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1. Introduction

Let K = Fq be a finite field with q elements and let yv1 , . . . , yvs be a finite set of Laurent mono-
mials. Given vi = (vi1, . . . , vin) ∈ Zn , we set

yvi = yvi1
1 · · · yvin

n , i = 1, . . . , s,

where y1, . . . , yn are the indeterminates of a ring of Laurent polynomials with coefficients in K .
An object of study here is the following set parameterized by these monomials

X := {[(
xv11

1 · · · xv1n
n , . . . , xvs1

1 · · · xvsn
n

)] ∣∣ xi ∈ K ∗ for all i
} ⊂ Ps−1,

where K ∗ = K \ {0} and Ps−1 is a projective space over the field K . Following [27] we call X an
algebraic toric set parameterized by yv1 , . . . , yvs . We are especially interested in measuring the size
of X , in terms of q, n and s, because |X | is the length of the linear codes that we will introduce and
examine here.

Let S = K [t1, . . . , ts] = ⊕∞
d=0 Sd be a polynomial ring over the field K with the standard grading.

Another object of study is the graded ideal I(X) ⊂ S generated by the homogeneous polynomials of S
that vanish on X . The ideal I(X) is called the vanishing ideal of X .

Some of the main contributions of this paper are in determining the structure of I(X) to compute
some of its invariants. The other main contributions are estimates (in certain cases formulas) of the
basic parameters of certain linear codes.

The main application we foresee is to algebraic coding theory because our results can be used to
study the performance of a new class of evaluation codes that we now introduce. Let [P1], . . . , [Pm]
be the points of X and let f0(t1, . . . , ts) = td

1. The evaluation map

evd : Sd = K [t1, . . . , ts]d → K |X |, f �→
(

f (P1)

f0(P1)
, . . . ,

f (Pm)

f0(Pm)

)

defines a linear map of K -vector spaces. The image of evd , denoted by C X (d), defines a linear code
that we call a parameterized code of order d. By a linear code we mean a linear subspace of K |X |. The
kernel of evd is the homogeneous part I(X)d of degree d of I(X). Therefore there is an isomorphism
of K -vector spaces

Sd/I(X)d � C X (d).

The dimension and the length of C X (d) are given by dimK C X (d) and |X | respectively. We will
provide algebraic methods to compute and study the dimension and the length of C X (d), which are
two of the basic parameters of a linear code. A third basic parameter is the minimum distance of C X (d),
which is given by δd = min{‖v‖: 0 
= v ∈ C X (d)}, where ‖v‖ is the number of non-zero entries of v .
The basic parameters of C X (d) are related by the Singleton bound for the minimum distance:

δd � |X | − dimK C X (d) + 1.

A good parameterized code should have large |X | and with dimK C X (d)/|X | and δd/|X | as large
as possible. Evaluation codes associated to a projective torus are called generalized Reed–Solomon
codes [14]. Parameterized codes are a natural extension of this sort of codes. Some special fami-
lies of evaluation codes have been extensively studied, including several variations of Reed–Muller
codes [5,12,13,15,22,26].
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Two of the basic parameters of C X (d) can be expressed using Hilbert functions of standard graded
algebras [31] as we now explain. Recall that the Hilbert function of S/I(X) is given by

H X (d) := dimK
(

S/I(X)
)

d = dimK Sd/I(X)d = dimK C X (d).

The unique polynomial hX (t) ∈ Z[t] such that hX (d) = H X (d) for d � 0 is called the Hilbert polyno-
mial of S/I(X). In our situation hX (t) is a non-zero constant. Furthermore hX (d) = |X | for d � |X | − 1,
see [19, Lecture 13]. This means that |X | equals the degree of S/I(X). Thus H X (d) and deg S/I(X)

equal the dimension and the length of C X (d) respectively.
The results of this paper will allow to compute the dimension and the length of C X (d) using

Hilbert functions. In certain interesting cases we show a nice formula for the length. For algebraic
toric sets arising from combinatorial structures, we are able to estimate the length in terms of n, q,
and the rank of a certain subgroup of Zn+1. When C X (d) arises from a connected non-bipartite graph,
we will show an upper bound for the minimum distance and compare this bound with the Singleton
bound (see Section 5).

The contents of this paper are as follows. The main theorems in Section 2 are algebraic expressions
for I(X), which can be used to extract information about the basic parameters of C X (d) using Gröbner
bases. Before introducing the theorems, recall that an additive subgroup of Zs is called a lattice.
A lattice ideal of S is an ideal of the form

I(L) := ({
ta − tb

∣∣ a,b ∈ Ns with a − b ∈ L
}) ⊂ S

for some lattice L ⊂ Zs . A polynomial of the form ta − tb , with a,b ∈ Ns , is called a binomial of S .
An ideal generated by binomials is called a binomial ideal. The concept of a lattice ideal is a natural
generalization of a toric ideal [36, Corollary 7.1.4].

In Theorem 2.1 we show that I(X) is a radical Cohen–Macaulay lattice ideal of dimension 1. More-
over, if vi ∈ Nn for all i, we prove the equality

I(X) = (
t1 − yv1 z, . . . , ts − yvs z, yq−1

1 − 1, . . . , yq−1
n − 1

) ∩ S,

where z is a new indeterminate. A similar statement holds for arbitrary vi ’s (see Theorem 2.13). In
light of this result, we can compute the reduced Gröbner basis of I(X), with respect to any term order
of the monomials of S , using the computer algebra system Macaulay2 [6,16]. Thus, we can compute
the Hilbert function and the degree of S/I(X), i.e., we can compute the dimension and the length
of C X (d).

We present a different expression for I(X)—via a saturation process—valid for a wide class of
algebraic toric sets (see Theorem 2.5 and Corollary 2.10). As a consequence, if

T = {[
(x1, . . . , xs)

] ∣∣ xi ∈ K ∗ for all i
} ⊂ Ps−1

is a projective torus, then I(T) = ({tq−1
i − tq−1

1 }s
i=2) (see Corollary 2.8). This equality was first shown

in [14]. Then we obtain a family of algebraic toric sets—arising from connected graphs—where I(X)

can be computed using a saturation process (see Corollary 2.11).
In Section 3 we focus on the computation of |X |, the length of C X (d). We uncover a direct method,

based on integer programming techniques, to compute |X | (see Proposition 3.3). Under certain con-
ditions we prove that (q − 1)r−1 divides the length of C X (d), where r is the rank of the subgroup
generated by {(vi,1)}s

i=1 (see Theorem 3.5). In some cases—when X comes from a connected graph—
we give a formula for the length of C X (d) (see Corollary 3.8).

