomial time. Without loss of
generality, we can assume that M has only one tape and runs in time nk for some
k, where n is the length of its input. We shall simulate the computations of M using
an Editor program.

We encode a configuration of the Turing machine in the usual way (see proof of
Theorem 1). To compute a restructuring, our program performs three tasks: It
constructs the initial configuration of the Turing machine, it simulates nk Turing-
machine steps using a counter, and it extracts the output from the final configura-
tion. These tasks are carried out as follows.

Suppose Input is the input document, of size n. The first step of the simulation
is the generation of document Counter, of size nk, to be used as a counter during
the simulation; this document contains a single symbol, *, repeated nk times. We
do this in several steps. First, based on the input, we generate a document Counter1 ,
containing n *'s. To do this, we need to replace each alphabet symbol with a *.
We use one loop for each alphabet symbol, a, b, ..., as follows:

replace(Input, =, `̀ ['');

search(Input, `̀ 8'');

replace(Input, =, `̀ ]'');

search(Input, `̀ [*]'');

copy(Input);

paste(Counter1);

loop search(Input, `̀ a'')

replace(Counter 1, `̀ a'', `̀ *'');

end loop;
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loop search(Input, `̀ b'')

replace(Counter 1, `̀ b'', `̀ *'');

end loop;

...

Then, after generating Counter1 , we use p=Wlog2(k)X loops to generate a counter
of length nk, as follows:

search(Counter1 , `̀ [*]'');

copy(Counter1);

loop search(Counter1 , `̀ *'')

paste(Counter2);

replace(Counter 2, `̀ ]['', =);

end loop;

...

search(Counterp&1, `̀ [*]'');

copy(Counterp&1);

loop search(Counter p&1, `̀ *'')

paste(Counter);

replace(Counter, `̀ ]['', =);

end loop;

Once we have generated the counter document, we generate the initial encoding of
the Turing machine in the usual way (see Theorem 1). Then, we are ready to
simulate the Turing machine. However, in this case we only simulate nk machine
steps, using document Counter as a counter:

loop search(Counter, `̀ *'')

replace(Tape, `̀ 8'', `̀ 8'');

replace(Tape, `̀ qia'', `̀ qj! b'');

replace(Tape, ..., ...);

...

replace(Tape, ..., ...);

replace(Tape, `̀ 8'', `̀ 8'');

replace(Tape, `̀ !'', =);

end loop;
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Finally, we decode the output document in the usual way (see proof of Theorem 1).
It is easy to see that the resulting program is safe and correctly computes the
machine output. K

The result is interesting since it provides a characterization of the complexity of
Editor programs based on ptime. See [10, 19, 25, 34] for other ptime expressibility
results. Note that, although Editor programs can be considered a string counter-
part of loop programs [26, 38], their complexity is considerably different. Loop
programs are a formalism for computing on integers; they work on integer variables
and are based on simple forms of assignment, such as X=0, or X=X+1, plus a
loop instruction of the form loop X Body end, used to iterate the body as many
times as the value of variable X. Editor programs are somehow similar to loop
programs. However, there are some fundamental differences between the two
formalisms: first, loop programs of arbitrary nesting do not express all computable
functions, whereas Editor programs do, even without nested loops; second, loop
programs without nested loops have very low complexity, essentially linear time,
nested loops make the complexity jump to exponential time, and there is no known
class of loop programs capturing polynomial time computations.

7. CONCLUSION

In the previous sections we have developed Editor essentially as a language for
text search and restructuring, and studied its computational properties. We claim
that such a language can be profitably used as a tool for wrapping documents such
as HTML pages and building database representations of their content. Indeed, the
language has been implemented as a set of Java classes and has been used as a basis
for the Araneus wrapper toolkit called Minerva, as described in [20].

We believe text restructuring to be a primary component of Web computing. In
this respect, Editor itself can be seen as a programming language for the Web,
provided that it is enriched with a simple mechanism for downloading HTML
pages from the Internet. This can be easily done by augmenting the language with
a download primitive of the form

download(HREF, TargetDocument)

which has two parameters, the first being a URL, HREF, and downloads from the
network the (textual) document at address HREF, storing its content in the second
parameter, TargetDocument (whose previous content is overwritten). If HREF is
not a well-formed URL according to the HTTP protocol or the corresponding
document is not a textual one, TargetDocument will be empty.

