

NORTH-HOLLAND

The Geometry of Basic, Approximate, and Minimum-Norm Solutions of Linear Equations

Jianming Miao* and Adi Ben-Israel

RUTCOR—Rutgers Center for Operations Research Rutgers University P.O. Box 5062 New Brunswick, New Jersey 08903-5062

Submitted by Richard A. Brualdi

ABSTRACT

The basic solutions of the linear equations $A\mathbf{x} = \mathbf{b}$ are the solutions of subsystems corresponding to maximal nonsingular submatrices of A. The convex hull of the basic solutions is denoted by $C = C(A, \mathbf{b})$. Given $1 \le p \le \infty$, the ℓ_p -approximate solutions of $A\mathbf{x} = \mathbf{b}$, denoted $\mathbf{x}^{\{p\}}$, are minimizers of $||A\mathbf{x} - \mathbf{b}||_p$. Given $M \in \mathcal{D}_m$, the set of positive diagonal $m \times m$ matrices, the solutions of min_{\mathbf{x}} $||M(A\mathbf{x} - \mathbf{b})||_p$ are called scaled ℓ_p -approximate solutions. For $1 \le p_1$, $p_2 \le \infty$, the minimum- ℓ_{p_2} -norm ℓ_{p_1} -approximate solutions are denoted $\mathbf{x}_{\{p_1\}}^{\{p_1\}}$. Main results:

(1) If $A \in \mathbb{R}_m^{m \times n}$, then C contains all [some] minimum ℓ_p -norm solutions, for $1 \le p < \infty$ [$p = \infty$].

(2) For general A and any $1 \le p_1, p_2 < \infty$ the set C contains all $\mathbf{x}_{\{p_2\}}^{\{p_1\}}$.

(3) The set of scaled ℓ_p -approximate solutions, with M ranging over \mathcal{D}_m , is the same for all 1 .

(4) The set of scaled least-squares solutions has the same closure as the set of solutions of min_x $f(|A\mathbf{x} - \mathbf{b}|)$, where $f : \mathbb{R}^m_+ \to \mathbb{R}$ ranges over all strictly isotone functions.

1. INTRODUCTION

Given $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$, consider the linear equation

$$A\mathbf{x} = \mathbf{b}.\tag{1.1}$$

*Supported by grant NSF-STC91-19999.

LINEAR ALGEBRA AND ITS APPLICATIONS 216:25-41 (1995)

If (1.1) is inconsistent, we often settle for an approximate solution minimizing a norm of the residual $\mathbf{r}(\mathbf{x}) := A\mathbf{x} - \mathbf{b}$. Using the ℓ_p -norms, defined for $1 \le p \le \infty$ and $\mathbf{u} = (u_j) \in \mathbb{R}^m$ by

$$\|\mathbf{u}\|_{p} := \begin{cases} \left(\sum_{j=1}^{m} |u_{j}|^{p}\right)^{1/p}, & 1 \le p < \infty, \\ \\ \max_{1 \le j \le m} |u_{j}|, & p = \infty, \end{cases}$$
(1.2)

an l_p -approximate solution of (1.1) is a solution of the minimization problem

$$\min\{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p : \mathbf{x} \in \mathbb{R}^n\}.$$
(1.3)

In particular, the l_2 -approximate solutions are the least-squares solutions.

The set of increasing sequences of r elements from $\{1, \ldots, m\}$ is

$$Q_{r,m} := \{I = \{i_1, \ldots, i_r\} : 1 \le i_1 < i_2 < \cdots < i_r \le m\}.$$

For $A \in \mathbb{R}^{m \times n}_{r}$, r > 0, we denote the index sets

$$\mathcal{I}(A) := \{ I \in Q_{r,m} : \operatorname{rank} A_{I*} = r \}$$

of maximal sets of linearly independent rows,

$$\mathcal{J}(A) := \{J \in Q_{r,n} : \operatorname{rank} A_{*J} = r\}$$

of maximal sets of linearly independent columns,

$$\mathcal{N}(A) := \{ (I,J) \in Q_{r,m} \times Q_{r,n} : \operatorname{rank} A_{IJ} = r \}$$

of maximal nonsingular submatrices. The index sets $\mathcal{I}(A)$, $\mathcal{J}(A)$, and $\mathcal{N}(A)$ are abbreviated here by \mathcal{I} , \mathcal{J} , and \mathcal{N} respectively. We have

$$\mathcal{N} = \mathcal{I} \times \mathcal{J}$$
 (see e.g. [2]). (1.4)

The *basic solutions* of the linear equation $A\mathbf{x} = \mathbf{b}$ are the solutions of subsystems corresponding to maximal nonsingular submatrices of A. The basic solutions are, for

A of full column rank:
$$\{A_{I*}^{-1}\mathbf{b}_I : I \in \mathcal{I}\},$$
 (1.5)

A of full row rank:
$$\{A_{*J}^{-1}\mathbf{b}: J \in \mathcal{J}\},$$
 (1.6)

general A:
$$\{A_{II}^{-1}\mathbf{b}_I : (I,J) \in \mathcal{N}\},$$
 (1.7)

where \mathbf{b}_I is the *I*th subvector of \mathbf{b} , and $\widehat{}$ denotes a vector padded by zeros. The *convex hull of basic solutions* of the given equation $A\mathbf{x} = \mathbf{b}$ is denoted by $C = C(A, \mathbf{b})$. The set of minimizers [maximizers] of a function f is denoted by arg minf [arg max f].