The elements of C X (d) can be interpreted as rational functions on X . For this reason, in Section 4,
we study the geometric structure of X . Let I A be the toric ideal of A = {v1, . . . , vs}, i.e., I A is the
prime ideal of S of polynomial relations of yv1 , . . . , yvs . We call A homogeneous if A lies on an
affine hyperplane not containing the origin. We prove that if A is homogeneous, then the projective
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toric variety V (I A) intersected with a projective torus T ⊂ Ps−1 is always parameterized by Laurent
monomials (see Theorem 4.1(i)). This gives a method to produce projective varieties parameterized
by Laurent monomials. As a byproduct, letting V A denote V (I A) ∩ T, our results allow to compute
I(V A) using Gröbner bases (see Theorem 4.1(ii)). As we will see, often an algebraic toric set X is
in fact a projective variety defined by binomials (see Proposition 4.3). In particular, we obtain the
equality X = V A for any A arising from the edges of a connected graph. As a consequence, we show
a finite Nullstellensatz (see Corollary 4.4).

The dimension of C X (d) is increasing, as a function of d, until it reaches a constant value [5,11].
We observe that the minimum distance of C X (d) has the opposite behavior: it is decreasing, as a
function of d, until it reaches a constant value (see Proposition 5.2).

Finally, in Section 5, we present an application of our results and techniques to algebraic coding
theory. We show upper bounds for the minimum distance of parameterized codes arising from a con-
nected non-bipartite graph (see Theorem 5.3). The geometric perspective of Section 4 plays a role
here. A comparison between our bound and the Singleton bound is given (see Remark 5.4 and Exam-
ple 5.5). We give an explicit formula for the minimum distance of C X (d) when X is a projective torus
in P2 (see Proposition 5.7). Part of this formula was already known [14]; our contribution here is to
use a result of [18] together with the proof of Theorem 5.3 to treat the cases not covered in [14].

For all unexplained terminology and additional information, we refer to [25,33] (for the theory of
binomial and toric ideals), [7,35] (for computational commutative algebra), [2] (for graph theory), and
[23,32,34] (for the theory of error-correcting codes and linear codes).

2. The ideal of an algebraic toric set parameterized by monomials

We continue to use the notation and definitions used in the introduction. Here we study the
structure of the graded ideal I(X) and show algebraic methods to compute a finite set of binomials
generating I(X). We begin this section by introducing X∗ , the affine companion of X , that shares
some of the properties of X , such as being a multiplicative group. Some of our results will admit
affine versions for X∗ as well. However, as a matter of staying focused, we will deal mostly with X
while X∗ will play by and large an auxiliary role.

Let K = Fq be a finite field with q elements and let K [y±1
1 , . . . , y±1

n ] be a ring of Laurent poly-
nomials with coefficients in K . Consider a set yv1 , . . . , yvs of Laurent monomials with vi ∈ Zn and
vi = (vi1, . . . , vin) ∈ Zn . The following set is called the affine algebraic toric set parameterized by these
monomials:

X∗ := {(
xv11

1 · · · xv1n
n , . . . , xvs1

1 · · · xvsn
n

) ∣∣ xi ∈ K ∗ for all i
}
.

This model of parametrization was introduced in [27]. In [21,27] a classification of the affine toric
varieties that are parameterized by monomials is given. The set (K ∗)s is called an affine algebraic torus
of dimension s and is denoted by T∗ . The affine torus T∗ is a multiplicative group under the product
operation

α · α′ = (α1, . . . ,αs) · (α′
1, . . . ,α

′
s

) = (
α1α

′
1, . . . ,αsα

′
s

)
.

Clearly, the set X∗ is also a group under componentwise multiplication. We have the inclusions X∗ ⊂
T∗ ⊂ As \ {0}, where As denotes the affine space K s .

The projective space of dimension s − 1 over K , denoted by Ps−1, is the quotient space

(
K s \ {0})/ ∼

where two points α, β in K s \ {0} are equivalent if α = λβ for some λ ∈ K . We denote the equivalence
class of α by [α]. By definition, there is a structure map

ϕs : As \ {0} → Ps−1, α �→ [α].
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The image of X∗ under ϕs will be denoted by X . The set X is the algebraic toric set parameterized
by yv1 , . . . , yvs that was defined earlier in the introduction:

X := {[(
xv11

1 · · · xv1n
n , . . . , xvs1

1 · · · xvsn
n

)] ∣∣ xi ∈ K ∗ for all i
} ⊂ Ps−1.

The set X is a multiplicative group with the product operation induced by that of X∗ . The group
structure of X and X∗ will come into play in Section 3.

Let S = K [t1, . . . , ts] be a polynomial ring with coefficients in the field K with the standard grading
S = ⊕∞

d=0 Sd induced by setting deg(ti) = 1 for all i. We are interested in the radical ideal I(X)

generated by the homogeneous polynomials of S that vanish on X .
Recall the following notion from commutative ring theory, which will be used a few times in the

exposition. Let D be a commutative ring with unit and let M be a D-module. The set

Z D(M) := {r ∈ D | rm = 0 for some 0 
= m ∈ M}

is called the set of zero divisors of M . If D is the ring of integers, we denote the set of zero divisors
of M simply by Z(M).

We come to one of the main results of this section, a structure theorem allowing—with the help
of Macaulay2 [6,16]—the computation of the Hilbert function and the degree of S/I(X).

Theorem 2.1. Let B = K [t1, . . . , ts, y1, . . . , yn, z] be a polynomial ring over the finite field K = Fq. If vi ∈ Nn

for all i, then the following holds:

(a) I(X) = ({ti − yvi z}s
i=1 ∪ {yq−1

i − 1}n
i=1) ∩ S and I(X) is a binomial ideal.

(b) ti /∈ Z S(S/I(X)) for all i and I(X) is a radical lattice ideal.
(c) S/I(X) is a Cohen–Macaulay ring of dimension 1.

