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ABSTRACT

The basic solutions of the linear equations Ax = b are the solutions of subsystems
corresponding to maximal nonsingular submatrices of A. The convex hull of the basic
solutions is denoted by C = C(4,b). Given 1 < p < oo, the €p-approximate solutions
of Ax = b, denoted x¥}, are minimizers of ||Ax — b||,. Given M € D, the set of
positive diagonal m x m matrices, the solutions of minx ||M(Ax — b)||, are called scaled
£p-approximate solutions. For 1 < py, p» < 00, the minimum-£p,-norm £,;-approximate
solutions are denoted xgg. Main results:

(1) IfA € Rp*", then C contains all [some] minimum #,-norm solutions, for 1 < p <
oo [p = o0l

(2) For general A and any 1 < py, p2 < oo the set C contains all x? 3

(3) The set of scaled £,-approximate solutions, with M ranging over D, is the same
forall 1 < p < oo.

(4) The set of scaled least-squares solutions has the same closure as the set of solutions
of minx f (JAx — b|) , where f : R} — R ranges over all strictly isotone functions.

1. INTRODUCTION
Given A € R™*" and b € R™, consider the linear equation

Ax = h. 1.y
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If (1.1) is inconsistent, we often settle for an approximate solution minimizing
anorm of the residual r(x) := Ax—b. Using the £,-norms, defined for | < p <
and u = (u;) € R™ by

1/p
m
Z Iuj,p s 1 SP < 00,
all, := j=t1 (12)
max |ul, p = o0,

1<j<m
an l,-approximate solution of (1.1) is a solution of the minimization problem
min{||Ax — b, :x € R"}. 1.3)

In particular, the I;-approximate solutions are the least-squares solutions.
The set of increasing sequences of r elements from {1,...,m} is

Ormi={I={ii,...,iy}: 1 <i1 <ip < -+ <i, <m}.
For A € R**", r > 0, we denote the index sets
Z(A) ;== {I € O m:rank A =1}
of maximal sets of linearly independent rows,
J(A) = {J € Q,,:rankA,; =r}
of maximal sets of linearly independent columns,
N@A) :={U,)) € Qrm X Qrn:rankAy = r}

of maximal nonsingular submatrices. The index sets Z(A), J(A), and N'(A) are
abbreviated here by Z, 7, and AV respectively. We have

N=IxJ (seee.g. [2]). (1.4)
The basic solutions of the linear equation Ax = b are the solutions of subsys-
tems corresponding to maximal nonsingular submatrices of A. The basic solutions

are, for

A of full column rank: {A b1 € T}, (1.5)
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A of full row rank: {A7'b:J € T}, (1.6)
general A: {Aﬁ, (I, )y e N}, (1.7)

where by is the Ith subvector of b, and = denotes a vector padded by zeros.
The convex hull of basic solutions of the given equation Ax = b is denoted by
C = C(A,b). The ser of minimizers [maximizers] of a function f is denoted by
arg minf [arg max f].

For A of full column rank, Berg [5], proved that the least-squares solution is in
the convex hull of basic solutions (1.5). For general A, the least-squares solution
of minimal (euclidean) norm lies in the convex hull of the basic solutions (1.7),

C:= conv{A,:ij, (I, e N}

This is important for establishing convergence of certain iterative methods, since
the set C is compact.

For A of full column rank, Ben-Tal and Teboulle [4] extended Berg’s results
to isotone functions, of which /,-norms can be considered a special case. A
continuous function f : R7 — R is called isotone if

0<x<y = f&x<fy, (1.8)
and strictly isotone if in addition

0<x<y, fW=fy = x=y, (1.9)

where inequalities between vectors are interpreted componentwise. For any 1 <
p < oo[l < p < o0], the I, norm ||x||,, is a [strictly] isotone function of the vector
|x| of absolute values,

x| := (|x), .- -, )T (1.10)

LEMMA 1.1 [4]. LetA € R}*", b € R™, and let f :R7 — R be isotone.
Then the problem
minf(]Ax - b|) (1.1D)
p.4

has a solution in C. Moreover, iff is strictly isotone, then every solution of (1.11)
lies in C. [ |

These results are extended here along the following lines:

(1) Geometrical properties of scaled /,-approximate solutions are studied in
Section 2 for A of full column rank. We show that for 1 < p < 0o, the set of scaled
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I,-approximate solutions is the same as the set of scaled least-squares solutions.
The set of scaled least-squares solutions is also compared with the set of solutions
of

minf(jAx — b}),

where f : R% — R runs over all strictly isotone functions. The closures of the two
sets are the same.
(2) In Section 3 we consider the problem

min{f (|x]) :Ax = b},
where A is a matrix of full row rank and f is isotone. We show that there is a

solution in C. Moreover, if f is strictly isotone then every solution lies in C.
(3) In Section 4 we consider the problem

min {fz () :x € arg minf; (|Ax—b|)}, (1.12)

where A € R"*". For f, isotone and fj strictly isotone, C contains a solution of
(1.12). If also f; is strictly isotone, then every solution of (1.12) lies in C.

2. AIS OF FULL COLUMN RANK

Notation and terminology: Throughout this section letA € R"*" and b € R™.
The convex hull of the basic solutions (1.5) is

C :=conv{A;,'b;: 1 € T}. 2.1
The Hadamard product u o v of two vectors u = (i;) and v = (v;) is the vector
uov := (uy)). 2.2)

Let D,, be the set of all m x m positive diagonal matrices. For any 1 < p < oo
and M € Dy, consider the problem

min || M(AX — b)), (2.3)

whose solution is unique for 1 < p < oco. The solutions are called scaled 1,-
approximate solutions. For p = 2, D € Dy, the scaled least-squares solution of
Ax = b is the solution of

min ||D'/? (Ax — b) |2, (2.4)
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given by
x=(ATDA)"!ATDb  (seee.g. [3]). (2.5)

Let the set of scaled /,-approximate solutions be

X0 := | J {arg min|M@Ax —b)],}, (2.6)
MeD, x

and for p = 2, by (2.5),
x = {(ATDA)'ATDb:D € D,,} . Q7N
For 1 < p < 00, each arg min in (2.6) is a singleton.
THEOREM 2.1. LetA € R™" 1 < p < co. Then X} = x {2},
PROOF. The result s trivially true if b € R(A), the range of A.

Letb ¢ R(A). The functionf(x) := ||[M(Ax—b)||, is convex and differentiable,
and a point x* is the optimal solution of (2.3) if and only if

Vi(x*) =0, (2.8)

that is,
AT (7 (x) o [F () IP?) =0, 29)

where
A= MA, b := Mb, T(x*) := Ax* — b. (2.10)

x 1P}  x12}: Let x* be the solution of (2.3), and let the diagonal matrix M =
diag(m;) be defined by

F(x*)P~% if T(x*)+#£0,

= 56 " 4 (2.11)
1 otherwise.

Then (2.9) gives
A M@Ax* —b) = 0. (2.12)

Therefore

x* = (ATDA) "' ATDb e X3, where D:=MMM.
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X2 c x}: Let x* be any scaled least-squares solution, i.e., x* satisfies
ATD(AXx* —~b)=0  forsome D = diag(d;) € Dn. (2.13)

Let r(x*) = Ax™ — b, and define the matrix M = diag(m;) by

4 .
— 9 i ) £0,
—— T o7 (2.14)

1 otherwise.
Then (2.13) gives (2.9). [ |

REMARK 2.1. Theorem 2.1 states that every [,-approximate solution is a
scaled least-squares solution. This implies that /,-approximation problems can
be solved as a sequence of scaled least-squares problems, adjusting the scale at
each iteration. Indeed, equations (2.9) and (2.12) are the basis of the well-known
IRLS (iterative reweighted least squares) algorithm for solving /,-approximation
problems, 1 < p < co; see e.g. [9; 11, p. 250].

