
Review

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Single nucleotide polymorphisms and risk
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Summary the near future define a ‘‘genomic risk prediction’’ specific to liver
Liver carcinogenesis is a complex and multi-factorial process, in
which both environmental and genetic features interfere and con-
tribute to malignant transformation. Patients with cirrhosis are
particularly exposed and justify periodical screenings in order to
detect the early development of hepatocellular carcinoma (HCC).
The risk of HCC is, however, not identical from one patient to
another. The identification of host factors that may also play an
important role in HCC development may improve our understand-
ing of the implications of the various biological pathways involved
in liver carcinogenesis; such progress may as well help refine the
selection of patients who could benefit from specific preventative
measures or could be given adapted screening policies. Numerous
candidate-gene studies have reported associations between single
nucleotide polymorphisms (SNPs) and the presence of HCC. Some
of these publications unfortunately suffer from major methodolog-
ical drawbacks because of their case–control, retrospective and
monocentric aspect. Prospective cohort studies conducted in large
homogeneous populations and comprising a sufficient number of
events during follow-up may overcome these pitfalls, but require
a long time to be conducted and are still scarce. More recently,
the first Genome Wide Association studies (GWAs) have enabled
the identification of unsuspected loci that may be involved in var-
ious steps implicated in liver tumourigenesis. Taken together,
these studies highlight variants that modulate oxidative stress,
iron metabolism, inflammatory and immune responses, DNA
repair mechanisms or systems involved in cell-cycle regulation
as genetic traits susceptible to modify the natural history of cir-
rhotic patients and partly explain the observed differences in the
risk of HCC occurrence. However, large genetic epidemiology stud-
ies in the field of cancer diseases have suggested the limited ability
of polymorphic traits, alone, to refine individual prognosis. The
integration of various panels of genes into clinical scores may in
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Introduction

Cirrhosis is a precancerous condition that predisposes to the devel-
opment of hepatocellular carcinoma (HCC) [1]. European cohort
studies have reported that HCC-related mortality accounts for 54–
70% of deaths in patients with compensated cirrhosis [2], with an
annual incidence ranging from 2% to 6% [3]. This trend is increasing
in both Europe and North America, and is due to a decline in mor-
tality due to other liver-related causes in such patients [3–6]. This
latter finding reflects the improvement in the management of
liver-related complications and suggests that the decrease of com-
peting risks occurring during the outcome of cirrhosis may explain,
at least in part, the increased incidence of HCC in these patients.

The risk of HCC development is, however, not identical from one
patient to another. Several risk factors for the occurrence of HCC
have been identified and extensively studied in large prospective
cohorts of patients with cirrhosis. The identified features so far
encompass the cause of cirrhosis, older age over 55–60 years and
male gender [7,8], the severity of the underlying cirrhosis [7,9,10],
increased basal levels of serum alpha-fetoprotein [9] and the degree
of inflammatory activity within the liver [11,12]. The additional
impact of overweight and diabetes mellitus has also been strongly
implicated [13,14]. Finally, achieving viral eradication, when possi-
ble, may dramatically reduce the risk of HCC [15,16]. These vari-
ables have been incorporated into complex mathematical models
to yield clinical scores that enable a fair stratification of patients
with cirrhosis according to their risk of developing HCC [17,18].
The additional contribution of yet undefined biological factors
obtained through analyses of serum or tissue samples from cir-
rhotic patients, represents a new exciting challenge in this field.

Methodological issues for translational genetic research in the field of
hepatocarcinogenesis

The identification of genetic factors influencing the risk of devel-
oping HCC in patients with cirrhosis is crucial. This will improve
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our understanding of the implications of the various biological
pathways involved in liver carcinogenesis and may, in the near
future, help identify subgroups of patients at high risk, which
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could benefit from specific preventative measures or could be
given adapted screening policies. The search for easily assessable
genetic markers in these patients has been greatly facilitated by
advances in molecular biology, in parallel with the constitution
of large cohorts of patients encompassing exhaustive databases
and referenced biobanks in clinical research units.

These advances have resulted in the publication of numerous
studies. However, many have been inconclusive and sometimes
contradictory. Several facts may explain these disappointing
results. Firstly, the majority of these studies have been conducted
on small case–control cohorts and have compared genotypic dis-
tributions between HCC patients and individuals with or without
cirrhosis. This approach may be considered as an approximation
in the assessment of a given genetic risk factor and is subjected to
major selection bias, particularly in a population exposed to fatal
liver or extra-hepatic complications not related to HCC, introduc-
ing major competitive risks. Thus, the selection of appropriate
control patients represents a major drawback in these types of
studies; if cases include non-cirrhotic patients, it is impossible
to conclude that a given single nucleotide polymorphism (SNP)
is actually implicated in the development of cirrhosis or that it
exerts a direct role in hepatocarcinogenesis. Conversely, if cir-
rhotic patients are included in the control group, selection bias
may artificially impair genotype comparisons between cases
and controls. Indeed, the genotypic distribution of ‘survivors’,
when including compensated outpatients or, conversely, patients
with a worse prognosis who are selected in the context of liver
transplantation or end-stage liver disease, may be affected. Sec-
ondly, accumulating data suggest that the mechanisms of liver
carcinogenesis strongly depend upon the origin of the underlying
liver disease. Thus, the study of risk factors for the occurrence of
HCC in heterogeneous cohorts of patients may also introduce
confounding factors: the development of cirrhosis and subse-
quent tumour development may indeed be considered as com-
mon steps in diseases with different pathophysiologies. It
therefore becomes obvious that the study of such genetic factors
should now be assessed according to a rigorous clinical method-
ology in order to meet quality criteria regarding the constitution
of large cohorts of well-defined patients. In addition, these stud-
ies should be conducted in prospectively followed-up patients
with cirrhosis who are regularly screened for HCC according to
international guidelines in order to take into account all con-
founding factors that could influence hepatocarcinogenesis.