Proof. (a) We set I ′ = (t1 − yv1 z, . . . , ts − yvs z, yq−1
1 −1, . . . , yq−1

n −1) ⊂ B . First we show the inclusion
I(X) ⊂ I ′ ∩ S . Take a homogeneous polynomial F = F (t1, . . . , ts) of degree d that vanishes on X . We
can write

F = λ1tm1 + · · · + λrtmr
(
λi ∈ K ∗; mi ∈ Ns), (2.1)

where deg(tmi ) = d for all i. Write mi = (mi1, . . . ,mis) for 1 � i � r. Applying the binomial theorem to
expand the right-hand side of the equality

t
mij

j = [(
t j − yv j z

) + yv j z
]mij

, 1 � i � r, 1 � j � s,

and then substituting all the t
mij

j in Eq. (2.1), we obtain that F can be written as:

F =
s∑

i=1

gi
(
ti − yvi z

) + zd F
(

yv1 , . . . , yvs
)

(2.2)

for some g1, . . . , gs in B . By the division algorithm in K [y1, . . . , yn] (see [4, Theorem 3, p. 63]) we
can write

F
(

yv1 , . . . , yvs
) =

n∑
hi

(
yq−1

i − 1
) + G(y1, . . . , yn) (2.3)
i=1
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for some h1, . . . ,hn in K [y1, . . . , yn], where the monomials that occur in G = G(y1, . . . , yn) are not
divisible by any of the monomials yq−1

1 , . . . , yq−1
n , i.e., degyi

(G) < q − 1 for i = 1, . . . ,n. Therefore,
using Eqs. (2.2) and (2.3), we obtain the equality

F =
s∑

i=1

gi
(
ti − yvi z

) +
(

n∑
i=1

hi
(

yq−1
i − 1

))
zd + G(y1, . . . , yn)zd. (2.4)

Thus to show that F ∈ I ′ ∩ S we need only show that G = 0. We claim that G vanishes on (K ∗)n . Take
an arbitrary sequence x1, . . . , xn of elements of K ∗ . Making ti = xvi for all i in Eq. (2.4) and using that
F vanishes on X , we obtain

0 = F
(
xv1 , . . . , xvs

) =
s∑

i=1

g′
i

(
xvi − yvi z

) +
(

n∑
i=1

hi
(

yq−1
i − 1

))
zd + G(y1, . . . , yn)zd. (2.5)

Since (K ∗, ·) is a group of order q − 1, we can then make yi = xi for all i and z = 1 in Eq. (2.5) to get
that G vanishes on (x1, . . . , xn). This completes the proof of the claim. Therefore G vanishes on (K ∗)n

and degyi
(G) < q − 1 for all i. By induction on n it follows that G = 0. We can also show that G = 0

by a direct application of the combinatorial Nullstellensatz [1].
Next we show the inclusion I(X) ⊃ I ′ ∩ S . Let G be a Gröbner basis of I ′ with respect to the

lexicographic order y1 � · · · � yn � z � t1 � · · · � ts . By Buchberger algorithm [4, Theorem 2, p. 89]
the set G consists of binomials and by elimination theory [4, Theorem 2, p. 114] the set G ∩ S is a
Gröbner basis of I ′ ∩ S . Hence I ′ ∩ S is a binomial ideal. Thus to show the inclusion I(X) ⊃ I ′ ∩ S
it suffices to show that any binomial in I ′ ∩ S is homogeneous and vanishes on X . Take a binomial
f = ta − tb in I ′ ∩ S , where a = (ai) and b = (bi) are in Ns . Then we can write

f =
s∑

i=1

gi
(
ti − yvi z

) +
n∑

i=1

hi
(

yq−1
i − 1

)
(2.6)

for some polynomials g1, . . . , gs,h1, . . . ,hn in B . Making yi = 1 for i = 1, . . . ,n and ti = yvi z for
i = 1, . . . , s, we get

za1 · · · zas − zb1 · · · zbs = 0 ⇒ a1 + · · · + as = b1 + · · · + bs.

Hence f is homogeneous. Take a point [P ] in X with P = (xv1 , . . . , xvs ). Making ti = xvi in Eq. (2.6),
we get

f
(
xv1 , . . . , xvs

) =
s∑

i=1

g′
i

(
xvi − yvi z

) +
n∑

i=1

h′
i

(
yq−1

i − 1
)
.

Hence making yi = xi for all i and z = 1, we get that f (P ) = 0. Thus f vanishes on X .
Thus, we have shown the equality I(X) = I ′ ∩ S . The proof of the inclusion I(X) ⊃ I ′ ∩ S shows

that I ′ ∩ S is a binomial ideal. Hence I(X) is a binomial ideal.
(b) Observe that a binomial ideal J ⊂ S is a lattice ideal if and only if ti /∈ Z S(S/ J ) for all i. This is

a consequence of [8, Corollary 2.5]. Thus by part (a) we need only show that ti is not a zero divisor
of S/I(X) for all i. Let [P ] be a point in X , with P = (α1, . . . ,αs), and let I[P ] be the ideal generated
by the homogeneous polynomials of S that vanish at [P ]. Then

I[P ] = (α1t2 − α2t1,α1t3 − α3t1, . . . ,α1ts − αst1) and I(X) =
⋂

[P ]∈X

I[P ] (2.7)
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and the later is the primary decomposition of I(X), because I[P ] is a prime ideal of S for any [P ] ∈ X .
Thus rad I(X) = I(X), i.e., I(X) is a radical ideal. Since

Z S
(

S/I(X)
) =

⋃
[P ]∈X

I[P ]

it is seen that ti is not a zero divisor for any i.
(c) As I[P ] has height s − 1 for any [P ] ∈ X , we get that dim S/I(X) = 1. By (b) any variable ti is an

S-regular element of S/I(X). Thus any variable ti form a homogeneous regular system of parameters
of S/I(X), i.e., S/I(X) is a Cohen–Macaulay ring by [36, Proposition 2.2.7]. �

By Theorem 2.1(a), the ideal I(X) is generated by binomials. This fact is surprising, because ac-
cording to Eq. (2.7) I(X) is a radical ideal and all its minimal primes, except p = ({ti − t1}s

i=2), are
non-binomial.

The next notion that we need is that of the saturation of an ideal with respect to a polynomial.
We will determine when I(X) can be obtained by a saturation process (see Corollary 2.10).

Definition 2.2. For an ideal Q ⊂ S and a polynomial h ∈ S , the saturation of Q with respect to h is
the ideal

(
Q : h∞) := {

f ∈ S
∣∣ f hm ∈ Q for some m � 1

}
.

We will only deal with the case where h = t1 · · · ts .

