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ABSTRACT 

The basic solutions of the linear equations Ax = b are the solutions of subsystems 
corresponding to maximal nonsingular submatrices of A. The convex hull of the basic 
solutions is denoted by C = C(A, b). Given 1 5 p 5 00, the $-approximate solutions 
of Ax = b, denoted x@l, are minimizers of l]Ax - blip. Given M E Vm, the set of 
positive diagonal m x m matrices, the solutions of minx IIM(Ax - b)llP are called scaled 
e,,-approximate solutions. For 1 5 ~1, p2 5 co, the minimum-&-norm &-approximate 
solutions are denoted xi;:;. Main results: 

(1) IfA E R;““, then C contains all [some] minimum $-norm solutions, for 1 5 p < 
ccl[p=oo]. 

(2) For general A and any 1 2 PI, p2 < co the set C contains all x$$. 
(3) The set of scaled .$-approximate solutions, with M ranging over V,,,, is the same 

for all 1 < p < 00. 
(4) The set of scaled least-squares solutions has the same closure as the set of solutions 

of minx f (/Ax - bl) , wheref : RT -+ R ranges over all strictly isotone functions. 

1. INTRODUCTION 

Given A E IRmX” and b E R”, consider the linear equation 

Ax=b. 
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If (1.1) is inconsistent, we often settle for an approximate solution minimizing 
a norm of the residual r(x) := Ax-b. Using the &norms, defined for 1 5 p 5 co 
and u = (Uj) E ET” by 

I( ) 
l/P 

IlUllP := 
eIUjIp 9 llP<m, 
j=l (1.2) 

I max bjl, l<j<m -- P = 00, 

an I,-approximate solution of (1.1) is a solution of the minimization problem 

min{ IlAx - bl(, : x E R”}. (1.3) 

In particular, the Z2-approximate solutions are the least-squares solutions. 
The set of increasing sequences of r elements from { 1, . . . , m} is 

Q r,m := {I = {il,. . . , ir} : 1 < il < i2 < . . . < i, 5 m). 

For A E R~““, r > 0, we denote the index sets 

Z(A) := {I E Qr,, : rankA,, = r} 

of maximal sets of linearly independent rows, 

J(A) := {J E Qr,,, : rank&J = r} 

of maximal sets of linearly independent columns, 

N(A) := {(Z,.Z) E Qr,m x Qr,,, : rankAI_, = r} 

of maximal nonsingular submatrices. The index sets Z(A), J(A), and N(A) are 
abbreviated here by Z, 3, and N respectively. We have 

N=zxJ (see e.g. [2]). (1.4) 

The basic solutions of the linear equation Ax = b are the solutions of subsys- 
tems corresponding to maximal nonsingular submatrices of A. The basic solutions 
are. for 

A of full column rank: {A,‘b, : Z E Z}, (1.5) 
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A of full row rank: {ATb:J E J}, 

general A: {As, : (I, J) E N}, 

(1.6) 

(1.7) 

where br is the Ith subvector of b, and - denotes a vector padded by zeros. 
The convex hull of basic solutions of the given equation Ax = b is denoted by 
C = C(A, b). The set of minimizers [maximizers] of a function f is denoted by 
arg minf [arg max f]. 

For A of full column rank, Berg [5], proved that the least-squares solution is in 
the convex hull of basic solutions (1.5). For general A, the least-squares solution 
of minimal (euclidean) norm lies in the convex hull of the basic solutions (1.7), 

C := conv{A& : (I, J) E n/}. 

This is important for establishing convergence of certain iterative methods, since 
the set C is compact. 

For A of full column rank, Ben-Tal and Teboulle [4] extended Berg’s results 
to isotone functions, of which Z,,-norms can be considered a special case. A 
continuous function f : IKy 4 IR is called isotone if 

OlX<Y =+ f(X)<f(Y), (1.8) 

and strictly isotone if in addition 

0 Ix 5 Y, f(x) =f(y) =+ x=y, (1.9) 

where inequalities between vectors are interpreted componentwise. For any 1 5 
p I 00 I1 I P < 001, the 1,, norm llxllP is a [strictly] isotone function of the vector 
1x1 of absolute values, 

1x1 := (Ix1 1,. . . , IX,lr. (1.10) 

LEMMA 1.1 [4]. Let A E IRT’“, b E E-V, and letf :lRy + IR be isotone. 
Then the problem 

minf(\Ax - b]) (1.11) 

has a solution in C. Moreover, iff is strictly isotone, then every solution of (1.11) 
lies in C. w 

These results are extended here along the following lines: 

(1) Geometrical properties of scaled I,-approximate solutions are studied in 
Section 2 for A of full column rank. We show that for 1 < p < 00, the set of scaled 
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ZP-approximate solutions is the same as the set of scaled least-squares solutions. 
The set of scaled least-squares solutions is also compared with the set of solutions 
of 

minf(IAx - bl), 

wheref : WT --+ I[$ runs over all strictly isotone functions. The closures of the two 
sets are the same. 