Genetic predisposition and HCC

Several lines of evidence indicate that development of HCC is a
multistep process affected by both inherited and acquired factors
leading to the transformation of normal hepatocytes into malig-
Fig. 1. Examples of case–control studies. (A) Meta-analyses. The publication of
numerous candidate gene case–control studies now allows large meta-analyses
to be conducted that encompass several thousand patients. The main limitation of
such analyses is the heterogeneity of the included studies in terms of their
patients’ ethnicities, control-group variabilities and/or aetiologies of the under-
lying liver diseases, Wang et al. [43]. (B) Genome-Wide Association studies. In
contrast to gene-candidate approaches, in which the SNPs are a priori chosen on
the basis of the known functional consequences of a pathway involved in liver
carcinogenesis, GWAs identify unsuspected variants, sometimes of unknown
function, associated with the presence of HCC in large case–control studies.
Adapted by permission from Macmillan Publishers Ltd.: Nature Genetics, Kumar
et al. [33], copyright 2011.
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nant clones. SNPs correspond to a modification of a DNA
sequence due to the change of a single nucleotide; they account
for >90% of allelic disparities scattered throughout the human
genome. Although the vast majority of these modifications are
situated in non-coding regions, some can modify gene-product
expression and function, which may affect biological pathways.
If the genes are involved in liver carcinogenesis, these modifica-
tions may partly explain the genetic heritability thought to influ-
ence individual susceptibility to HCC.

In addition to the above mentioned epidemiological and envi-
ronmental risk factors, many studies have reported numerous
associations between various SNPs and the presence of HCC. Most
of them test the hypothesis that a known variant, with an identi-
fied functional involvement in a biological pathway implicated in
hepatocarcinogenesis, may be over-represented in HCC patients
included in case–control studies (Fig. 1A), or may be associated
with a higher risk of liver cancer occurrence in cohorts of pro-
spectively followed-up cirrhotic patients (Fig. 2). Conversely,
Genome-Wide Association studies (GWAs) propose to compare
the genotypic distributions of several hundreds of thousands of
SNPs in HCC patients and ‘controls’ without a prior hypothesis,
in order to reveal previously unsuspected variants associated
with HCC (Fig. 1B). This approach, by providing public availability
of data, also offers the opportunity to validate associations that
have been previously reported by candidate-gene studies. Unfor-
tunately, many of these publications suffer from major methodo-
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Fig. 2. Examples of prospective studies. (A) Combined influence of various SNPs
on the risk of HCC. Populations under study may be stratified according to
genotypic associations that define different subgroups with various risks of HCC
occurring during follow-up. Nahon et al. [38]. (B) Integration of genetic
information in cohort studies. Genetic variants can be associated with other
non-genetic features to form complex prediction models that refine the selection
of patients with the highest risks of developing HCC. Dayyeh et al. [21].
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logical biases as they have been conducted in heterogeneous
populations. As a consequence, the lack of reproducibility of some
data is a major drawback in genetic epidemiology. Many studies,
that have attempted to explore previously published statistically
significant associations, have failed to reproduce these findings,
suggesting the existence of some false-positive results [19]. As
a whole, when considering false-positive report probability
(FPRP) in the field of genetic epidemiology of cancer diseases, it
has been shown that less than one-third of reported gene-variant
tumour associations are actually statistically significant [20]. This
trend towards false-positive reports is further increased when
conducting specific association studies such as meta-analysis.

Table 1 refers to the most robust and reliable published data
regarding associations between some genetic variants and the
risk of HCC. The criteria for selection of main studies reporting
reliable associations in this table have been defined according
to their methodological qualities. Thus, only studies referenced
in PubMed, published in English and meeting the following crite-
ria were considered:

(1) Large-scale case–control studies that included at least sev-
eral hundred patients,

(2) meta-analyses,
(3) prospective studies, and
(4) GWAs conducted in HCC patients or data obtained from

GWAs that studied liver fibrosis or anti-viral treatments.