Let A = {v1, . . . , vs} ⊂ Zn and let I A be its associated toric ideal, i.e., I A is the prime ideal of S
given by (see [33]):

I A =
(

ta − tb
∣∣∣ a = (ai), b = (bi) ∈ Ns,

∑
i

ai vi =
∑

i

bi vi

)
⊂ S. (2.8)

The toric ideal I A is the kernel of the following epimorphism of K -algebras

K [t1, . . . , ts] → K
[

yv1 , . . . , yvs
]

induced by ti �→ yvi . We call A homogeneous if there is a vector x0 ∈ Qn such that 〈vi, x0〉 = 1
for all i. From Eq. (2.8) it follows that any binomial in I A vanishes on X . If A is homogeneous,
then any binomial in I A is homogeneous, in the standard grading of S , hence belongs to I(X).
The binomial tq−1

i − tq−1
1 vanishes on (K ∗)s because (K ∗, ·) is a group of order q − 1. Hence

tq−1
i − tq−1

1 belongs to I(X) for all i. Thus if A is homogeneous, then I(X) contains the binomial

ideal Q = I A + ({tq−1
i − tq−1

1 }s
i=2). For a large class of algebraic toric sets, we show that I(X) is the

saturation of Q with respect to t1 · · · ts . We also describe when I(X) is the saturation of Q with
respect to t1 · · · ts .

Let us introduce some more notation. Given Γ ⊂ Zn , the subgroup of Zn generated by Γ is denoted
by ZΓ .

Lemma 2.3. If c = (ci) ∈ Zs and
∑

i ci = 0, then c is in Z{e2 − e1, . . . , es − e1}, where ei is the ith unit vector
of Zs .

Proof. Notice that Z{e2 −e1, . . . , es −e1}+Ze1 = Zs . Then c = λ1e1 +∑s
i=2 λi(ei −e1) for some λi ∈ Z.

As
∑

i ci = 0, we get λ1 = 0. �
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Definition 2.4. Given a ∈ Rs , its support is defined as supp(a) = {i | ai 
= 0}. Note that a can be uniquely
written as a = a+ − a− , where a+ and a− are two non-negative vectors with disjoint support which
are called the positive and negative part of a respectively.

We come to another of the main results of this section.

Theorem 2.5. Let K = Fq be a finite field, let A = {v1, . . . , vs} ⊂ Zn, and let φ : Zn/L → Zn/L be the multi-
plication map φ(a) = (q − 1)a, where L = Z{vi − v1}s

i=2 . If A is homogeneous, then

(
I A + (

tq−1
2 − tq−1

1 , . . . , tq−1
s − tq−1

1

)
: (t1 · · · ts)

∞) ⊂ I(X) (2.9)

with equality if and only if the map φ is injective.

Proof. We set Q = I A + (tq−1
2 − tq−1

1 , . . . , tq−1
s − tq−1

1 ). From the discussion above we have the inclu-
sion Q ⊂ I(X). By Theorem 2.1(b) each variable ti is not a zero divisor of S/I(X). It follows readily
that (Q : (t1 · · · ts)

∞) ⊂ I(X).
To prove the second part of the theorem we first need to identify the left-hand side of Eq. (2.9)

with a lattice ideal for some specific lattice. Let A be the matrix with column vectors v1, . . . , vs and
consider the lattice

L = kerZ(A) + Z
{
(q − 1)(ei − e1)

}s
i=2 ⊂ Zs,

where kerZ(A) = {x ∈ Zs | Ax = 0} and ei denotes the ith unit vector of Rs . It is seen that

I(L) = (
Q : (t1 · · · ts)

∞)
, (2.10)

see [8, Corollary 2.5] or [25, Lemma 7.6]. This equality is valid over any field K .
⇒) Assume that equality holds in Eq. (2.9). Let b = (bi) be an element of ker(φ). Then we can

write

(q − 1)b =
s∑

i=1

ai vi with
s∑

i=1

ai = 0. (2.11)

Consider the homogeneous binomial f = ta+ − ta−
, where a = (ai) = a+ − a− . From Eq. (2.11) we get

the equality

x
a+

1 v1i+···+a+
s vsi

i = x
a−

1 v1i+···+a−
s vsi

i for any xi ∈ K ∗.

Consequently f (xv1 , . . . , xvs ) = 0 for any sequence x1, . . . , xn in K ∗ . Then f vanishes on X and is
homogeneous, i.e., f ∈ I(X). By hypothesis and using Eq. (2.10), we obtain the equality I(X) = I(L).
Thus f = ta+ − ta−

belongs to I(L). It is seen that a = a+ − a− belongs to L. Then we can write
a = k + c, where k ∈ kerZ(A) and c ∈ Z{(q − 1)(ei − e1)}s

i=2. Then from Eq. (2.11) it follows readily that

(q − 1)b = Aa = Ak + Ac = Ac = (q − 1)Ac′,

for some c′ ∈ Z{(ei − e1)}s
i=2. Hence b = Ac′ , i.e., b belongs to L. This means that b = 0 and we have

shown that φ is injective, as required.
⇐) Assume that φ is injective. We now prove the inclusion (Q : (t1 · · · ts)

∞) ⊃ I(X). Take a bino-
mial f = ta − tb in I(X) with a = (ai) and b = (bi) in Ns . By Theorem 2.1(a) it suffices to prove that
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f is in (Q : (t1 · · · ts)
∞). Thus by Eq. (2.10) we need only show that a−b ∈ L. We set vi = (vi1, . . . , vin)

for i = 1, . . . , s. Since f vanishes on X we get

[
xv11

1 · · · xv1n
n

]a1 · · · [xvs1
1 · · · xvsn

n
]as = [

xv11
1 · · · xv1n

n
]b1 · · · [xvs1

1 · · · xvsn
n

]bs for all xi ∈ K ∗.

Let β be a generator of the cyclic group (K ∗, ·). Then for any (	1, . . . , 	n) in [1,q − 1]n ∩ Nn we can
substitute xi = β	i for i = 1, . . . ,n in the equality above to obtain

[(
β	1

)v11 · · · (β	n
)v1n

]a1 · · · [(β	1
)vs1 · · · (β	n

)vsn
]as

= [(
β	1

)v11 · · · (β	n
)v1n

]b1 · · · [(β	1
)vs1 · · · (β	n

)vsn
]bs for all 1 � 	i � q − 1, 	i ∈ N.

Therefore for any 	 = (	1, . . . , 	n) ∈ [1,q − 1]n ∩ Nn we get

βa1〈	,v1〉 · · ·βas〈	,vs〉 = βb1〈	,v1〉 · · ·βbs〈	,vs〉.

Since β has order q − 1 we obtain

a1〈	, v1〉 + · · · + as〈	, vs〉 ≡ b1〈	, v1〉 + · · · + bs〈	, vs〉 mod (q − 1).

If we set ci = ai − bi for all i and δ = (δi) := c1 v1 + · · · + cs vs , then

〈	, δ〉 ≡ 0 mod (q − 1) (2.12)

for any 	 in [1,q − 1]n ∩ Nn . Making 	 = (q − 1,1, . . . ,1) and 	′ = (q − 2,1, . . . ,1) in Eq. (2.12) we get
the equalities

〈	, δ〉 = (q − 1)δ1 + δ2 + · · · + δn ≡ 0 mod (q − 1),〈
	′, δ

〉 = (q − 2)δ1 + δ2 + · · · + δn ≡ 0 mod (q − 1).