For A of full column rank, Berg [5], proved that the least-squares solution is in the convex hull of basic solutions (1.5). For general A, the least-squares solution of minimal (euclidean) norm lies in the convex hull of the basic solutions (1.7),

$$\mathcal{C} := \operatorname{conv}\{\widehat{A_{IJ}^{-1}\mathbf{b}_{I}}: (I,J) \in \mathcal{N}\}.$$

This is important for establishing convergence of certain iterative methods, since the set C is compact.

For A of full column rank, Ben-Tal and Teboulle [4] extended Berg's results to isotone functions, of which l_p -norms can be considered a special case. A continuous function $f : \mathbb{R}^m_+ \to \mathbb{R}$ is called *isotone* if

$$0 \le \mathbf{x} \le \mathbf{y} \quad \Rightarrow \quad f(\mathbf{x}) \le f(\mathbf{y}), \tag{1.8}$$

and strictly isotone if in addition

$$0 \le \mathbf{x} \le \mathbf{y}, \quad f(\mathbf{x}) = f(\mathbf{y}) \quad \Rightarrow \quad \mathbf{x} = \mathbf{y},$$
 (1.9)

where inequalities between vectors are interpreted componentwise. For any $1 \le p \le \infty \{1 \le p < \infty\}$, the l_p norm $||\mathbf{x}||_p$ is a [strictly] isotone function of the vector $|\mathbf{x}|$ of absolute values,

$$|\mathbf{x}| := (|x_1|, \dots, |x_n|)^T.$$
 (1.10)

LEMMA 1.1 [4]. Let $A \in \mathbb{R}^{m \times n}_n$, $\mathbf{b} \in \mathbb{R}^m$, and let $f : \mathbb{R}^m_+ \to \mathbb{R}$ be isotone. Then the problem

$$\min_{\mathbf{b}} f(|\mathbf{A}\mathbf{x} - \mathbf{b}|) \tag{1.11}$$

has a solution in C. Moreover, if f is strictly isotone, then every solution of (1.11) lies in C.

These results are extended here along the following lines:

(1) Geometrical properties of scaled l_p -approximate solutions are studied in Section 2 for A of full column rank. We show that for 1 , the set of scaled

 l_p -approximate solutions is the same as the set of scaled least-squares solutions. The set of scaled least-squares solutions is also compared with the set of solutions of

$$\min_{\mathbf{x}} f(|A\mathbf{x} - \mathbf{b}|),$$

where $f : \mathbb{R}^m_+ \to \mathbb{R}$ runs over all strictly isotone functions. The closures of the two sets are the same.

(2) In Section 3 we consider the problem

$$\min_{\mathbf{x}} \{ f(|\mathbf{x}|) : A\mathbf{x} = \mathbf{b} \},\$$

where A is a matrix of full row rank and f is isotone. We show that there is a solution in C. Moreover, if f is strictly isotone then every solution lies in C.

(3) In Section 4 we consider the problem

$$\min_{\mathbf{x}} \left\{ f_2\left(|\mathbf{x}|\right) : \mathbf{x} \in \arg \min_{\mathbf{x}} f_1\left(|A\mathbf{x} - \mathbf{b}|\right) \right\}, \tag{1.12}$$

where $A \in \mathbb{R}_r^{m \times n}$. For f_2 isotone and f_1 strictly isotone, C contains a solution of (1.12). If also f_2 is strictly isotone, then every solution of (1.12) lies in C.

2. A IS OF FULL COLUMN RANK

Notation and terminology: Throughout this section let $A \in \mathbb{R}_n^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The convex hull of the basic solutions (1.5) is

$$\mathcal{C} := \operatorname{conv}\{A_{I*}^{-1}\mathbf{b}_I : I \in \mathcal{I}\}.$$
(2.1)

The Hadamard product $\mathbf{u} \circ \mathbf{v}$ of two vectors $\mathbf{u} = (u_i)$ and $\mathbf{v} = (v_i)$ is the vector

$$\mathbf{u} \circ \mathbf{v} := (u_j v_j). \tag{2.2}$$

Let \mathcal{D}_m be the set of all $m \times m$ positive diagonal matrices. For any $1 \le p \le \infty$ and $M \in \mathcal{D}_m$, consider the problem

$$\min_{\mathbf{x}} \|M(A\mathbf{x} - \mathbf{b})\|_p, \tag{2.3}$$

whose solution is unique for 1 . The solutions are called*scaled* $<math>l_p$ -approximate solutions. For p = 2, $D \in \mathcal{D}_m$, the scaled least-squares solution of $A\mathbf{x} = \mathbf{b}$ is the solution of

$$\min_{\mathbf{x}} \|D^{1/2} (A\mathbf{x} - \mathbf{b})\|_2, \qquad (2.4)$$

given by

$$\mathbf{x} = (A^T D A)^{-1} A^T D \mathbf{b} \qquad (\text{see e.g. [3]}). \tag{2.5}$$

Let the set of scaled l_p -approximate solutions be

$$\mathcal{X}^{\{p\}} := \bigcup_{M \in \mathcal{D}_m} \left\{ \arg \min_{\mathbf{x}} \| M(A\mathbf{x} - \mathbf{b}) \|_p \right\},$$
(2.6)

and for p = 2, by (2.5),

$$\mathcal{X}^{\{2\}} = \left\{ (A^T D A)^{-1} A^T D \mathbf{b} : D \in \mathcal{D}_m \right\}.$$
(2.7)

For 1 , each arg min in (2.6) is a singleton.