Table 1 clarifies (1) the ethnicity of patients and the causes of
the underlying liver disease, (2) the main biological pathways
identified as involved in the mechanisms of liver carcinogenesis
and subjected to a possible genetic heterogeneity, and (3) the
confidence in the drawn conclusions that can be granted accord-
ing to strict methodological criteria (number of included patients,
selection of cases, characteristics of the study, reported odds or
hazards ratio). This selection of publications [21–57] highlights
both the tremendous efforts conducted by various teams to
report the possible influence of genetic traits on hepatocarcino-
genesis, as well as the complex integration of such data in both
biological and clinical settings. The present review will summa-
rize the influence of this inherited background on the risk of
HCC with the constant will to illustrate both the limitations
and the progress made in this field. For a more exhaustive over-
view, free online databases providing comprehensively and sys-
tematically compiled genetic associations have been recently
established [58].
Candidate-gene approach: limitations of case–control studies,
strengths of prospective cohorts

With this approach, candidate genes are a priori chosen on the
basis of biological plausibility, assuming that some genetic varia-
tions would render their carriers more prone to developing HCC.
This approach is based on the hypothesis that a given variant in a
specific gene, involved in a pathway that influences HCC develop-
ment, could sufficiently alter either protein function or expres-
sion, and result in the modulation of cancer risk. Thus, case–
control studies have been widely conducted to compare allelic
or genotypic distributions of SNPs that are thought to modulate
liver carcinogenesis pathways in patients with or without HCC.
Because the number of publications has grown over the last ten
2 vol. 57 j 663–674 665



Table 1. Published SNPs associated with the risk of HCC.

Biological pathway Main study(ies) [Ref.] SNP rs number Aetiology of 
liver disease

Type of study
(n = number of included 
publications if a meta-analysis)

Cases/controls
or n if a prospective 
cohort of cirrhotic 
patients

Odds ratio 
(OR) or 
hazard ratio 
(HR)

Ethnicity

Oxidative stress/
iron metabolism

Wang et al., 2010 [43] GSTM1 Deletion HBV/HCV Meta-analysis (n = 24) 3349/5609 OR = 1.26 Mixed

Wang et al., 2010 [43] GSTT1 Deletion HBV/HCV Meta-analysis  (n = 19) 2884/4898 OR = 1.28 Mixed

Nahon et al., 2009 [38] SOD2 A16V rs4880 Alcohol Prospective 190 HR = 1.70 Caucasian

Nahon et al., 2009 [38]
Nahon et al., 2011 [52]

MPO G-463A rs2333227 Alcohol
HCV

Prospective
Prospective

190
205

HR = 3.80
HR = 2.80

Caucasian
Caucasian

Nahon et al., 2011 [52] CAT T-262C rs1001179 HCV Prospective 205 HR = 1.74 Caucasian

Nahon et al., 2008 [39]
Jin et al., 2010 [30]

HFE C282Y rs1800562 Alcohol
Alcohol

Prospective
Meta-analysis (n = 9)

165
1102/3766*

HR = 2.70
OR = 4.06

Caucasian
Caucasian

Detoxifying systems Wang et al., 2004 [44]
Tseng et al., 2005 [41]

UGT1A7 R131K
N129K

rs17868323
rs1692021

HCV
HBV/HCV

Case-control 
Case-control

122/158
217/291

OR = 2.33
OR = 3.06

Asian
Asian

Imaizumi et al., 2009 [29] CYP1A2 G-3860A rs2069514 HBV/HCV Case-control 205/652 OR = 4.08 Asian

Wei et al., 2011 [46]
Yang et al., 2011 [55]

TNF G-308A rs1800629 HBV/HCV
HBV/HCV

Meta-analysis (n = 14)
Meta-analysis (n = 20)

1835/2207
2763/4152

OR = 1.80
OR = 1.74

Mixed
Mixed

Wei et al., 2011 [46] TNFα G-238A rs361525 HBV/HCV Meta-analysis (n = 8) 938/1370 OR = 1.62 Mixed

Wei et al., 2011 [46] TNFα C-863A rs1800630 HBV/HCV Meta-analysis (n = 5) 627/1004 OR = 1.71 Mixed

Wang et al., 2003 [45] IL1β C-511T rs16944 HCV/Alcohol Case-control 125/149 OR = 1.51 Asian

Wang et al., 2003 [45] IL1β C-31T rs143627 HCV/Alcohol Case-control 125/149 OR = 3.73 Asian

Wei et al., 2011 [56] IL10 A-592C rs1800872 HBV/HCV Meta-analysis (n = 7) 1012/2308 OR = 1.29 Mixed

Migita et al., 2005 [37] TGFβ 1 rs13447341 HBV Case-control 48/138 OR = 2.77 Asian

Charni et al., 2011 [22] RANTES G-403A rs2107538 Alcohol Prospective n = 253 HR = 2.70 Caucasian

He et al., 2009 [28] NFKβIA G881A rs3138053 HBV Case-control 202/886 OR = 3.53 Asian

DNA synthesis and 
repair mechanisms

Yuan et al., 2007 [49] MTHFR C-677T rs1801133 HBV/HCV/Alcohol Case-control 365/467 OR = 2.17# Mixed

Yuan et al., 2007 [49] MTHFR A1298C rs1801131 HBV/HCV/Alcohol Case-control 365/467 OR = 2.17# Mixed