Consequently, subtracting these equalities, we get that δ1 ≡ 0 mod (q − 1). By an appropriate choice
of 	 and 	′ a similar argument shows that δi ≡ 0 mod (q − 1) for all i. Therefore we can write
δ = (q−1)γ for some γ ∈ Zn . Notice that δ ∈ L because ta −tb is homogeneous, i.e., because

∑
i ci = 0.

Since the map φ is injective we obtain that γ ∈ L ⊂ ZA. Hence we can write

δ = c1 v1 + · · · + cs vs = (q − 1)(d1 v1 + · · · + ds vs)

for some di ’s in Z. Setting c = (ci) and d = (di), the vector k = (ki) = c − (q − 1)d is in kerZ(A). Notice
that

∑
i ki = 0, because

∑
i ki vi = 0 and A is homogeneous. Since

∑
i ci = 0, by Lemma 2.3 we get that

c and k are in Z{ei − e1}s
i=2. From the equality k = c − (q − 1)d we obtain that (q − 1)d ∈ Z{ei − e1}s

i=2
and since the quotient group

Zs/Z{ei − e1}s
i=2

is torsion-free we get that d ∈ Z{ei − e1}s
i=2. Altogether we conclude that c = k + (q − 1)d, where

k ∈ kerZ(A) and (q − 1)d ∈ Z{(q − 1)(ei − e1)}s
i=2, that is, c ∈ L, as required. �

Remark 2.6. If equality occurs in Eq. (2.9), then X is the projective variety defined by the binomial
ideal I A + ({tq−1

i − tq−1
1 }s

i=2). This will follow from Lemma 4.2 and the proof of Proposition 4.3.
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Remark 2.7. The map φ is injective if and only if q − 1 is not a zero divisor of Zn/L if and only if the
equality (L : Zn (q − 1)) = L holds, where the left-hand side of the equality is a colon ideal consisting
of all a ∈ Zn such that (q − 1)a ∈ L.

Corollary 2.8. (See [14, Theorem 1].) Let T∗ = (K ∗)s be an affine algebraic torus and let T be its image in Ps−1

under the map ϕs . Then I(T) = ({tq−1
i − tq−1

1 }s
i=2).

Proof. The set T is an algebraic toric set parameterized by the monomials yv1 , . . . , yvs , where vi = ei
for all i. Since I A = (0) and the group Zs/L = Zs/Z{ei − e1}s

i=2 is torsion-free, the equality follows
from Theorem 2.5. �

In [14] the evaluation codes associated to T are called generalized Reed–Solomon codes. Thus pa-
rameterized codes are a natural extension of this sort of codes.

If D is an integral domain and M is a D-module, then the torsion sub-module of M , denoted by
T D(M), is the set of all m in M such that pm = 0 for some 0 
= p ∈ D . We say that M is torsion-free if
T D(M) = (0). In what follows D will always be the ring of integers. Thus, we denote the set of zero
divisors and the torsion sub-module of M simply by Z(M) and T (M) respectively.

Lemma 2.9. Let A = {v1, . . . , vs} ⊂ Zn, let L = Z{vi − v1}s
i=2 and let B = {(vi,1)}s

i=1 . Then

(i1) there is an isomorphism of groups τ :T (Zn/L) → T (Zn+1/ZB), given by τ (a) = (a,0),
(i2) Z(Zn/L) = Z(Zn+1/ZB),
(i3) if A is homogeneous, then I A = I B .

Proof. (i1): The map τ is clearly a well-defined one-to-one homomorphism of groups. To prove that
τ is onto let (a,b) ∈ T (Zn+1/ZB) with a ∈ Zn , b ∈ Z. There is 0 
= p ∈ N such that

p(a,b) = λ1(v1,1) + · · · + λs(vs,1) (λi ∈ Z).

Then pa = λ1 v1 + · · · + λs vs and pb = λ1 + · · · + λs . Hence we obtain the equality

p(a − bv1) = λ2(v2 − v1) + · · · + λs(vs − v1).

This means that a − bv1 is an element of T (Zn/L). It follows readily that τ (a − bv1) = (a,b). Thus
τ is onto. (i2): This is not hard to prove. It follows using that the map τ is an isomorphism. (i3): This
follows by a direct application of [36, Corollary 7.2.42]. �

Using this lemma we will prove the next generalized version of Theorem 2.5, valid for any A. The
trick to show the next result is to lift A to a homogeneous set B in Zn+1.

Corollary 2.10. Let A = {v1, . . . , vs} ⊂ Zn and let B = {(v1,1), . . . , (vs,1)}. Then

(a) (I B + (tq−1
2 − tq−1

1 , . . . , tq−1
s − tq−1

1 ) : (t1 · · · ts)
∞) ⊂ I(X).

(b) Equality in (a) holds if and only if q − 1 /∈ Z(Zn+1/ZB).
(c) Let p1, . . . , pm be the prime numbers (if any) that occur in the factorizations of the invariant factors of the

Z-module Zn+1/ZB. Equality in (a) holds if and only if either Zn+1/ZB is torsion-free or q 
≡ 1 mod pi
for all i.

Proof. Let w be a new parameter and let X w be the image under the map ϕs of the set

(
X∗)w = {(

xv11
1 · · · xv1n

n w, . . . , xvs1
1 · · · xvsn

n w
) ∣∣ xi ∈ K ∗ for all i, w ∈ K ∗}.
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Clearly B is homogeneous because if we set x0 = en+1, we get 〈x0, (vi,1)〉 = 1 for all i. By Lemma 2.9
we have Z(Zn/L) = Z(Zn+1/ZB), where L = Z{vi − v1}s

i=2. Therefore (a) and (b) follow at once from
Theorem 2.5 and Remark 2.7 because X = X w .