This new language, which we might call the Web-Editor, allows expression of
complex computations on the Web. As an example, consider the piece of code in
Fig. 4, which computes a form of transitive closure of a portion of the Web: it starts
from a given address, http:��www.unibas.it , and downloads all documents
that are reachable from it, storing their titles in a result document called Closure.
For the sake of simplicity, in writing the program we make a number of
hypotheses: First, we assume that the portion of the Web under consideration does
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FIG. 4. Web-Editor program for computing transitive closure.

not contain cycles; otherwise the program would loop forever. Second, we assume
that all URLs encountered during the navigation start with http:�� and end with
.html. This is not true in general. However, it is rather straightforward to write
a longer program capable of handling cycles and URLs of any form.5 In the
program we also use an instruction of the form reset(D), which simply resets the
current selection and position to the beginning of a document D.

Although this is only a simple example, it shows the potential of coupling URL
access with text manipulation. We consider this a promising starting point toward
the definition of a theory of computability and complexity on the Web [5, 37].

APPENDIX: THE PATTERN-MATCHING ALGORITHM

In this section we discuss the algorithm used to match patterns against document
regions. The algorithm is an extension of the Aho�Corasick algorithm [7] for
searching occurrences of a constant string in a text and is based on the simulation
of the deterministic finite state automaton associated with the pattern. We have
extended the traditional algorithm, which only deals with constant strings, in order
to manage our patterns. Note that we have chosen not to use the ordinary algo-
rithm for regular expression matching [21], since in some cases the deterministic
finite state automaton has an exponential number of states with respect to the
length of the pattern. For our restricted patterns, however, our algorithm generates
automata of linear size and runs in linear time with respect to the size of the
pattern.

The algorithm has two steps: First, given a pattern, the corresponding deter-
ministic finite state automaton is derived; then, the automaton is simulated on the
document to search for occurrences of the pattern. The automaton is represented as
a quadruple, (7, $, s, f ), where 7 is the alphabet, $ is the transition function, and
s and f are the initial and final states, respectively. The construction of the
automaton is performed using the algorithm buildDFA in Fig. 5. States are
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FIG. 5. Algorithm buildDFA.

represented using numbers; if the automaton has k states, the starting state is 0, and
the unique final state is k&1. The main point of the construction consists in assign-
ing the transition function, $. This can be seen as a matrix having states on the
rows and alphabet symbols on the columns. The matrix is constructed by initializ-
ing the first row to 0 (lines 9�10) and then progressively unfolding the transitions
associated with each pattern symbol pi . The variable state denotes the current
working state, to become the automaton final state at the end of the construction.
Lines 15�19 are from the Aho�Corasick algorithm [7] and unfold transitions
corresponding to constant characters in the pattern. Lines 23�29, in contrast, take
care of wild cards. In this case, the state is simply treated as a ``trap'' state. In addi-
tion to elements in the quadruple above, the function returns an integer value,
firstWcState. If the pattern contains wild cards, this is the state that corre-
sponds to matching the first wild card; it is &1 otherwise. This value will be used
when simulating the automaton in order to select the matched region.

Once the automaton has been derived, it is simulated on the document starting
from the current position, according to the algorithm simulaDFA in Fig. 6. The
code needed to run the automaton on the document is rather straightforward. We
use integers to denote positions in the document. Two variables are used to mark
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FIG. 6. Algorithm simulaDFA.

the selection in case the matching succeeds: start is used to denote the left
delimiter for the current selection, and position to denote the current position.
Special care must be taken in recording where matches start, in order to correctly
select the matching region after the simulation has been performed. To do this, we
use two variables: firstWcState, derived above, and firstPrefixLength .
The latter is the number of constant symbols preceding the first wild card in the
pattern. If the pattern does not contain wild cards, firstPrefixLength equals
the length of the pattern itself. The strategy used to record where a matching starts
consists in checking when state firstWcState is entered for the first time. At this
point, the first constant prefix has been matched and therefore we set start to
position minus firstPrefixLength +1.
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