Yuan et al., 2007 [49] TYMS 3’UTR1949del6 rs16430 HBV/HCV/Alcohol Case-control 365/467 OR = 2.17# Mixed

Long et al., 2010 [36] XPC L-939G rs2228001 HBV/HCV Case-control 1156/1402 OR = 1.81 Asian

Long et al., 2008 [35] XRCC3 C-18067T rs861539 HBV/HCV Case-control 491/862 OR = 7.19 Asian

Cell cycle 
regulation

Yoon et al., 2008 [48]
Dharel et al., 2006 [24]
Jin et al., 2011 [31]

MDM2 G-309T rs2279744 HBV
HCV
HBV/HCV

Case-control 
Case-control 
Meta-analysis (n = 5)

287/296
187/203
738/1062

OR = 4.89
OR = 2.27
OR = 1.57

Asian
Asian
Mixed

Yoon et al., 2008 [48] P53 R72P rs1042522 HBV Case-control 287/296 OR = 3.03 Asian

Hormone 
metabolism

Zhai et al., 2006 [50] ESR1 T29C
ESR1 (TA)n repeat
ESR1 PvuII CG

rs2077647
rs3138774
rs2234693

HBV Case-control 248/239 OR = 2.31
OR = 2.66
OR = 2.19

Asian

Inflammation
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Biological pathway Main study(ies) [Ref.] SNP rs number Aetiology of 
liver disease

Type of study
(n = number of included 
publications if a meta-analysi

Cases/controls
or n if a prospective 
cohort of cirrhotic 
patients

Odds ratio 
(OR) or 
hazard ratio 
(HR)

Ethnicity

Growth factors Abu Dayyeh et al., 2011 [21]
Tanabe et al., 2008 [40]

EGF A61G s4444903 HCV
HBV/HCV/Alcohol

Case-control 
Case-control

816
103/225*

HR = 2.10
OR = 3.49

Caucasian
Afro-American
Mixed

Micro-RNAs Gao et al., 2009 [27] IL1α TTCA Indel rs3783553 HBV/HCV/Alcohol Case-control 1477/1673 OR = 1.61 Asian

Xu et al., 2008 [47] miR-146a GC rs2910164 HBV/HCV Case-control 479/504 OR = 2.01 Asian

Immune response Li et al., 2009  [34]
Sheng et al., 2011 [57]

CD24 C170T rs8734 HBV
HBV

Prospective
Case-control

383
235/268

Not provided
OR = 2.96

Asian
Asian

GWAs Kumar et al., 2011 [33] MICA region rs2596542 HCV GWAs 673/2596
(validation set)

OR = 1.39 Asian

Miki et al., 2011 [54] DEPDC5 rs1012068 HCV GWAs 710/1625
(validation set)

OR = 1.95 Asian

Zhang et al., 2010 [51] UBE4B-KIF1B-PGD 
region

rs17401966 HBV GWAs 1962/1430
(validation set)

OR = 1.63 Asian

Clifford et al., 2010 [23] TPTE2 region
DDX18 region

rs2880301
rs2551677

HBV/HCV GWAs 206/336
(validation set)

OR = 3.70
OR = 3.38

Asians

Kato et al., 2005 [32] GFRA1
CRHR2
SCYB14

hCV1250702
rs2267716
rs2237062

HCV Case-control 93/95* OR = 2.54
OR = 9.81
OR = 3.13

Asians

Valenti et al., 2011 [42]
Corradini et al., 2011 [106]
Trépo et al., 2011 [53]

PNPLA3 I148M rs738409 HCV
HCV
Alcohol

Case-control
Case-control
Case-control

50/275
90/131*
145/425*

OR = 2.16
OR = 2.23
OR = 4.70

Caucasian
Caucasian
Caucasian

Fabris et al., 2011 [25] IL-28B C/T rs12979860 HCV Case-control 85/171 OR = 2.94 Caucasian

OR or HR take into account the highest reported value according to allelic or genotypic expression of results and, when available, after multivariate analysi
⁄Case–control studies conducted in cirrhotic patients with or without HCC.#OR for genotypic associations in the same publication.
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years, some of the results have been reproduced by numerous
teams, but have also been challenged by others. Despite their lim-
itations, the ability to perform large meta-analyses that encom-
pass several thousands of patients is now possible. In parallel,
the constitution of prospective cohorts of cirrhotic patients with
a long follow-up and a large number of events now enables to
perform multivariate analyses taking into account, along with
genetic traits, other clinical and environmental factors known
to influence HCC occurrence. Thus, variants that modulate the
capacity to detoxify free radicals and carcinogens, iron metabo-
lism, inflammatory and immune responses, DNA repair mecha-
nisms or systems involved in cell-cycle regulation may now be
validated in this setting.