THEOREM 2.1. Let
$$A \in \mathbb{R}_n^{m \times n}$$
, $1 . Then $\mathcal{X}^{\{p\}} = \mathcal{X}^{\{2\}}$.$

PROOF. The result is trivially true if $\mathbf{b} \in R(A)$, the *range* of *A*.

Let $\mathbf{b} \notin R(A)$. The function $f(\mathbf{x}) := ||M(A\mathbf{x} - \mathbf{b})||_p$ is convex and differentiable, and a point \mathbf{x}^* is the optimal solution of (2.3) if and only if

$$\nabla f(\mathbf{x}^*) = \mathbf{0},\tag{2.8}$$

that is,

$$\overline{A}^{T}\left(\overline{\mathbf{r}}\left(\mathbf{x}^{*}\right)\circ|\overline{\mathbf{r}}\left(\mathbf{x}^{*}\right)|^{p-2}\right)=\mathbf{0},$$
(2.9)

where

$$\overline{A} := MA, \qquad \overline{\mathbf{b}} := M\mathbf{b}, \qquad \overline{\mathbf{r}}(\mathbf{x}^*) := \overline{A}\mathbf{x}^* - \overline{\mathbf{b}}. \tag{2.10}$$

 $\mathcal{X}^{\{p\}} \subset \mathcal{X}^{\{2\}}$: Let x^{*} be the solution of (2.3), and let the diagonal matrix $\overline{M} = \text{diag}(\overline{m}_i)$ be defined by

$$\overline{m}_j := \begin{cases} |\overline{\mathbf{r}}_j(\mathbf{x}^*)|^{p-2} & \text{if } \overline{\mathbf{r}}_j(\mathbf{x}^*) \neq \mathbf{0}, \\ 1 & \text{otherwise.} \end{cases}$$
(2.11)

Then (2.9) gives

$$\overline{A}^T \overline{M} (\overline{A} \mathbf{x}^* - \overline{\mathbf{b}}) = \mathbf{0}.$$
(2.12)

Therefore

$$\mathbf{x}^* = (A^T D A)^{-1} A^T D \mathbf{b} \in \mathcal{X}^{\{2\}}, \quad \text{where} \quad D := M \overline{M} M.$$

 $\mathcal{X}^{\{2\}} \subset \mathcal{X}^{\{p\}}$: Let \mathbf{x}^* be any scaled least-squares solution, i.e., \mathbf{x}^* satisfies

$$A^T D(A\mathbf{x}^* - \mathbf{b}) = \mathbf{0}$$
 for some $D = \operatorname{diag}(d_j) \in \mathcal{D}_m$. (2.13)

Let $\mathbf{r}(\mathbf{x}^*) = A\mathbf{x}^* - \mathbf{b}$, and define the matrix $M = \text{diag}(m_j)$ by

$$m_j := \begin{cases} \sqrt[p]{\frac{d_j}{|r_j(\mathbf{x}^*)|^{p-2}}} & \text{if } r_j(\mathbf{x}^*) \neq 0, \\ 1 & \text{otherwise.} \end{cases}$$
(2.14)

Then (2.13) gives (2.9).

REMARK 2.1. Theorem 2.1 states that every l_p -approximate solution is a scaled least-squares solution. This implies that l_p -approximation problems can be solved as a sequence of scaled least-squares problems, adjusting the scale at each iteration. Indeed, equations (2.9) and (2.12) are the basis of the well-known IRLS (iterative reweighted least squares) algorithm for solving l_p -approximation problems, 1 ; see e.g. [9; 11, p. 250].

REMARK 2.2. We can prove now that $\mathcal{X}^{\{2\}} \subset \mathcal{X}^{\{p\}}$ for p = 1 and $p = \infty$ by imitating the proof of $\mathcal{X}^{\{2\}} \subset \mathcal{X}^{\{p\}}$ in Theorem 2.1. As there, let \mathbf{x}^* be any scaled least-squares solution. $\mathcal{X}^{\{2\}} \subset \mathcal{X}^{\{1\}}$: For p = 1, with M given by (2.14), (2.13) gives

$$\overline{A}^T$$
 sign $\overline{\mathbf{r}}(\mathbf{x}^*) = \mathbf{0}$,

where sign $\mathbf{\bar{r}}(\mathbf{x}^*) = (\text{sign } \mathbf{\bar{r}}_i(\mathbf{x}^*))$, the signum vector. We conclude that \mathbf{x}^* is a solution of (2.3) for p = 1; see for example [11, p. 130].

 $\mathcal{X}^{\{2\}} \subset \mathcal{X}^{\{\infty\}}$: Let $p = \infty$, and define the matrix $M = \operatorname{diag}(m_i)$ by

$$m_j := \begin{cases} \frac{\sum_{i=1}^m d_i |r_i(\mathbf{x}^*)|^2}{|r_j(\mathbf{x}^*)|} & \text{if } r_j(\mathbf{x}^*) \neq \mathbf{0}, \\ 1 & \text{otherwise.} \end{cases}$$

Then

$$-M^{-1}D\mathbf{r}(\mathbf{x}^*) \in \operatorname{conv}\{(\operatorname{sign} \overline{r}_j(\mathbf{x}^*))\mathbf{e}_j : |\overline{r}_j(\mathbf{x}^*)| = \|\overline{\mathbf{r}}(\mathbf{x}^*)\|_{\infty}\} \cap N(\overline{A}^T),$$

where $N(\cdot)$ denotes the null space. By the theorem in [6, p. 35], \mathbf{x}^* is a solution of (2.3) for $p = \infty$.