(2) In Section 3 we consider the problem 

rn$@ (1x1) :Ax = b}, 

where A is a matrix of full row rank and f is isotone. We show that there is a 
solution in C. Moreover, if f is strictly isotone then every solution lies in C. 

(3) In Section 4 we consider the problem 

m$ {fz (1x1) : x E q m,'nfl (IAx - bl) } , (1.12) 

where A E JR:“. For f2 isotone and fi strictly isotone, C contains a solution of 
(1.12). If alsof2 is strictly isotone, then every solution of (1.12) lies in C. 

2. A IS OF FULL COLUMN RANK 

Notation and terminology: Throughout this section let A E IRrx” and b E lP. 
The convex hull of the basic solutions (1.5) is 

C := conv{Ail,‘bZ : Z E Z}. (2.1) 

The Hadamard product u o v of two vectors u = (uj) and v = (vj) is the vector 

U 0 V I= (UjVj). (2.2) 

Let ‘0, be the set of all m x m positive diagonal matrices. For any 1 5 p 5 CO 
and M E D,,,, consider the problem 

m;t” IMAx - b>llp, (2.3) 

whose solution is unique for 1 < p < CO. The solutions are called scaled lP- 
approximate solutions. For p = 2, D E V,,,, the scaled least-squares solution of 
Ax = b is the solution of 

m,‘n llD’/2 (Ax - b) 112, (2.4) 
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given by 
x = (ATDA)-‘ATDb (see e.g. [3]). 

Let the set of scaled I,-approximate solutions be 

dpl := (J { xg rnjn IjM(Ax - b)llp}, 
MEV, 

and for p = 2, by (2.5), 

X{*) = { (ATDA)-‘ATDb : D E Dm} . 

(2.5) 

(2.6) 

(2.7) 

For 1 < p < 00, each arg min in (2.6) is a singleton. 

THEOREM 2.1. LefA E R;X”, 1 < p < co. Then X(P) = Xl*). 

PROOF. The result is trivially true if b E R(A), the range of A. 

Let b @ R(A). Thefunctionf(x) := IIM(Ax- b)llp is convex and differentiable, 
and a point x* is the optimal solution of (2.3) if and only if 

Vf(x”) = 0, (2.8) 

that is, 
XT (7 (x*) 0 Ii (x”) I”-*) = 0, (2.9) 

where 
x := MA, b:=Mb, qx*) := Xx* - ii (2.10) 

X{P) c id*}: Let xc be the solution of (2.3), and let the diagonal matrix R = 
diag(Z.) be defined by 

mj := 
l~j(X*)lp-* if Fj(X*) # 0, 

1 otherwise. 
(2.11) 

Then (2.9) gives 

Therefore 

XTz?(Xx* - 5) = 0. (2.12) 

x* = (A’DA) -’ ATDb E x{*), where D := M;i;jM. 
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Xi21 c X(P): Let x* be any scaled least-squares solution, i.e., x* satisfies 

ATD(Ax* - b) = 0 for some D = diag(dj) E Vm. (2.13) 

Let r(x*) = Ax* - b, and define the matrix A4 = diag(mj) by 

mj := 
if rj(X*) # 0, 

otherwise. 

(2.14) 

Then (2.13) gives (2.9). ??

REMARK 2.1. Theorem 2.1 states that every I,,-approximate solution is a 
scaled least-squares solution. This implies that Z,,-approximation problems can 
be solved as a sequence of scaled least-squares problems, adjusting the scale at 
each iteration. Indeed, equations (2.9) and (2.12) are the basis of the well-known 
IRLS (iterative reweighted least squares) algorithm for solving I,,-approximation 
problems, 1 < p < 00; see e.g. [9; 11, p. 2501. 