We now prove (c). If Zn+1/ZB is torsion-free, then equality holds in (a) by part (b). Hence we
may assume that this module has torsion. By the fundamental structure theorem of finitely generated
abelian groups (see [20, pp. 187–188]) we have

Zn+1/ZB � Zr0 × Zq
α1
1

× · · · × Zqαr
r

, (2.13)

where qi ∈ {p1, . . . , pm} and r0 = n +1− rank(ZB). From Eq. (2.13) it is seen that one has the equality
Z(Zn+1/ZB) = ⋃m

i=1(pi). Therefore, by (b), equality holds in (a) if and only if q − 1 /∈ ⋃m
i=1(pi) if and

only if q 
≡ 1 mod pi for all i. �
Corollary 2.11. Let G be a simple graph with vertex set V G = {y1, . . . , yn}, edge set EG , and let A be the set
of all ei + e j such that {yi, y j} ∈ EG . If c1 is the number of non-bipartite connected components of G, then the
equality

(
I A + (

tq−1
2 − tq−1

1 , . . . , tq−1
s − tq−1

1

)
: (t1 · · · ts)

∞) = I(X) (2.14)

holds if and only if either 0 � c1 � 1 or c1 � 2 and char(K ) = 2. In particular equality holds for any finite
field K if G is connected or if G is bipartite.

Proof. Let A = {v1, . . . , vs} and let B = {(v1,1), . . . , (vs,1)} be a lifting of A. Notice that I A = I B
because A is homogeneous, see Lemma 2.9(i3). We denote the matrix whose columns are the vectors
in A (resp. B) by A (resp. B). The matrices A and B have the same rank r. We denote the greatest
common divisor of all the non-zero r × r sub-determinants of A (resp. B) by �r(A) (resp. �r(B)).

We claim that �r(B) = 2c1−1 if c1 � 1 and �r(B) = 1 if c1 = 0. If c1 = 0, then G is bipartite. Thus
�r(B) = 1 because in this case A is totally unimodular [29, p. 273], i.e., any sub-determinant of A is
equal to 0 or ±1. Assume that c1 � 1, i.e., G is not bipartite. There is an exact sequence of groups

0 → T
(
Zn+1/ZB

) ϑ−→ T
(
Zn/ZA

) ψ−→ Z2 → 0, (2.15)

where the homomorphisms are defined as follows. For a = (a1, . . . ,an) ∈ Zn and b ∈ Z, we set

ϑ(a,b) = a and ψ(a) = a1 + · · · + an.

It is not hard to verify that ϑ is injective, ψ is onto, and im(ϑ) = ker(ψ). The exact sequence of
Eq. (2.15) is a particular case of [30, Eq. (∗), p. 2044]. It is well known [20, pp. 187–188] that the
orders of the groups T (Zn/ZA) and T (Zn+1/ZB) are �r(A) and �r(B) respectively. Therefore, using
the exact sequence above, we get �r(A) = 2�r(B). By a result of [17] we have

Zn/ZA � Zn−r × Z
c1
2 = Zc0 × Z

c1
2 (2.16)

and r = n − c0, where c0 is the number of bipartite components of G . Hence �r(A) = 2c1 , and con-
sequently �r(B) = 2c1−1 as claimed. This means that Zn+1/ZB is torsion-free if and only if c1 = 1.
It also means that p1 = 2 is the only prime factor that can occur in the factorizations of the invari-
ant factors of Zn+1/ZB. The number of elements of K is equal to q = pu for some prime number p
and some u � 1, where p is the characteristic of the field K . Altogether, by Corollary 2.10(c), we get
that equality holds in Eq. (2.14) if and only if 0 � c1 � 1 or c1 � 2 and pu 
≡ 1 mod 2 if and only if
0 � c1 � 1 or c1 � 2 and p = 2. �
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Example 2.12. Let A be the point configuration consisting of the following points in Z6:

v1 = (1,1,0,0,0,0), v2 = (0,1,1,0,0,0), v3 = (1,0,1,0,0,0),

v4 = (0,0,0,1,1,0), v5 = (0,0,0,0,1,1), v6 = (0,0,0,1,0,1).

In this case we have Z6/ZA � Z2 × Z2 and Z7/ZB � Z × Z2. If K is a finite field with q = 2m

elements, then q 
≡ 1 mod 2 and I A = I B = 0. Thus using Corollary 2.10(c) we get the equality
I(X) = ({tq−1

i − tq−1
1 }6

i=2). If K is a field with 3 elements, then using Macaulay2 [16] together with
Theorem 2.1 it is seen that I(X) is minimally generated by 15 binomials. In this case we do not have
equality in Corollary 2.10(a).

The next result can be shown using the argument in the proof of Theorem 2.1.

Theorem 2.13. Let B = K [t1, . . . , ts, y0, y1, . . . , yn, z] be a polynomial ring over a finite field K = Fq and let
vi ∈ Zn for all i. The following holds:

(a) I(X) = (yv−
1 t1 − yv+

1 z, . . . , yv−
s ts − yv+

s z, yq−1
1 − 1, . . . , yq−1

n − 1, y0 y1 · · · yn − 1) ∩ S.
(b) I(X) is a Cohen–Macaulay lattice ideal and dim S/I(X) = 1.

3. The length of parameterized codes and the degree of S/I(X)

We continue using the definitions and terms from the introduction and from Section 2. Let
A = {v1, . . . , vs} ⊂ Zn and let X be an algebraic toric set parameterized by the Laurent monomials
yv1 , . . . , yvs . In this section we study |X |, the degree of S/I(X). The motivation to study |X | comes
from coding theory because this number represents the length of C X (d), the parameterized code of
order d.

As before, we denote the Hilbert polynomial of S/I(X) by hX (t). The index of regularity of S/I(X),
denoted by reg(S/I(X)), is the least integer p � 0 such that hX (d) = H X (d) for d � p. The degree and
the regularity index can be read off the Hilbert series as we now explain. The Hilbert series of S/I(X)

can be written as

F X (t) :=
∞∑

i=0

H X (i)ti =
∞∑

i=0

dimK
(

S/I(X)
)

it
i = h0 + h1t + · · · + hrtr

1 − t
,

where h0, . . . ,hr are positive integers. Indeed hi = dimK (S/(I(X), ts))i . This follows from the fact that
I(X) is a Cohen–Macaulay lattice ideal. The number r equals the regularity index of S/I(X) and the
degree of S/I(X) equals h0 + · · · + hr (see [31] or [36, Corollary 4.1.12]).

Although Theorems 2.1 and 2.13 provide an effective method to compute the degree with
Macaulay2 [16], we seek other methods that can lead to explicit formulas for |X | for certain fami-
lies of point configurations, especially for these arising from finite graphs.

At the other end, the number of elements of X∗ , the affine counterpart of X , can alternatively
be obtained by using linear algebra methods over the ring Z/(q − 1)Z, i.e., by solving linear systems
over this ring. This may then be used to estimate |X |. As mentioned before, some of the results of
this paper have an affine version. We can think of this linear algebra approach to compute |X∗| as
the analog of Proposition 3.3, which is a device that enables to use linear programming methods. The
multiplicity of approaches is a hint of the mathematical richness embodied in the parametrization
models dealt with in this work.