If the norm $\|\cdot\|$ is not isotone (isotone norms are also called *monotone*), then the solutions of min $\|A\mathbf{x} - \mathbf{b}\|$ may lie outside C.

EXAMPLE 2.1. Let

$$A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

The basic solutions are

 $\mathbf{x}_1 = -1, \qquad \mathbf{x}_2 = 1,$

and their convex hull is the interval

$$\mathcal{C} = [-1, 1].$$

For

$$W=\left(\begin{array}{rrr}1&-2\\-2&5\end{array}\right),$$

the norm $\|\mathbf{x}\|_{W} := \|W^{1/2}\mathbf{x}\|_{2}$ is not isotone. The solution of $\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_{W}$ is

$$\mathbf{x} = (A^T W A)^{-1} A^T W \mathbf{b}$$
$$= 2 \notin \mathcal{C}.$$

The following example shows that in general $\mathcal{X}^{\{2\}} \neq \mathcal{X}^{\{\infty\}}$.

EXAMPLE 2.2. (Based on [7, Example 5.2]). Let

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 2 \\ 1 & 0 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 4 \\ 0 \\ -2 \\ 2 \end{pmatrix}$$

The left plot of Figure 1 shows $\mathcal{X}^{\{2\}}$, which consists of the interiors of the two shaded triangles and their common point $\mathbf{x} = (2, 0)$. The l_{∞} -approximate solutions are on the line segment X. Finally, the set $\mathcal{X}^{\{\infty\}}$ consists of all points between the two lines L_1 , L_2 (excluding L_1 , L_2).

Ben-Tal and Teboulle proved $\mathcal{X}^{\{2\}} \subset \mathcal{C}$. Recently Hanke and Neumann [7] showed $\mathcal{X}^{\{2\}}$ to be a union of finitely many polytopes, in general not convex, and

FIG. 1. Illustration of Example 2.2 and 2.3.

cl $\mathcal{X}^{\{2\}} \subset C$, where cl denotes closure. The results of [7] and Theorem 2.1 imply that not all vectors in C are scaled l_p -approximate solutions for 1 . The next example shows not all vectors in <math>C are solutions of min_x $f(|A\mathbf{x} - \mathbf{b}|)$ for some strictly isotone function f.

EXAMPLE 2.3. (Based on [7, Example 5.1]). Let

$$A = egin{pmatrix} 2 & -2 \ 1 & 0 \ 2 & 8 \ 2 & -6 \end{pmatrix}, \qquad \mathbf{b} = egin{pmatrix} 6 \ 0 \ 3 \ 3 \end{pmatrix}.$$

The right plot of Figure 1 shows the convex hull C of basic solutions (the triangle bounded by thick lines), and the set cl $\mathcal{X}^{\{2\}}$ (the shaded region).

Consider the points

$$\mathbf{x} = \begin{pmatrix} 1 \\ \frac{3}{8} \end{pmatrix} \in \mathcal{C} \setminus \operatorname{cl} \mathcal{X}^{\{2\}} \quad \text{and} \quad \mathbf{y} = \begin{pmatrix} \frac{2}{3} \\ 0 \end{pmatrix} \in \mathcal{X}^{\{2\}}.$$

Then

$$|A\mathbf{x} - \mathbf{b}| = \begin{pmatrix} \frac{19}{4} \\ 1 \\ 2 \\ \frac{13}{4} \end{pmatrix} > |A\mathbf{y} - \mathbf{b}| = \begin{pmatrix} \frac{14}{3} \\ \frac{2}{3} \\ \frac{5}{3} \\ \frac{5}{3} \\ \frac{5}{3} \end{pmatrix},$$

which implies

$$f(|A\mathbf{x} - \mathbf{b}|) > f(|A\mathbf{y} - \mathbf{b}|)$$

for any strictly isotone function f, showing that the point \mathbf{x} is not a solution of $\min_{\mathbf{x}} f(|A\mathbf{x} - \mathbf{b}|)$.

Let \mathcal{F}_m be the set of all strictly isotone functions on \mathbb{R}^m , and let

$$\mathcal{X}^{\{F\}} := \bigcup_{f \in \mathcal{F}_m} \left\{ \mathbf{x} : \mathbf{x} \in \arg\min_{\mathbf{x}} f(|A\mathbf{x} - \mathbf{b}|) \right\}.$$
(2.15)

The question

 $\operatorname{cl} \mathcal{X}^{\{2\}} \stackrel{?}{=} \operatorname{cl} \mathcal{X}^{\{F\}},$

suggested by Example 2.3, is answered in the affirmative, in Theorem 2.4. First we need the following results. Let S be a polytope in \mathbb{R}^m ,

$$S = \left\{ \mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i \colon \sum_{i=1}^{k} \lambda_i = 1, \ \lambda_i \ge 0, \quad i = 1, \dots, k \right\},$$
(2.16)

such that $0 \notin S$. For any $D \in D_m$, denote

$$\mathbf{x}_D = \arg\min_{\mathbf{x}\in\mathcal{S}} \|D\mathbf{x}\|_2. \tag{2.17}$$