Oxidative stress and detoxifying systems

Damage to cellular macromolecules mediated by reactive oxygen
species (ROS) has been shown to accumulate with older age and
leads to deleterious effects associated with hepatocarcinogenesis
[59]. Various SNPs modulate the activity of several anti- or pro-
oxidant enzymes, and have been associated with the emergence
of numerous cancers [60–63], including HCC. Among these sys-
tems, glutathione S-transferases (GSTs) are a large family of
detoxifying enzymes protecting against oxidative DNA damage.
The influence of genetic traits involved in GSTM1 and GSTT1
activities has been extensively studied in various cancers, with
controversial results obtained in small-sample case–control stud-
ies for HCC. Although a first meta-analysis only reported a mod-
erate effect of these variants [64], the meta-analysis by Wang
et al. [43], by including a large number of studies (n = 24, cases:
3349, controls: 5609) and by assessing the between-study heter-
ogeneity, was able to report the association between null geno-
types of GSTM1 and GSTT1 (alone or combined), conferring low
enzymatic activity, and HCC, mostly in HBV-infected Asian
cohorts (Fig. 1A).

Other pro- or antioxidant systems are modulated by genetic
heterogeneity and act at different subcellular levels. Myeloperox-
idase (MPO) is expressed in neutrophils and Kupffer cells [65],
and leads to the formation of highly reactive hypochlorous acid
(HOCl) and anion (OCl�) [66]. Manganese superoxide dismutase
(SOD2) generates H2O2 in mitochondria [67]. Unless detoxified
into water at the mitochondrial level by GPx1 or in the cytoplasm
by peroxisomal catalase (CAT), hydrogen peroxide can form
hypochlorous acid in the presence of MPO, or the hydroxyl radical
in the presence of iron. In large prospective cohorts of cirrhotic
patients, the implication of variants modulating the activity of
these enzymes has been underlined, and suggested both similar-
ities and differences in HCV- and alcohol-induced hepatocarcino-
genesis. Indeed, alcoholic cirrhotic patients bearing the high-
activity-conferring Ala-SOD2 allele and the low activity-associ-
ated Leu-GPx1 allele(s), had a higher incidence of HCC during fol-
low-up [63], suggesting that these genotypic associations may
represent surrogate markers for high mitochondrial hydrogen-
peroxide accumulation (Fig. 2A). Conversely, this genetic hetero-
geneity does not impact on HCV-related hepatocarcinogenesis in
which cytoplasmic ROS accumulation seems to play a critical role
[52]. Finally, the implication of variants modulating the activity
of extra-hepatic MPO, in both alcohol and HCV-induced emer-
gence of HCC, highlights the possible intervention of inflamma-
tory and Kupffer cells in this complex balance [38,52]. As the
benefit of using antioxidant treatments to prevent cancer
668 Journal of Hepatology 201
remains controversial [68], future strategies that incorporate this
therapeutic axis should not only take into account the cause of
liver disease but also the genetic-host factors, which seem to
influence the individual pro- or antioxidant status.

Iron metabolism

Iron overload is considered to be a co-factor in the onset and pro-
gression of almost all liver diseases, including the development of
HCC [69]. The risk of HCC in patients with genetic haemochroma-
tosis is well established, particularly in patients with overt cir-
rhosis [70]. Several teams have reported that the prevalence of
HFE C282Y mutations was increased in patients with HCC
[71,72]. However, other studies have failed to confirm these asso-
ciations [73–75]. A recent prospective study enabled a link to be
made between hepatic iron overload, HFE variations and devel-
opment of HCC in alcoholic cirrhosis [39] while neither of these
two factors affected the risk of liver cancer in HCV-infected cir-
rhotic patients. This finding has been partially confirmed in
HCV-infected patients included in the HALT-C trial [76], in whom
HFE gene mutations did not correlate with the development of
HCC. In addition to the impact of the underlying liver disease,
iron overload also depends on a complex set of polygenic and epi-
demiological factors that are still poorly understood. In clinical
practice, liver iron content and/or HFE gene mutations could be
assessed to improve identification of cirrhotic patients with a
higher risk of HCC and who may benefit from iron depletion [77].

Inflammation, cytokine, and chemokine systems

HCC is a tumour that slowly develops in a background of chronic
inflammation, a common denominator in the main causes of liver
disease. At the origin of this cancer lies the perpetuation of a
wound-healing response triggered by parenchymal cell death
and inflammation [78]. The influence of external factors (alcohol,
viral infections, oxidative stress etc.) induces the activation of
macrophages and liver Kupffer cells, in particular through the
interleukin 1 pathway (IL-1), which leads to secretion of proin-
flammatory cytokines such as interleukin 6 (IL-6) and TNF. These
cytokines are involved in the regulation of proliferation and cell
differentiation as well as neo-angiogenesis [79]. Polymorphisms
that affect the production of these pro-inflammatory molecules
may constitute the most studied genetic background in the HCC
setting, mostly in HCV- or HBV-infected Asian populations. One
of the first case–control studies in this field reported that the high
IL-1 production-conferring alleles in two SNPs, in the promoter
region of the IL-1b gene (namely IL-1b C-31T and IL-1b C-511T
polymorphisms), were associated with the presence of HCV-
related HCC after adjustment for confounding factors, which
included the presence of cirrhosis [45]. As the number of reports
has accumulated, two recent meta-analyses have reported that
SNPs affecting TNFa production were candidate genes that
increased the risk of virally-induced HCC, particularly TNFa G-
308A SNP, with a higher risk for individuals bearing at least
one high-activity A-308 allele [46,55]. Numerous other variants
affecting the production/activity of other pro- or anti-inflamma-
tory molecules warrant further validation and may also partici-
pate in this complex regulation [37,56]. Other mediators of
inflammation such as chemokines and their receptors [80] are
implicated in the promotion of tumour growth and the invasion
in the liver [81]. Genetic variations commonly occur in their reg-
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ulatory regions, affecting chemokines gene transcription [82].
Although no clear associations with the development of HCC
were initially reported [83,84], a recent prospective study sug-
gested that chemokine RANTES G-403A dimorphism influenced
the occurrence of HCC in patients with alcoholic cirrhosis [22].