REMARK 2.2. We can prove now that Xl21 c X{P) for p = 1 and p = co 
by imitating the proof of XI21 c X(P) in Theorem 2.1. As there, let x* be any 
scaled least-squares solution. XI21 c id’): Forp = 1, with M given by (2.14), 
(2.13) gives 

XT sign F(x*) = 0, 

where signT(x*) = (sign&(x*)), the Signum vector. We conclude that x* is a 
solution of (2.3) forp = 1; see for example [ll, p. 1301. 

Xi21 c X{O”): Letp = 00, and define the matrix M = diag(mj) by 

CL1 41rkx*)12 m, .= 

J’ rj(x*)l 
if rj(X*) # 0, 

1 otherwise. 

Then 

-M-‘Dr(x*) E conv{(signFj(x*))ej : IFj(x*)l = IIF(x*)llm} fl N(xT), 

where N( ’ ) denotes the null space. By the theorem in [6, p. 351, x* is a solution 
of (2.3) for p = 00. ??



GEOMETRY OF MINIMUM-NORM SOLUTIONS 31 

If the norm (1 + 11 is not isotone (isotone norms are also called monotone), then 
the solutions of min [IAx - b/l may lie outside C. 

x 

EXAMPLE 2.1. Let 

A= and b = 

The basic solutions are 
x1 = -1, x2= 1, 

and their convex hull is the interval 

c = [-l,l]. 

For 

the norm llxllW := ]I W’/2xjj 2 is not isotone. The solution of m;tn IlAx - bllw is 

x = (ATWA)-‘ATWb 

= 2qc. 

The following example shows that in general XI21 # X{O”). 

EXAMPLE 2.2. (Based on [7, Example 5.21). Let 

The left plot of Figure 1 shows X121, which consists of the interiors of the two 
shaded triangles and their common point x = (2, 0). The &-approximate so- 
lutions are on the line segment X. Finally, the set x(m) consists of all points 
between the two lines L1, L2 (excluding L1 , L2). 

Ben-Tal and Teboulle proved Xl21 c C. Recently Hanke and Neumann [7] 
showed Xj21 to be a union of finitely many polytopes, in general not convex, and 
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FIG. 1. Illustration of Example 2.2 and 2.3. 

cl X12) c C, where cl denotes closure. The results of [7] and Theorem 2.1 imply 
that not all vectors in C are scaled l,,-approximate solutions for 1 < p < co. The 
next example shows not all vectors in C are solutions of min, f( IAx - bl) for some 
strictly isotone function f. 

EXAMPLE 2.3. (Based on [7, Example 5.13). Let 

A=(; I;)> b=($ 
The right plot of Figure 1 shows the convex hull C of basic solutions (the triangle 
bounded by thick lines), and the set cl XI*) (the shaded region). 

Consider the points 

2 
x= E C\clX{*) and y = i, E Xi*). 

0 

Then 

,Ax-b,=[ ‘i >,Ay-b( i), 

which implies 
f(lAx - W > f(lAy - W 
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for any strictly isotone function f, showing that the point x is not a solution of 
min,f(lAx - bl). 

Let 3,,, be the set of all strictly isotone functions on R”, and let 

XIF) := U {x:x E argm;tnf(lAx - bl)}. 
fE3nl 

(2.15) 

The question 
cl K(2) ? cl X(F), 

suggested by Example 2.3, is answered in the affirmative, in Theorem 2.4. First 
we need the following results. Let S be a polytope in IRm, 

(2.16) 
\ i=l i=l 

such that 0 6 S. For any D E V,,,, denote 

We denote by x 5 y the fact x 5 y, x # y. Also denote 

P := {xD:DED),}, (2.18) 

(2.17) 

A := {x E S: $y E S such that Iyj 5 [xl}. (2.19) 

LEMMA~.~. Letx E lb?". Then 

XEP @ zp g 0, p 2 0 has no solution, (2.20) 

whereZ=(z1,z2,... , zk) is the matrix with columns 

zi = x 0 (x’ - x), i= l,...,k. (2.21) 

PROOF. 

XEP # ~DED,, (D(Y - x),Dx) 2 0, VY E S Cl,P.411, 

++ ~DED,,,, xTD2(y - x) 2 0, VYES, 

H ~DED,,,, xTD2(x’ - x) 2 0, i= l,...,k, 

w ZTd> 0, d > 0 has a solution. 
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By a theorem of alternatives [8, p. 291 

XEP H Zp 5 0, p > 0 has no solution. 

THEOREM~.~. Pcd_ 

PROOF. For any x E S \ A, there is y E S such that Iy] $ IX]. Therefore 

lPYll2 < llWl2 

for any D E Dm, which implies x E S \ P, 

THEOREM~.~. AC clP. 