We denote by $\mathbf{x} \lneq \mathbf{y}$ the fact $\mathbf{x} \leq \mathbf{y}, \mathbf{x} \neq \mathbf{y}$. Also denote

$$\mathcal{P} := \{\mathbf{x}_D : D \in \mathcal{D}_m\},\tag{2.18}$$

$$\mathcal{A} := \{ \mathbf{x} \in \mathcal{S} : \nexists \mathbf{y} \in \mathcal{S} \text{ such that } |\mathbf{y}| \lneq |\mathbf{x}| \}.$$
(2.19)

LEMMA 2.1. Let $\mathbf{x} \in \mathbb{R}^{m}$. Then

$$\mathbf{x} \in \mathcal{P} \quad \Leftrightarrow \quad Z\mathbf{p} \lneq 0, \ \mathbf{p} \ge 0 \text{ has no solution},$$
 (2.20)

where $Z = (\mathbf{z}^1, \mathbf{z}^2, \dots, \mathbf{z}^k)$ is the matrix with columns

$$\mathbf{z}^i = \mathbf{x} \circ (\mathbf{x}^i - \mathbf{x}), \qquad i = 1, \dots, k.$$
 (2.21)

Proof.

$$\begin{aligned} \mathbf{x} \in \mathcal{P} &\Leftrightarrow \exists D \in \mathcal{D}_m, \qquad \langle D(\mathbf{y} - \mathbf{x}), D\mathbf{x} \rangle \ge 0, \quad \forall \mathbf{y} \in \mathcal{S} \quad [1, p.41], \\ &\Leftrightarrow \exists D \in \mathcal{D}_m, \qquad \mathbf{x}^T D^2 (\mathbf{y} - \mathbf{x}) \ge 0, \qquad \forall \mathbf{y} \in \mathcal{S}, \\ &\Leftrightarrow \exists D \in \mathcal{D}_m, \qquad \mathbf{x}^T D^2 (\mathbf{x}^i - \mathbf{x}) \ge 0, \qquad i = 1, \dots, k, \\ &\Leftrightarrow \quad Z^T \mathbf{d} \ge \mathbf{0}, \qquad \mathbf{d} > \mathbf{0} \text{ has a solution.} \end{aligned}$$

By a theorem of alternatives [8, p. 29]

 $\mathbf{x} \in \mathcal{P} \quad \Leftrightarrow \quad Z\mathbf{p} \lneq \mathbf{0}, \mathbf{p} \geq \mathbf{0}$ has no solution.

Theorem 2.2. $\mathcal{P} \subset \mathcal{A}$.

 $\text{PROOF.} \quad \text{For any } x \in \mathcal{S} \setminus \mathcal{A} \text{, there is } y \in \mathcal{S} \text{ such that } |y| \lneq |x| \text{. Therefore} \\$

 $\|D\mathbf{y}\|_2 < \|D\mathbf{x}\|_2$

for any $D \in \mathcal{D}_m$, which implies $\mathbf{x} \in \mathcal{S} \setminus \mathcal{P}$.

THEOREM 2.3. $\mathcal{A} \subset \operatorname{cl} \mathcal{P}$.

Proof.

Case 1. $\mathbf{x} = (x_i) \in \mathcal{A}, x_i \neq 0, i = 1, ..., m$. We show that $\mathbf{x} \in \mathcal{P}$. If not, then by Lemma 2.1

$$\mathbf{Z}\mathbf{p} \lneq \mathbf{0}, \qquad \mathbf{p} \ge \mathbf{0}, \tag{2.22}$$

has a solution **p**. Let

$$\mathbf{y} := \sum_{i=1}^{k} \lambda_i \mathbf{x}^i \in \mathcal{S}$$

with

$$\lambda_j := \frac{p_j}{\sum_{i=1}^k p_i}, \qquad j = 1, 2, \dots, k.$$

Then (2.22) gives

$$\mathbf{x} \circ (\mathbf{y} - \mathbf{x}) \lneq \mathbf{0}. \tag{2.23}$$

For sufficiently small $\lambda > 0$, the vector

$$\mathbf{z} := \lambda \mathbf{y} + (1 - \lambda) \mathbf{x} \in \mathcal{S}.$$

Then it follows from (2.23) that

 $|\mathbf{z}| \lneq |\mathbf{x}|,$ contradicting $\mathbf{x} \in \mathcal{A}$.

Case 2. $\mathbf{x} = (x_i) \in \mathcal{A}, I^c = \{i : x_i = 0\} \neq \emptyset$. Without loss of generality let

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_I \\ \mathbf{0} \end{pmatrix}.$$

We define

$$S_I := \left\{ \mathbf{y}_I : \begin{pmatrix} \mathbf{y}_I \\ \mathbf{0} \end{pmatrix} \in S \right\},$$
 (2.24)

$$\mathcal{A}_{I} := \{ \mathbf{x}_{I} \in \mathcal{S}_{I} : \nexists \, \mathbf{y}_{I} \in \mathcal{S}_{I} \text{ such that } |\mathbf{y}_{I}| \lneq |\mathbf{x}_{I}| \}.$$
(2.25)

Then S_I is a polytope and $\mathbf{x}_I \in \mathcal{A}_I$. By case 1, there is a positive diagonal matrix D_I such that

$$\mathbf{x}_I = \arg \min_{\mathbf{y}_I \in \mathcal{S}_I} \|D_I \mathbf{y}_I\|_2. \tag{2.26}$$