DNA synthesis and repair mechanisms

SNPs in the methylene tetrahydrofolate reductase (MTHFR) gene,
which lead to alterations in folate metabolism, an essential com-
ponent of DNA synthesis and methylation, seem to be associated
with HCC development [49]. In this large case–control study,
which included HCV- and HBV-infected patients from two
cohorts of distinct ethnicities (Asians and non-Asians), the
authors were able to observe a joint protective effect of genotypic
associations in two variants conferring a low MTHFR activity
(namely rs1801133 and rs1801131). This finding was further
strengthened by the combined effect of variants modulating thy-
midylate synthase (TYMS) activity, an enzyme also implicated in
DNA protection; with patients bearing an increasing number of
mutant alleles of these 3 SNPs having the lowest risk of HCC. This
approach, by combining several genotypic risk factors for HCC
development, points to the complex polygenic aspect of hepato-
carcinogenesis, which is further influenced by environmental fac-
tors. Indeed, large studies that have included several thousands of
Chinese individuals have elegantly demonstrated a synergic
effect between genetic variants in DNA repair genes, such as
XRCC3 or XPC, with environmental exposure to aflatoxin (AFB1):
the risk of HCC was indeed higher in patients cumulating both
the at-risk genotypes and the longest AFB1 exposure [35,36].

Other pathways involved in hepatocarcinogenesis

The loss of p53 function, enabling damaged cells to escape the
cell-cycle checkpoint control and become carcinogenic, plays a
critical role in carcinogenesis, and places variants of the p53 gene
as fair candidates in the modulation of HCC risk [85]. MDM2 is an
important regulator of p53 that represents a negative auto-regu-
latory feedback loop with p53 protein [86]. Some other polymor-
phic traits affecting the promoter region of MDM2 may be
associated with HCV-related HCC [24]. This latter finding has
been confirmed in a large case–control study that included 583
HBV-infected Asian patients in whom the same MDM2 G-309
allele, conferring higher protein expression, was more prevalent
in patients with liver cancer [48]. In addition, a recent meta-anal-
ysis of various SNPs reported that the MDM2 G-309T polymor-
phism was one of the most reliable candidate genes to be
linked with the risk of HCC [31]. This conclusion was reached
after the authors applied FPRP analysis and Venice guidelines
[87,88] which have become recent recommendations evaluating
the reliability of the associations reported in genetic epidemio-
logical studies.

The epidermal growth factor (EGF) is implicated in malignant
transformation and tumour progression, [89] and seems to
actively participate in liver carcinogenesis in animal models
[90]. Furthermore, high levels of serum EGF have been associated
with an increased incidence of diverse malignancies in epidemi-
ological studies [91]. A functional polymorphism involves an A–G
transition at position 61 in the 50 untranslated region of the EGF
gene, leading to higher EGF levels and the emergence of various
cancers in individuals who are homozygous for the G allele
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[92]. Tanabe et al. [40] extensively studied the consequences of
this polymorphic trait on the progression of hepatic injury in
two distinct cohorts of cirrhotic Caucasian patients, either with
HCV-related (Massachusetts cohort: 59/207 HCC cases) or alco-
holic (French cohort: 44/141 HCC cases) liver disease. They were
able to report that patients bearing two copies of this variant not
only had higher EGF-serum levels but also displayed increased
hepatic expression of this factor. Furthermore, this same homo-
zygous G/G genotype was over-represented in HCC patients in
both cohorts and was independently associated with the pres-
ence of a liver tumour after adjustment for confounding factors.
This finding, also observed in two case–control cohorts with dif-
ferent causes of liver disease, was recently confirmed in patients
included in the HALT-C trial [21]. With the advantage of a long
prospective follow-up, Abu Dayyeh et al. were able to observe
an increased risk of subsequent HCC occurrence in G/G homozy-
gotes, who also exhibited higher EGF serum levels. When incor-
porating these genetic data for the creation of a predictive
score along with other clinical features associated with HCC,
the authors stratified their study population according to three
levels of liver-cancer risk, ranging from 2.3% to 26% at 6 years
(Fig. 2B).