REMARK 2.2. We can prove now that X{% ¢ X} forp = 1andp = oo
by imitating the proof of X{2} c X {7} in Theorem 2.1. As there, let x* be any
scaled least-squares solution. X{2} ¢ X{1}: For p = 1, with M given by (2.14),
(2.13) gives

A sign F(x*) = 0,
where sign F(x*) = (signT;(x*)), the signum vector. We conclude that x* is a

solution of (2.3) for p = 1; see for example [11, p. 130].
x{2r ¢ x{o}: Let p = oo, and define the matrix M = diag(m;) by

Sy dir(x)>
Lasl BT i px*) # 0,
mj 1= ri(x*)| i) #
1 otherwise.
Then

—~M~'Dr(x*) € conv{(sign Fi(x*)e; : [Fi(x™)] = ||[Tx")|[cc} N N(ZT),

where N( - ) denotes the null space. By the theorem in [6, p. 35], x* is a solution
of (2.3) for p = oc. |
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If the norm || - |} is not isotone (isotone norms are also called monotone), then
the solutions of min ||[Ax — b|| may lie outside C.
X

ExaMpPLE 2.1. Let
A=(i) and b:(*1>.

x; =—1, Xy =1,

The basic solutions are

and their convex hull is the interval

Cc=1[-1,11

1 -2
W= ,

the norm ||x||w := ||W'/2x]| is not isotone. The solution of min [|AX — b|y is
X

For

x = (ATwA)'ATwp
= 2¢C.

The following example shows that in general X' {2} £ x{oo},

EXAMPLE 2.2. (Based on [7, Example 5.2]). Let

1 -1 4
0 1 0

A= ., b=
-2 2 -2
1 0 2

The left plot of Figure 1 shows X {2}, which consists of the interiors of the two
shaded triangles and their common point x = (2, 0). The /-approximate so-
lutions are on the line segment X. Finally, the set X{>} consists of all points
between the two lines L, L, (excluding L;, L,).

Ben-Tal and Teboulle proved X{2} c C. Recently Hanke and Neumann [7]
showed X' {2} to be a union of finitely many polytopes, in general not convex, and
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F1G. 1. Illustration of Example 2.2 and 2.3.

c1 X2} c ¢, where cl denotes closure. The results of [7] and Theorem 2.1 imply
that not all vectors in C are scaled [,-approximate solutions for I < p < oo. The
next example shows not all vectors in C are solutions of miny f(JAx —b|) for some
strictly isotone function f.

EXAMPLE 2.3. (Based on [7, Example 5.1]). Let

2 -2 6
10 0
A=1, gl P=|3
2 -6 3

The right plot of Figure 1 shows the convex hull C of basic solutions (the triangle
bounded by thick lines), and the set cl X {2} (the shaded region).
Consider the points

2
X = (i) eC\cdX¥ and y= ((3)) P 408
8

Then

|Ax — b| = > JAy — b| =

I S e
Wity Wik Wik W

which implies
f(|Ax —b|) > f(|Ay — b))
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for any strictly isotone function f, showing that the point x is not a solution of
miny f(|JAx — b|).
Let F,, be the set of all strictly isotone functions on R™, and let

x{F} = U {x:x € argminf(jAx — b|)}. (2.15)
fE€Fm

The question
cx? Lo xif)

suggested by Example 2.3, is answered in the affirmative, in Theorem 2.4. First
we need the following results. Let S be a polytope in R™,

k k
S:{x:zx\ixizzx\izl,)\,-ZO, i:l,...,k}, (2.16)
i=1

i=1
such that 0 € S. For any D € D,,, denote

Xp = argxmeig |Dx||2- 2.17)

We denote by x S y the fact x <y, X #y. Also denote

2
A

{xp:D € Dy}, (2.18)
{x € S: 7y € Ssuch that|y| < |x|}. 2.19)

LEMMA 2.1. Letx € R™. Then

xeP & Zps0,p >0 hasnosolution, (2.20)

where Z = (2!, 2%, . . ., Z%) is the matrix with columns
7z =xo(x —x), i=1,...,k (2.21)

ProOOF.

xeP & 3IADeD,, (D(y —x),Dx) >0, VyeS (1,p41],
& 3D e D,, x'D¥y —x) > 0, Vyes,
& 3dDe€ Dy, x'D¥(x* —x) > 0, i=1,...,k,
= Z'd >0, d > 0 has a solution.
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By a theorem of alternatives [8, p. 29]

xeP <& ZpS0,p > 0has no solution.

THEOREM 22. P C A

PROOF. Forany x € S\ A, thereisy € S such that |y| S |x|. Therefore

1Dyll2 < [IDx|2

for any D € D,,, which implies x € S\ P. [ ]
THEOREM 2.3. A CclP.

PROOF.