Let

$$D_n = \begin{pmatrix} \frac{1}{n} D_I & \mathbf{0} \\ \mathbf{0} & I \end{pmatrix} \in \mathcal{D}_m,$$

and let $\mathbf{x}_n := \mathbf{x}_{D_n}$. Then by the definition (2.17)

$$\left\| \begin{pmatrix} \frac{1}{n} D_I(\mathbf{x}_n)_I \\ (\mathbf{x}_n)_{I^c} \end{pmatrix} \right\|_2 \le \left\| \begin{pmatrix} \frac{1}{n} D_I \mathbf{x}_I \\ \mathbf{0} \end{pmatrix} \right\|_2.$$
(2.27)

Since S is bounded, the sequence $\{\mathbf{x}_n\}$ has a convergent subsequence. Without loss of generality, let $\mathbf{x}_n \to \overline{\mathbf{x}} \in \operatorname{cl} \mathcal{P}$. Then it follows from (2.27) that

 $\overline{\mathbf{x}}_{J^c} = \mathbf{0}$

and

$$\|D_I \overline{\mathbf{x}}_I\|_2 \leq \|D_I \mathbf{x}_I\|_2.$$

By the uniqueness of \mathbf{x}_I in (2.26), we have $\mathbf{x} = \overline{\mathbf{x}} \in \operatorname{cl} \mathcal{P}$.

THEOREM 2.4. $\operatorname{cl} \mathcal{X}^{\{2\}} = \operatorname{cl} \mathcal{X}^{\{F\}}.$

PROOF. $\operatorname{cl} \mathcal{X}^{\{2\}} \subset \operatorname{cl} \mathcal{X}^{\{F\}}$ is obviously true. We prove $\operatorname{cl} \mathcal{X}^{\{F\}} \subset \operatorname{cl} \mathcal{X}^{\{2\}}$ by showing $\mathcal{X}^{\{F\}} \subset \operatorname{cl} \mathcal{X}^{\{2\}}$: Let S be the polytope defined by

$$\mathcal{S} := \big\{ \mathbf{r}(\mathbf{x}) = A\mathbf{x} - \mathbf{b} : \mathbf{x} \in \mathcal{C} \big\}.$$

Define \mathcal{P} , \mathcal{A} as before, and let $\mathbf{x} \notin \operatorname{cl} \mathcal{X}^{\{2\}}$. Then $\mathbf{r}(\mathbf{x}) \notin \operatorname{cl} \mathcal{P}$. By Theorem 2.3, $\mathbf{r}(\mathbf{x}) \notin \mathcal{A}$. Therefore there is $\mathbf{y} \in \mathcal{C}$ such that

$$|A\mathbf{y} - \mathbf{b}| \lneq |A\mathbf{x} - \mathbf{b}|,$$

which implies

$$f(|A\mathbf{y} - \mathbf{b}|) < f(|A\mathbf{x} - \mathbf{b}|)$$

for any $f \in \mathcal{F}_m$. Therefore $\mathbf{x} \notin \mathcal{X}^{\{F\}}$, proving that $\mathcal{X}^{\{F\}} \subset \operatorname{cl} \mathcal{X}^{\{2\}}$.

REMARK 2.3. Theorem 2.4 shows that all linear approximation problems, minimizing a strictly isotone function of the residual, can be solved using scaled least-squares problems. Compare with Remark 2.1.

COROLLARY 2.1. $cl \mathcal{X}^{\{1\}} = cl \mathcal{X}^{\{2\}}$.

PROOF. Follows from Remark 2.2 and Theorem 2.4.

3. A IS OF FULL ROW RANK

Throughout this section let $A \in \mathbb{R}_m^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The convex hull of the basic solutions (1.6) is

$$\mathcal{C} := \operatorname{conv}\{\widehat{A_{*J}^{-1}\mathbf{b}}: J \in \mathcal{J}\},\tag{3.1}$$

where $A_{*J}^{-1}\mathbf{b}$ has $A_{*J}^{-1}\mathbf{b}$ in position J, zeros elsewhere. For any $1 \le p \le \infty$ and $N \in \mathcal{D}_n$, consider the problem

$$\min_{\mathbf{x}}\{\|N^{-1}\mathbf{x}\|_p : A\mathbf{x} = \mathbf{b}\}$$
(3.2)

and its solutions, called *scaled minimum-l_p-norm solutions*, which are unique for 1 .

If N = I, these solutions are simply called *minimum-l_p-norm solutions*.

For p = 2 and any $D \in \mathcal{D}_n$, the scaled minimum- l_2 -norm solution of

$$\min_{\mathbf{x}}\{\|D^{-1/2}\mathbf{x}\|_2 : A\mathbf{x} = \mathbf{b}\},\tag{3.3}$$

is easily computed (see, e.g., [3]):

$$\mathbf{x} = DA^T (A D A^T)^{-1} \mathbf{b}. \tag{3.4}$$

Let the set of scaled minimum- l_p -norm solutions be

$$\mathcal{X}_{\{p\}} := \bigcup_{N \in \mathcal{D}_n} \left\{ \mathbf{x} : \mathbf{x} \in \arg \min_{\mathbf{x}} \{ \| N^{-1} \mathbf{x} \|_p : A \mathbf{x} = \mathbf{b} \} \right\}.$$
 (3.5)

Then (3.4) gives

$$\mathcal{X}_{\{2\}} = \{ DA^T (ADA^T)^{-1} \mathbf{b} : D \in \mathcal{D}_n \}.$$
(3.6)

LEMMA 3.1. Let $A \in \mathbb{R}_m^{m \times n}$. Then $\mathcal{X}_{\{2\}} \subset \mathcal{C}$.