We begin by presenting a direct method, based on integer programming [29], to compute the
degree of S/I(X). A key element here is the fact that X is a multiplicative group as explained in
Section 2. Let T∗ = (K ∗)n be an affine algebraic torus of dimension n. There is a surjective homomor-
phism of multiplicative groups
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θ : T∗ → X; (x1, . . . , xn)
θ�−→ [(

xv1 , . . . , xvs
)]

.

Therefore T∗/ker(θ) � X and |T∗| = (q−1)n = |X ||ker(θ)|. Thus computing |X | amounts to computing
|ker(θ)|.

Lemma 3.1. Let (xi) = (β	1 , . . . , β	n ) ∈ T∗ with β a generator of (K ∗, ·) and 0 � 	i � q − 2 for all i. Then
(xi) ∈ ker(θ) if and only if there are unique integers λ1, . . . , λs,μ such that

	A = (q − 1)λ + μ1; 0 � μ � q − 2; 	 = (	i); λ = (λi); 1 = (1, . . . ,1).

Proof. Assume that (xi) ∈ ker(θ). Then [(xv1 , . . . , xvs )] = [1]. This means that there is an integer μ
such that 0 � μ � q − 2 and

β〈vi ,	〉 = βμ for all i.

Hence there are integers λ1, . . . , λs such that

〈vi, 	〉 − μ = (q − 1)λi for all i ⇒ 	A = (q − 1)λ + μ1,

as required. To show the uniqueness assume that 〈vi, 	〉 − μ = (q − 1)λi and 〈vi, 	〉 − μ′ = (q − 1)λ′
i

for some i. Then (q − 1)(λi −λ′
i) = μ′ −μ. Since |μ′ −μ| is at most q − 2, we get λi = λ′

i and μ′ = μ.
The converse follows readily by direct substitution of xi = β	i into [(xv1 , . . . , xvs )]. �
Remark 3.2. If vi ∈ Nn , then λi � 0. This follows by dividing 〈vi, 	〉 by (q − 1).

Proposition 3.3. The map β	 �→ (	, λ,μ) gives a bijection between ker(θ) and the integral vectors of the
polytope

P = {
(	,λ,μ)

∣∣ 	 = (	i); λ = (λi); 	A = (q − 1)λ + μ1; 0 � 	i � q − 2 for all i; 0 � μ � q − 2
}
.

In particular the number of integral vectors of P equals |ker(θ)|.

Proof. By Lemma 3.1 the map β	 �→ (	, λ,μ) is well defined and bijective. �
Example 3.4. Let A be the matrix with column vectors v1 = (1,1,0,0), v2 = (0,1,1,0), v3 =
(0,0,1,1), v4 = (1,0,0,1). Let K be a field with q = 5 elements. The integral points of P and the
elements of ker(θ) can be found directly using Porta [3]. A computation with this program shows that
P ∩ Zn+s+1 has 16 points and that ker(θ) is equal to

(
β0, β0, β0, β0), (

β0, β1, β0, β1), (
β0, β2, β0, β2), (

β0, β3, β0, β3),(
β1, β0, β1, β0), (

β1, β1, β1, β1), (
β1, β2, β1, β2), (

β1, β3, β1, β3),(
β2, β0, β2, β0), (

β2, β1, β2, β1), (
β2, β2, β2, β2), (

β2, β3, β2, β3),(
β3, β0, β3, β0), (

β3, β1, β3, β1), (
β3, β2, β3, β2), (

β3, β3, β3, β3).
Hence in this case one has 44 = (q − 1)n = |X ||ker(θ)| = |X |16. Then |X | = 16.
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Before we state our next result, recall that a subset B ⊂ Zn+1 is called a Hilbert basis if NB =
R+B ∩ Zn+1, where NB is the semigroup generated by B, and R+B is the polyhedral cone generated
by B consisting of the linear combinations of B with non-negative coefficients. A polyhedral cone
containing no lines is called pointed. The subgroup of Zn+1 generated by B is denoted by ZB. The
ideal I(X) is called a complete intersection if it can be generated by s − 1 homogeneous polynomials
of S .

Theorem 3.5. Let B = {(v1,1), . . . , (vs,1)} and let r = rank(ZB). If the polyhedral cone R+B is pointed and
B is a Hilbert basis, then (q − 1)r−1 divides |X |.

Proof. By [10], after permutation of the (vi,1)’s, we may assume that B′ = {(v1,1), . . . , (vr,1)} is
a Hilbert basis and a linearly independent set. It is a fact that B is a Hilbert basis if and only if
R+B ∩ ZB = NB and Zn+1/ZB is a torsion-free group. This fact can be shown using lattice theory. In
Lemma 3.7 we show the part of this fact that we really need, namely that B′ is a Hilbert basis if and
only if the group Zn+1/ZB′ is torsion-free.

Consider the algebraic toric set parameterized by yv1 , . . . , yvr :

X1 = {[(
xv1 , . . . , xvr

)] ∣∣ xi ∈ K ∗ for all i
} ⊂ Pr−1.

Since I B′ = (0) and Zn+1/ZB′ is torsion-free, by Corollary 2.10(b) we obtain the equality

I(X1) = ({
tq−1

i − tq−1
1

}r
i=2

)
.

Thus I(X1) is a complete intersection generated by r − 1 forms of degree q − 1. For complete inter-
sections there is an explicit formula for the Hilbert series [36, p. 104]. Hence using this formula we
get that the degree of K [t1, . . . , tr]/I(X1) is equal to (q − 1)r−1, i.e., |X1| = (q − 1)r−1. To complete the
proof consider the epimorphism

θ1 : T∗ → X1; (x1, . . . , xn)
θ1�−→ [(

xv1 , . . . , xvr
)]

,

where T∗ = (K ∗)n is an affine algebraic torus. Since ker(θ) ⊂ ker(θ1), there is an epimorphism
θ1 : X → X1 such that the diagram

T∗ X1
�θ1

�
θ

X
θ1�

�
�
���

is commutative. Therefore |X1| = (q − 1)r−1 divides |X |. �
Definition 3.6. Let P ⊂ Rn be a lattice polytope, i.e., P is the convex hull of a finite set of integral
points in Rn . The relative volume of P , denoted by vol(P ), is given by

vol(P) := lim
i→∞

|Zn ∩ iP|
id

,

where d = dim(P ), i ∈ N, iP = {ix | x ∈ P }.