Casel. x=(x;)€ A, x;#0,i=1,...,m. Weshow that x € P. If not, then

by Lemma 2.1
Zps0, px0, @22)

has a solution p. Let
k
y: = Z AxieS
i=1
with
pj

A=
! Zf:l pi

. j=1,2,... .k

Then (2.22) gives
xo(y—-x)S0. (2.23)

For sufficiently small A > 0, the vector
z2:=Ay+(1-Xxe€S.
Then it follows from (2.23) that
|z] S |x], contradicting x € A.

Case2. x=(x) € A, I°= {i:x; = 0} # 0. Without loss of generality let

=)
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We define

S = {y,: ({)’) es}, (2.24)

A; = {x; € §:3y; € S;such that ly;| S |x/]}. (2.25)

Then S; is a polytope and x; € A;. By case 1, there is a positive diagonal matrix
Dj such that
x; = arg min || Dy, (2.26)
YIES)

1
=D; 0
D, = ("0’ 1) € Dp,
and let x,, := xp,. Then by the definition (2.17)
' (%Dl(Xn)I) < l (%DIXI)
(xn)lC 2 - 0

Since S is bounded, the sequence {x,} has a convergent subsequence. Without
loss of generality, let x, — X € c]P. Then it follows from (2.27) that

Let

Q.27)

2

-X—Jc - 0
and
IDXi|l2 < || Dixi iz
By the uniqueness of x; in (2.26), we havex =X € cl P. [ ]

THEOREM 2.4. ¢l X {2} = clx{F},

ProoF. cl X2} c cl X{F} is obviously true. We prove cl X{F} < c1 x {2}
by showing X1} C cl X{2}: Let S be the polytope defined by

S:= {r(x) = Ax —b:x € C}.

Define P, A as before, and let x & cl X {2}, Then r(x) & cl’P. By Theorem 2.3,
r(x) ¢ A. Therefore there is y € C such that

Ay —b| S |Ax — b],

which implies

f(lAy — bl) < f(|Ax —b])
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for any f € F,. Therefore x ¢ X{F}, proving that X{F}  c] x{2}, u

REMARK 2.3. Theorem 2.4 shows that all linear approximation problems,
minimizing a strictly isotone function of the residual, can be solved using scaled
least-squares problems. Compare with Remark 2.1.

COROLLARY 2.1. ol X{1} =l x{2},

Proor. Follows from Remark 2.2 and Theorem 2.4. [ |

3. AIS OFFULL ROW RANK

Throughout this section let A € R?*" and b € R™. The convex hull of the
basic solutions (1.6) is

C:= conv{A/:;l\b:J € J}, (3.1)

where A;,lb has A, ,lb in position J, zeros elsewhere. For any 1 < p < oo and
N & D,, consider the problem

mxin{HN_lx”,, :Ax = b} 3.2)

and its solutions, called scaled minimum-l,-norm solutions, which are
unique for 1 < p < oo.

If N = I, these solutions are simply called minimum-1l,-norm solutions.

For p = 2 and any D € D,, the scaled minimum-l-norm solution of

min{||D~/?x|) : Ax = b}, (3.3)
x

is easily computed (see, e.g., [3]):
x = DAT(ADAT) ™ 'b. (3.4)

Let the set of scaled minimum-/,-norm solutions be
Xipy i= L% {x:x € arg mxin{HN"xH,, (AX = b}} . (3.5)
NED,

Then (3.4) gives
X(2y = {DAT(ADAT)"'b:D € D,}. (3.6)
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LEMMA 3.1. LetA € Ry*". Then X3 C C.

PROOF. Let x be the solution of (3.3), y := D~'/2x, B := AD'/2. Theny
is the minimum-/-norm solution of By = b and, by [2], a convex combination of

basic solutions, -
y= Z ’YJB:Jlb-
Jeg
Therefore

x = D'/%,

= ) wAbec. m
Jeg
The following theorem is analogous to Theorem 2.1.

THEOREM 3.1.  LetA € Ry, 1 < p < co. Then X,y = X(3).
PROOF. Analogous to the proof of Theorem 2.1. [ |
THEOREM 3.2. Let A € RE*". Then there is a solution x* of

m)in{||x||1 :Ax = b} 3.7

e

which is a basic solution of AXx = b, i.e., x* = A:,'bfor someJ € J.