PROOF. 

&XI. x=(XJEd,ri#O,i=l,... , m. We show that x E P, If not, then 
by Lemma 2.1 

ZP I 0, P > 0, (2.22) 

has a solution p. Let 
k 

y I= CXiXi E S 

with 

i=l 

j= 1,2 ,..., k. 

Then (2.22) gives 
xo(y-x)lO. 

For sufficiently small X > 0, the vector 

(2.23) 

z := xy + (1 - X)x E S. 

Then it follows from (2.23) that 

I4 I I47 contradicting x E A. 

Case 2. x = (Xi) E A, Zc = {i : Xi = 0) # 8. Without loss of generality let 

XI 
x= 0 0 . 
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We define 

s, := {y,:(T) ES}, (2.24) 

d, := {XI E S, : $y, E SI such that jy,I 4 1x11). (2.25) 

Then S, is a polytope and XI E df. By case 1, there is a positive diagonal matrix 
01 such that 

XI = arg $g, IID\~1112. (2.26) 

Let 

and let x, := x0,. Then by the definition (2.17) 

(2.27) 

Since S is bounded, the sequence {x,,} has a convergent subsequence. Without 
loss of generality, let x, + Sz E cl P. Then it follows from (2.27) that 

and 

By the uniqueness of XI in (2.26), we have x = X E cl P. 

THEOREM 2.4. clAd2) = clXIF). 

PROOF. cl X{*) c cl AdF) is obviously true. We prove cl XjF) c cl AT{*} 
by showing XIF) c cl Xj2}: Let S be the polytope defined by 

S:= {r(x)=Ax-b:xEC}. 

Define P, A as before, and let x @’ cl X{*). Then r(x) $ cl P. By Theorem 2.3, 
r(x) @’ d. Therefore there is y E C such that 

IPY - bl 4 IAx - bl, 

which implies 
f( IAY - hl) < f( IAx - bl) 
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for anyf E 3,,,. Therefore x # XIF), proving that XfF) c cl Xi2). ??

REMARK 2.3. Theorem 2.4 shows that all linear approximation problems, 
minimizing a strictly isotone function of the residual, can be solved using scaled 
least-squares problems. Compare with Remark 2.1. 

COROLLARY 2.1. cl Xl’) = cl Xf2). 

PROOF. Follows from Remark 2.2 and Theorem 2.4. 

3. A IS OF FULL ROW RANK 

Throughout this section let A E IR~x” and b E ET”. The convex hull of the 
basic solutions (1.6) is 

C := conv{A;,ib:J E J}, (3.1) 

where ATb has A;,ib in position J, zeros elsewhere. For any 1 2 p 5 ca and 
N E V,,, consider the problem 

“,‘n{ IIN-‘xjlp :Ax = b} (3.2) 

and its solutions, called scaled minimum-l,,-norm solutions, which are 
unique for 1 < p < co. 

If N = I, these solutions are simply called minimum-l,-norm solutions. 
For p = 2 and any D E TD,,, the scaled minimum+norm solution of 

m~n{llD-‘/2x~12 :Ax = b}, (3.3) 

is easily computed (see, e.g., [3]): 

x = DAT(ADAT)-‘b. (3.4) 

Let the set of scaled minimum-l,-norm solutions be 

x{,,} := U {x:x E at-g mJn{~/N-‘x/lp:Ax = b}}. 
NEV” 

(3.5) 

Then (3.4) gives 
X12> = {DAT(ADAT)-‘b : D E 27”). (3.6) 
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LEMMA 3.1. Let A E IR;Xn. Then +) c C. 

PROOF. Let x be the solution of (3.3), y := D-‘/*x, B := ADliz. Then y 
is the minimum-/2-norm solution of By = b and, by [2], a convex combination of 
basic solutions, 

y = c TJBzb. 
JE.7 

Therefore 

x = D’/*y, 

=c “iJATb E C. 
JE.7 

The following theorem is analogous to Theorem 2.1. 

THEOREM 3.1. LetA E IK;‘“, 1 < p < 00. Then X{,,> = K{*}. 

PROOF. Analogous to the proof of Theorem 2.1. 

THEOREM 3.2. Let A E RI”‘. Then there is a solution x* of 

min{ [lx]\ 1 :Ax = b} 

??

??

(3.7) 

which is a basic solution of Ax = b, i.e., x* = A;; b for some J E 3. 