PROOF. Let **x** be the solution of (3.3), $\mathbf{y} := D^{-1/2}\mathbf{x}$, $B := AD^{1/2}$. Then **y** is the minimum- l_2 -norm solution of $B\mathbf{y} = \mathbf{b}$ and, by [2], a convex combination of basic solutions,

$$\mathbf{y} = \sum_{J \in \mathcal{J}} \gamma_J \widehat{B_{*J}^{-1}} \mathbf{b}.$$

Therefore

$$\mathbf{x} = D^{1/2}\mathbf{y},$$

= $\sum_{J \in \mathcal{J}} \gamma_J \widehat{A_{*J}^{-1}} \mathbf{b} \in \mathcal{C}.$

The following theorem is analogous to Theorem 2.1.

THEOREM 3.1. Let
$$A \in \mathbb{R}_m^{m \times n}$$
, $1 . Then $\mathcal{X}_{\{p\}} = \mathcal{X}_{\{2\}}$.$

PROOF. Analogous to the proof of Theorem 2.1.

THEOREM 3.2. Let $A \in \mathbb{R}_m^{m \times n}$. Then there is a solution \mathbf{x}^* of

$$\min_{\mathbf{x}} \{ \|\mathbf{x}\|_1 : A\mathbf{x} = \mathbf{b} \}$$
(3.7)

which is a basic solution of $A\mathbf{x} = \mathbf{b}$, i.e., $\mathbf{x}^* = \widehat{A_{*J}^{-1}}\mathbf{b}$ for some $J \in \mathcal{J}$.

PROOF. Let y be any solution of (3.7), and let $\mathbf{c} = \operatorname{sign} \mathbf{y}$. Consider the linear programming problem

(LP) min
$$c^T \mathbf{x}$$

s.t. $A\mathbf{x} = \mathbf{b}$,
 $x_i \ge 0$ if $c_i = 1$,
 $x_i = 0$ if $c_i = 0$,
 $x_i \le 0$ if $c_i = -1$.

Clearly y is an optimal solution of (LP), and any solution of (LP) is a solution of (3.7). By the theory of linear programming, there is a solution of (LP) which is a basic solution of Ax = b.

The following theorem is analogous to Lemma 1.1.

THEOREM 3.3. Let $A \in \mathbb{R}_m^{m \times n}$ and let f be isotone. Then the problem

$$\min_{\mathbf{x}} \{ f(|\mathbf{x}|) : A\mathbf{x} = \mathbf{b} \}, \tag{3.8}$$

has a solution in C. If f is strictly isotone then every solution of (3.8) lies in C.

PROOF. Let $\mathbf{x}^* = (x_i^*)$ be any solution of (3.8), and define three index sets for the signs of x_i^* ,

$$\pi := \{i : x_i^* > 0\}, \qquad \zeta := \{i : x_i^* = 0\}, \qquad \nu := \{i : x_i^* < 0\}$$

Consider the polyhedral set

$$\mathcal{Y} := \{ \mathbf{y} : A\mathbf{y} = \mathbf{b}, \, \mathbf{y}_{\pi} \ge 0, \, \mathbf{y}_{\zeta} = 0, \, \mathbf{y}_{\nu} \le 0 \}.$$

Since $\mathbf{x}^* \in \mathcal{Y}$, there exist extreme points $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(r)}$ and extreme directions $\mathbf{d}^{(1)}, \ldots, \mathbf{d}^{(r)}$ of \mathcal{Y} such that

$$\mathbf{x}^* = \sum_{i=1}^r \lambda_i \mathbf{y}^{(i)} + \sum_{j=1}^t \mu_j \mathbf{d}^{(j)},$$

where

$$\sum_{i=1}^r \lambda_i = 1, \quad \lambda_i \ge 0, \qquad \mu_j \ge 0.$$

Moreover, the extreme points of \mathcal{Y} are given by $\mathbf{y}^{(i)} = \widehat{A_{*J}^{-1}}\mathbf{b}$ for some $J \in \mathcal{J}$, and the extreme directions belong to the cone

$$\mathcal{D} := \{ \mathbf{d} : A\mathbf{d} = 0, \, \mathbf{d}_{\pi} \ge 0, \, \mathbf{d}_{\zeta} = 0, \, d_{\mu} \le 0 \}.$$

Let

$$\mathbf{x}^* = \mathbf{s} + \mathbf{d},$$

where

$$\mathbf{s} = \sum_{i=1}^{r} \lambda_i \mathbf{y}^{(i)}, \qquad \mathbf{d} = \sum_{j=1}^{t} \mu_j \mathbf{d}^{(j)}.$$
$$|\mathbf{x}^*| = |\mathbf{s}| + |\mathbf{d}| \qquad (3.9)$$
$$f(|\mathbf{x}^*|) \ge f(|\mathbf{s}|).$$

Then

and

By the optimality of x^* ,

$$f(|\mathbf{x}^*|) = f(|\mathbf{s}|), \tag{3.10}$$

showing $s \in C$ is a solution of (3.8).

Next, suppose that f is strictly isotone. Then (3.10) implies $|\mathbf{x}^*| = |\mathbf{s}|$.

:
$$\mathbf{d} = 0$$
, by (3.9); $\therefore \mathbf{x}^* = \mathbf{s} \in \mathcal{C}$.

The following result, analogous to Theorem 2.4 and Corollary 2.1, is stated without proof.