PROOF. Lety be any solution of (3.7), and let ¢ = signy. Consider the
linear programming problem
(LP) min ¢'x
st. Ax=h,
Xi Z 0 if ci = 1,
X = 0 if Ci = 0,
Xi S 0 if C;i = —1.
Clearly y is an optimal solution of (LP), and any solution of (LP) is a solution of

(3.7). By the theory of linear programming, there is a solution of (LP) which is a
basic solution of Ax = b. n

The following theorem is analogous to Lemma 1.1.
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THEOREM 3.3. Let A € RP*" and let f be isotone. Then the problem
rrgn{f(|x|) :Ax = b}, (3.8)
has a solution in C. Iff is strictly isotone then every solution of (3.8) lies in C.

PROOF. Letx* = (x) be any solution of (3.8), and define three index sets
for the signs of x,

= {i:x] > 0}, ¢:={i:xf =0}, vi:={i:xf <0}
Consider the polyhedral set
Y= {y:Ay:b, Y= 20, ¥Y¢ =0,y SO}

Since x* € ), there exist extreme points y, ..., y(” and extreme directions
d®,...,d® of Y such that

r t
x* = Z Ay® + Zujd(’),
i=1 j=1

where

DN=1 A20, >0
i=1

Moreover, the extreme points of ) are given by y¥ = A_ ,‘b for some J € 7, and
the extreme directions belong to the cone

D:={d:Ad =0, d, >0,d; =0, d, <0}.

Let
x* =s+d,
where
r !
s = Z Ay®, d= Z ujd(i).

i=1 j=1

Then
[x*| = |s| + |d| (3.9

and

FAx*) = f(sD.
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By the optimality of x*,
FUx*) = f(s)), (3.10)

showing s € C is a solution of (3.8).
Next, suppose that f is strictly isotone. Then (3.10) implies |x*| = |s|.

d=0, by(39); . x =seC.
]

The following result, analogous to Theorem 2.4 and Corollary 2.1, is stated
without proof.

THEOREM 3.4. cl Xy = cl X = cl X(p), where

Xy o= | {x:xe arg min{f(|x|): Ax = b}} (3.11)
SEFn

4. THE GENERAL CASE

Throughout this section let A € R?*” and b € R™. The basic solutions (1.7)
are denoted

—

Xy := Ag;'by, ad,nHeN, 4.1)

and their convex hull
C :=conv{xy:(I,J)) e N'}. 4.2

Let f1, f> be isotone functions. Consider the problem
min {f>(/x]): X € arg rr;inf](]Ax —b)}. (4.3)
For any full-rank factorization A = CR, the above problem can be solved in stages:
minfi(|Cy — b)), (4.4)
min {f2(|X|)3RX =y, y€arg myinfl(le - bl)}. 4.5)
Combining Lemma 1.1 and Theorem 3.3, we have

THEOREM 4.1. Letf, be isotone, and let fi be strictly isotone. Then there is
a solution of (4.3) which is in C. If in addition f; is strictly isotone, every solution
of (4.3) lies in C.
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PROOF. LetA = CR be any full-rank factorization of A. Then clearly

Z(A) = 1(0), J@A) = J(R), (4.6)
and Ay = Cr.R,;V(,J) € N. By Lemma 1.1 every solution y of (4.4) is a convex
combination

y=>_ mCy,'b. @7
4

It follows from Theorem 3.3 that a solution of (4.5) is a convex combination

X = Y uRy,
Jeg
= > vy wR}Cllb, by 4.7,
ey IeI
= Y wx, (4.8)
a,NeN
where
Ay = v, (I,HeN, 4.9)
are also convex weights. The second part follows by applying the second part of
Theorem 3.3. |

An immediate corollary of Theorem 4.1 is
COROLLARY 4.1. Let1 < p; < oo. Then the problem
min {||x||,,2 !X € arg min |[Ax — b“m} 4.10)
X

has a solution in C. Moreover, if 1 < p; < 0o then every solution of (4.10) lies in
C.

The next example shows that Corollary 4.1 does not hold for p; = co.

ExaAMPLE4.1. Let
1 1

m}n||Ax—b||oo 4.1

Then the solution set of
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is 0 < x < 2. For all p, the minimum-/,-norm best [-approximate solution is
x = 0 and does not belong to C, which here is the singleton {1}.
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