MicroRNAs (miRNAs) are a class of short non-coding RNAs
with post-transcriptional regulatory functions [93]. The binding
of miRNA to mRNA is critical in the regulation of mRNA level
and protein expression [94]. Accumulating evidence has linked
the dysregulated expression of miRNAs with HCC [95]. Functional
SNPs in miRNA genes can lead to changes in expression of mature
miRNAs [96]. A G>C polymorphism in the miR-146a gene leads to
an increased production of the mature product for the G allele
and promotes cell proliferation [97]. Xu et al. [47] reported, in a
large case–control study involving almost 1000 HBV- or HCV-
infected Chinese patients, an increased risk of liver cancer in
patients homozygous for the G allele. Other polymorphic traits
can affect the miRNA target site, which can modify the binding
sites to the mRNA and thus influence its expression [98]. This is
the case for rs3783553, an insertion/deletion polymorphism
located within the IL-1a 30 untranslated region, which signifi-
cantly affects the binding of miR-122 and miR-378 and influences
the regulation of IL-1a expression [99]. More than 3000 Chinese
patients (including an independent validation set), of whom half
with HCC, were genotyped for this SNP [27]. The authors
observed that patients homozygous for the deletion allele were
more frequent in HCC groups with a fair genotype–phenotype
correlation.
Genome-Wide Association studies (GWAs): identification of
unsuspected genetic traits associated with the risk of HCC

Genome-wide association studies have recently changed our
approach to study genetic susceptibility to liver disease [100].
The recent development of high-throughput genomics technol-
ogy enables several hundred-thousand SNPs to be assessed, and
compares differences in the allelic or genotypic distribution of
these SNPs in large case–control studies, which usually encom-
pass thousands of patients [101] in order to limit the probability
of false positive report. This new tool allows investigators to scan
the genome using surrogate markers for specific susceptibility
loci that harbour one or more variant(s) that may account for
the genetic differences between cases and controls. Compared
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to candidate-gene studies, GWAs have the advantage of being
able to identify genes without any previously suspected role in
the pathophysiology of a given disease. In this setting, convergent
data obtained by GWAs have enabled the identification of SNPs
associated with indirect factors that may modulate the risk of
HCC, such as IL-28B polymorphisms that influence HCV clearance
[102] or PNPLA3 variants involved in steatosis and fibrosis pro-
gression in alcoholic or non-alcoholic fatty liver disease [103–
105]. Following theses publications, the influence of these vari-
ants on the subsequent development of HCC has been hypothe-
sized and has been so far reported in case–control studies
[25,42,53,106,107]. These data now warrant further validation
in larger prospective studies.

This non-hypothesis-driven approach has recently revealed
novel genetic-risk loci associated with HCC. The first GWAs that
directly focused on HCC explored 440,794 SNPs in a homoge-
neous population of HBV-infected Chinese patients, half of them
with liver cancer [51]. Based on this first screening process, the
progressive selection of the most associated SNPs was subse-
quently assessed in five additional independent cohorts, consist-
ing of 1962 HCC patients and 1430 ‘controls’ (and 159 family
trios). This stepwise procedure enabled the identification of a
susceptibility locus mapping to chromosome 1p36.22, a region
that has been reported to be commonly affected by chromosomal
losses or gains in numerous cancers, including HCC [108]. Further
experiments conducted in tumoral and non-tumoral tissues have
assessed the intra-hepatic expression of the corresponding sus-
ceptibility locus genes (KIF1B, PDG, and UBE4B) and suggested
their possible influence on liver carcinogenesis through the
tumour-suppressing pathway.

More recently, two GWAs have focused on HCV-related HCC
in Japanese patients. The first [33] selected eight possible suscep-
tibility loci by assessing 432,703 SNPs in 721 patients, which
were compared to 2890 healthy individuals without ongoing
HCV infection (Fig. 1B). A validation set, conducted according to
a similar case–control pattern in an independent cohort of the
same size, only retrieved one out of these eight loci in the 50