THEOREM 3.4. $\operatorname{cl} \mathcal{X}_{(1)} = \operatorname{cl} \mathcal{X}_{(2)} = \operatorname{cl} \mathcal{X}_{\{F\}}$, where

$$\mathcal{X}_{\{F\}} := \bigcup_{f \in \mathcal{F}_n} \left\{ \mathbf{x} : \mathbf{x} \in \arg\min_{\mathbf{x}} \{ f(|\mathbf{x}|) : A\mathbf{x} = \mathbf{b} \} \right\}$$
(3.11)

4. THE GENERAL CASE

Throughout this section let $A \in \mathbb{R}_r^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The basic solutions (1.7) are denoted

$$\mathbf{x}_{IJ} := A_{IJ}^{-1} \mathbf{b}_{I}, \qquad (I, J) \in \mathcal{N}, \tag{4.1}$$

and their convex hull

$$\mathcal{C} := \operatorname{conv} \{ \mathbf{x}_{IJ} : (I, J) \in \mathcal{N} \}.$$
(4.2)

Let f_1, f_2 be isotone functions. Consider the problem

$$\min\left\{f_2(|\mathbf{x}|): \mathbf{x} \in \arg\min_{\mathbf{x}} f_1(|A\mathbf{x} - \mathbf{b}|)\right\}.$$
(4.3)

For any full-rank factorization A = CR, the above problem can be solved in stages:

$$\min_{\mathbf{y}} f_1(|C\mathbf{y} - \mathbf{b}|), \tag{4.4}$$

$$\min_{\mathbf{x}} \left\{ f_2(|\mathbf{x}|) : R\mathbf{x} = \mathbf{y}, \, \mathbf{y} \in \arg \, \min_{\mathbf{y}} f_1(|C\mathbf{y} - \mathbf{b}|) \right\}.$$
(4.5)

Combining Lemma 1.1 and Theorem 3.3, we have

THEOREM 4.1. Let f_2 be isotone, and let f_1 be strictly isotone. Then there is a solution of (4.3) which is in C. If in addition f_2 is strictly isotone, every solution of (4.3) lies in C.

PROOF. Let A = CR be any full-rank factorization of A. Then clearly

$$\mathcal{I}(A) = \mathcal{I}(C), \qquad \mathcal{J}(A) = \mathcal{J}(R),$$
(4.6)

and $A_{IJ} = C_{I*}R_{*J} \forall (I, J) \in \mathcal{N}$. By Lemma 1.1 every solution **y** of (4.4) is a convex combination

$$\mathbf{y} = \sum_{I \in \mathcal{I}} \mu_I C_{I*}^{-1} \mathbf{b}_I. \tag{4.7}$$

It follows from Theorem 3.3 that a solution of (4.5) is a convex combination

$$\mathbf{x} = \sum_{J \in \mathcal{J}} \nu_J \widehat{R_{*J}^{-1}} \mathbf{y},$$

=
$$\sum_{J \in \mathcal{J}} \nu_J \sum_{I \in \mathcal{I}} \mu_I R_{*J}^{-1} \widehat{C_{I*}^{-1}} \mathbf{b}_I, \quad \text{by (4.7)},$$

=
$$\sum_{(I,J) \in \mathcal{N}} \lambda_{IJ} \mathbf{x}_{IJ}, \quad (4.8)$$

where

$$\lambda_{IJ} := \mu_I \nu_J, \qquad (I, J) \in \mathcal{N}, \tag{4.9}$$

are also convex weights. The second part follows by applying the second part of Theorem 3.3.

An immediate corollary of Theorem 4.1 is

COROLLARY 4.1. Let
$$1 \le p_1 < \infty$$
. Then the problem

$$\min \left\{ \|\mathbf{x}\|_{p_2} : \mathbf{x} \in \arg \min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_{p_1} \right\}$$
(4.10)

has a solution in C. Moreover, if $1 \le p_2 < \infty$ then every solution of (4.10) lies in C.

The next example shows that Corollary 4.1 does not hold for $p_1 = \infty$.

EXAMPLE 4.1. Let

$$A = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Then the solution set of

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_{\infty} \tag{4.11}$$

is $0 \le \mathbf{x} \le 2$. For all p, the minimum- l_p -norm best l_{∞} -approximate solution is $\mathbf{x} = 0$ and does not belong to C, which here is the singleton $\{1\}$.

REFERENCES

- 1 M. S. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley, New York, 1979.
- 2 A. Ben-Israel, A volume associated with *m*×*n* matrices, *Linear Algebra Appl*. 167:87–111 (1992).
- 3 A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applications*, Wiley-Interscience, 1974.
- 4 A. Ben-Tal and M. Teboulle, A geometric property of the least squares solution of linear equations, *Linear Algebra Appl.* 139:165–170 (1990).
- 5 L. Berg, Three results in connection with inverse matrices, *Linear Algebra Appl.* 84:63–77 (1986).
- 6 E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
- 7 M. Hanke and M. Neumann, The geometry of the set of scaled projections, *Linear Algebra Appl.*, 190:137–148 (1993).
- 8 O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.
- 9 G. Merle and H. Späth, Computational experience with discrete lp-approximation, Computing 12:315-321 (1974).
- 10 J. Miao and A. Ben-Israel, On lp-approximate solutions of linear equations, to appear.
- 11 M. R. Osborne, *Finite Algorithms in Optimization and Data Analysis*, Wiley New York, 1985.

Received 5 November 1992; final manuscript accepted 19 April 1993