PROOF. Let y be any solution of (3.7), and let c = sign y. Consider the 
linear programming problem 

(W min crx 

s.t. Ax=b, 

xi>0 if ci = 1, 

Xi= 0 if ci = 0, 

Xi<0 if Cj = -1. 

Clearly y is an optimal solution of (LP), and any solution of (LP) is a solution of 
(3.7). By the theory of linear programming, there is a solution of (LP) which is a 
basic solution of Ax = b. ??

The following theorem is analogous to Lemma 1.1. 
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THEOREM 3.3. Let A E IR:“’ and let f be isotone. Then the problem 

mjncf(lxI) :Ax = b}, (3.8) 

has a solution in C. Iff is strictly isotone then every solution of (3.8) lies in C. 

PROOF. Let x* = (xi*) be any solution of (3.8), and define three index sets 
for the signs of XT, 

7r := {i:$ > 0}, < := {i:x,* = 0}, v := {i:xr < 0) 

Consider the polyhedral set 

Since x* E y, there exist extreme points y(l), . . . , y(‘) and extreme directions 
d(t) >“‘7 d(“) of Y such that 

x* = 2 XiYci) + e PjdO’), 
i=l j=l 

where 

I2 Xi = 1, Xi > 0, Pj L 0. 

i=l 

Moreover, the extreme points of Y are given by y(‘) = A:; b for some J E J’, and 
the extreme directions belong to the cone 

D:={d:Ad=O,d,>O,dC=O,dp<O}. 

Let 

where 

Then 

and 

x* =s+d, 

S = $ XiYci), d = 2 PjdO’). 
j=l 

Ix*1 = ISI + Idl (3.9) 

f(M) 2fW 
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By the optimality of x*, 
f(lx* I) = f(H), (3.10) 

showing s E C is a solution of (3.8). 
Next, suppose thatf is strictly isotone. Then (3.10) implies Ix*1 = IsI. 

:. d = 0, by(3.9); :. x* = s EC. 

H 

The following result, analogous to Theorem 2.4 and Corollary 2.1, is stated 
without proof. 

THEOREM 3.4. cl Xcl, = cl Xc2) = cl XIF), where 

X{F} := u {x :x E argm>Cf(lxl):Ax = b}} (3.11) 

4. THE GENERAL CASE 

Throughout this section let A E RF”’ and b E Wm. The basic solutions (1.7) 
are denoted 

Z- 
XIJ :=A, hl, U,J) EN, (4.1) 

and their convex hull 
C := conv{xIj : (I, .T) E N}. (4.2) 

Letfr , fz be isotone functions. Consider the problem 

min {f2(lxj) :x E arg m>fi(IAx - bj)}. (4.3) 

For any full-rank factorization A = CR, the above problem can be solved in stages: 

myinfl(lCy - bl), (4.4) 

rnjn 
{ 

fz(lxl) : Rx = y, y E arg mpfi(lCy - bJ) 
1 

. (4.5) 

Combining Lemma 1 .l and Theorem 3.3, we have 

THEOREM 4.1. Let fi be isotone, and let fi be strictly isotone. Then there is 
a solution of (4.3) which is in C. If in addition f2 is strictly isotone, every solution 
of (4.3) lies in C. 
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PROOF. Let A = CR be any full-rank factorization of A. Then clearly 

PA) = z(C), ,7(A) = J(R), (4.6) 

and A,J = CI*R*J V(Z, J) E N. By Lemma 1.1 every solution y of (4.4) is a convex 
combination 

Y = ~/G% (4.7) 

It follows from Theorem 3.3 that a solution of (4.5) is a convex combination 

x= c -T V&J Y, 
JE.7 

(4.8) 

where 
x/J := /&vJ, (1, J> E N, (4.9) 

are also convex weights. The second part follows by applying the second part of 
Theorem 3.3. ??

An immediate corollary of Theorem 4.1 is 

COROLLARY 4.1. Let 1 I p1 < 00. Then the problem 

min II% { 
:x E arg rnjn [IAx - blip,} (4.10) 

has a solution in C. Moreover, if 1 5 p2 < CO then every solution of (4.10) lies in 
c. 

The next example shows that Corollary 4.1 does not hold for p1 = 00. 

EXAMPLE 4.1. Let 

A = (A), b= (;). 

Then the solution set of 
mjn IlAx - blloc (4.11) 
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is 0 5 x 5 2. For all p, the minimum-l,-norm best &-approximate solution is 
x = 0 and does not belong to C, which here is the singleton {I}. 
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