flanking region of MICA (6p21.33), which is located within class
I of the major histocompatibility complex (MHC) region. The
rs2596542 A allele was more prevalent in HCC patients and
was associated with lower MICA serum levels, a protein thought
to be implicated in the activation of natural-killer cells and in
CD8+ T cells against virus-infected cells [109]. Because initial
‘controls’ were not HCV-infected, the authors genotyped an addi-
tional cohort of 1730 HCV-infected patients and observed the
same variations in genotype distribution when compared to
HCC patients, whereas no difference in allele frequency was
observed between this subgroup and non-HCV-infected individu-
als. Of note, rs2596542 remained independently associated with
HCC when several environmental factors, such as age, alcohol
consumption or prior interferon-based therapy, were taken into
account, but the severity of the underlying liver disease, namely
the presence of cirrhosis or not, was not precised in the different
subgroups. The second GWA [54] was also performed in Japan
and used the same stepwise procedure. The authors identified a
susceptibility locus near DEPDC5 (rs1012068) associated with
HCC in a cohort of HCV-infected patients (GWAs phase: 212
patients, 765 controls; validation study: 710 patients, 1625 con-
trols). Although the function of the gene product is unknown,
deletion of the region containing DEPDC5 has been reported in
malignant brain glioblastomas [110]; however, although
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subsequent real-time quantitative PCR assays revealed a signifi-
cantly higher level of DEPDC5 mRNA expression in tumour tissues
than non-tumour tissues, no clear genotype–phenotype correla-
tion was observed. Interestingly, the authors managed to correct
their observations according to other HCC risk factors, in particu-
lar the presence of cirrhosis, assuming that low platelet count
was a surrogate marker for cirrhosis-related portal hypertension
in these patients. However, no histological data were available.
One can legitimately wonder why these two GWAs, performed
in two superposed HCV-infected native populations from the
same country and using the same chip (Illumina HumanHap610-
Quad Genotyping Bead Chip), reported two distinct susceptibility
loci associated with HCC. Apart from the puzzling results for rep-
lication, these discrepancies once again highlight that selection
bias might account for these inconsistent results. It now appears
mandatory to correctly interpret such huge amounts of genetic
information with respect to other clinical features that may also
influence liver carcinogenesis, such as the severity of the under-
lying liver disease or viral clearance. Without such a rigorous
multivariate approach, the exact role of variants that modulate
common biological pathways involved in the progression of all
spectra encountered in the course of liver disease (inflammation,
fibrogenesis, viral eradication or hepatocarcinogenesis) will not
be correctly assessed, thus leading to a high risk of
misinterpretation.

Key Points 

• Numerous Single Nucleotide Polymorphisms (SNPs) 
have been reported as associated with the risk of 
hepatocellular carcinoma (HCC)

• The candidate-gene approach has highlighted genetic 
traits susceptible to modify liver carcinogenesis

• Genome Wide Association studies (GWAs) are by 
contrast able to identify genes without any previously 
suspected role in the pathophysiology of liver cancer

• 
progress in genomics technology and coordinated work 

patients

• The incorporation of numerous variants in risk-
assessment models to predict HCC occurrence in 
prospective cohorts of cirrhotic patients should enable 
to highlight gene-gene interactions, assess polygenic 
predictive scores and may allow implementation of 
genetic-based screening or preventative strategies

Research in this field will continue to benefit from both

for the establishment of large cohorts of well-defined
Conclusions: integration of genetic information in large
prospective cohorts of cirrhotic patients

Progress in genomics technology has enabled identification of
numerous polymorphic traits that may, in part, account for the
inheritable aspect of this multifactorial disease [111]. The replica-
tion of published data, particularly for yet poorly investigated
Caucasians and patients with alcoholic-related HCC, may contrib-
ute to a better understanding of the genetic heterogeneity that
2 vol. 57 j 663–674
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Fig. 3. Options for clinical methodology. (A) The optimal exploratory case–
control study. Case–control studies aimed at performing candidate-gene studies
or GWAs should be conducted in large homogeneous cohorts of patients of the
same ethnicity and affected by the same cause and severity of liver disease. To
avoid any misinterpretation of the observed associations, it is mandatory to take
into account other host or environmental factors that influence liver carcinogen-
esis. As a consequence, the presence of cirrhosis is a prerequisite for the selection
of both cases and controls, which should only differ according to the absence or
presence of HCC. Other external features, such as viral clearance, alcohol
consumption or the presence of features of a metabolic syndrome, must also be
incorporated into the multivariate analysis. (B) The ideal validation prospective
study. The influence of SNPs reported as associated with the risk of liver cancer
should be validated in large prospective cohorts of homogeneous patients
undergoing periodical surveillance for HCC. Their predictive value should be
assessed according to multivariate analyses taking into account non-genetic
baseline features or events that occur during follow-up, such as competitive risks
of death (liver-related or not) or control of the cause of liver disease. The
incorporation of numerous variants should enable to highlight gene–gene
interactions and to assess polygenic predictive scores. Their additional perfor-
mance in existing risk-assessment models to predict HCC occurrence may allow
implementation of genetic-based screening strategies.
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modulates the various biological pathways involved in liver car-
cinogenesis. Such progress will also benefit from the coordinated
work of international research consortia and in the establishment
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of very large cohorts of well-defined patients, as suggested in
Fig. 3, which will allow complex multivariate analyses of all con-
founding factors.

The adaptation of preventive measures or therapeutic proce-
dures based on inter-individual susceptibilities forms the basis
and ultimate goal of personalized medicine. Unfortunately, the
SNPs identified so far only partly explain a small proportion of
the overall variability in susceptibility to HCC and do not permit
good prediction at the individual and population levels. The addi-
tional integration of genetic information, which may improve the
performance of pre-existing risk-assessment models for HCC, now
needs to be tested in large cohorts of prospective follow-up
patients with cirrhosis (Fig. 2). The addition of genetic variants into
risk-assessment models has been recently performed for various
diseases, such as breast cancer, to give, as yet, modest improve-
ments in risk prediction [112]. Genetic-based screening strategies
or therapeutic management of cirrhotic patients may become fea-
sible by incorporating various panels of SNPs into complex models
of ‘genomic risk prediction’, which take into account both host and
environmental factors that can influence liver carcinogenesis.
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