Lemma 3.7. Let B′ = {u1, . . . , ur} ⊂ Zn+1 be a set of linearly independent vectors. Then B′ is a Hilbert basis
if and only if Zn+1/ZB′ is torsion-free.
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Proof. Let B ′ be the matrix with column vectors u1, . . . , ur and let �r(B ′) be the greatest common
divisor of all the non-zero r × r sub-determinants of B ′ . Assume that B′ is a Hilbert basis. Since
|T (Zn+1/ZB′)| is equal to �r(B ′), we need only show �r(B ′) = 1. According to [9, Lemma 2.1] there
are vectors γ1, . . . , γr in Zn+1 such that

RB′ ∩ Zn+1 = Zγ1 ⊕ · · · ⊕ Zγr,

where RB′ is the vector space spanned by B′ . Then we can write

ui = ci1γ1 + · · · + cirγr (i = 1, . . . , r)

where C = (ci j) is an integral matrix. By [9, Remark 2.2], we have

�r
(

B ′) = r!vol
(
conv(0, u1, . . . , ur)

) = ∣∣det(C)
∣∣.

To complete the proof it suffices to show that |det(C)| = 1. Let c1, . . . , cr be the rows of C . As B′ is
a Hilbert basis, it is seen that the rows of C form a Hilbert basis. Let Q = [0,1]r and let P be the
parallelotope

P = {λ1c1 + · · · + λrcr | 0 � λi � 1}.

Recall that vol(P ) = |det(C)|. As c1, . . . , cr are linearly independent and form a Hilbert basis, we have

(k + 1)r = ∣∣kQ ∩ Zr
∣∣ = ∣∣kP ∩ Zr

∣∣ for all k ∈ N.

Therefore

1 = lim
k→∞

(k + 1)r

kr
= lim

k→∞
|kQ ∩ Zr |

kr
= lim

k→∞
|kP ∩ Zr |

kr
= vol(P).

Thus we have shown 1 = vol(P ) = |det(C)|, as required. The converse follows readily. �
Corollary 3.8. Let G be a connected graph with vertex set V G = {y1, . . . , yn}, edge set EG , and let A =
{v1, . . . , vs} be the set of all ei + e j ∈ Rn such that {yi, y j} ∈ EG . Then |X | = (q − 1)n−1 if G is non-bipartite
and |X | = (q − 1)n−2 if G is bipartite.

Proof. Assume that G is non-bipartite. Then G has a connected subgraph H with the same ver-
tex set and with a unique cycle of odd length. We may assume that {v1, . . . , vn} is the set of all
ei + e j such that {yi, y j} is an edge of H . Let B ′ be the matrix whose columns are the vectors in

B′ = {(v1,1), . . . , (vn,1)}. Then �n(B ′) = 1, see the proof of Corollary 2.11. As |T (Zn+1/ZB′)| equals
�n(B ′), we obtain that Zn+1/ZB′ is torsion-free. Therefore, by Lemma 3.7, the set B′ is a Hilbert basis
and generates a group of rank n. Hence by Theorem 3.5 we get that (q − 1)n−1 divides X1, where

X1 = {[(
xv1 , . . . , xvn

)] ∣∣ xi ∈ K ∗ for all i
} ⊂ Pn−1.

There is a well-defined epimorphism

θ1 : X → X1;
[(

xv1 , . . . , xvs
)] θ1�−→ [(

xv1 , . . . , xvn
)]
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induced by the projection map [(α1, . . . ,αs)] �→ [(α1, . . . ,αn)]. Thus |X1| divides |X |. Hence (q−1)n−1

divides |X |. On the other hand the kernel of the map

θ : T∗ → X; (x1, . . . , xn)
θ�−→ [(

xv1 , . . . , xvs
)]

contains the diagonal subgroup D∗ = {(λ, . . . , λ) | λ ∈ K ∗}. Thus |X | divides (q − 1)n−1. Putting alto-
gether we get |X | = (q − 1)n−1.

Assume that G is bipartite. We may assume that V 1 = {y1, . . . , yp}, V 2 = {yp+1, . . . , yn} is the
bipartition of G . The graph G has a spanning tree H with the same vertex set. We may assume
that {v1, . . . , vn−1} is the set of all ei + e j such that {yi, y j} is an edge of H . Let B ′ be the matrix
whose columns are the vectors in B′ = {(v1,1), . . . , (vn−1,1)}. Then �n−1(B ′) = 1, see the proof of
Corollary 2.11. Therefore, by Lemma 3.7, the set B′ is a Hilbert basis and generates a group of rank
n − 1. Hence by Theorem 3.5 we get that (q − 1)n−2 divides |X1|, where

X1 = {[(
xv1 , . . . , xvn−1

)] ∣∣ xi ∈ K ∗ for all i
} ⊂ Pn−2.

There is an epimorphism θ1 : X → X1. Thus |X1| divides |X | and consequently (q − 1)n−2 divides |X |.
On the other hand the kernel of the map θ : T∗ → X contains the set Γ of all vectors of the form

(
βa, . . . , βa︸ ︷︷ ︸

p-entries

, βb, . . . , βb)︸ ︷︷ ︸
(n−p)-entries

with 0 � a,b � q − 2. Indeed any of these vector maps to [(βa+b, . . . , βa+b)] = [1] under the map θ .
Since |Γ | = (q − 1)2 we obtain that |X | � (q − 1)n−2. Altogether |X | = (q − 1)n−2. �

Parameterized codes arising from complete bipartite graphs have been studied in [13]. In [13] one
can find formulas for some of its basic parameters. As an application we recover a formula for the
length of these codes.

Corollary 3.9. (See [13, Theorem 5.1].) If G is a complete bipartite graph with n vertices, then the length of the
parameterized code C X (d) is equal to (q − 1)n−2 .

The hypothesis that G is connected is essential in Corollary 3.8:

Example 3.10. Let K = F7 and let X be the algebraic toric set parameterized by the monomials
y1 y2, y2 y3, y1 y3, y4 y5, y5 y6, y4 y6. Using Theorem 2.1 and Macaulay2 [16] we get:

|X | = degree S/I(X) = (q − 1)n−1/2 = 3888, reg S/I(X) = 16,

the ideal I(X) is generated by 15 binomials, and the Hilbert function of S/I(X) is given by

H X (0) = 1, H X (1) = 6, H X (2) = 21, H X (3) = 56, H X (4) = 126,

H X (5) = 252, H X (6) = 457, H X (7) = 762, H X (8) = 1182, H X (9) = 1712,

H X (10) = 2313, H X (11) = 2898, H X (12) = 3373, H X (13) = 3678,

H X (14) = 3828, H X (15) = 3878, H X (16) = 3888.

Thus the length of the parameterized code C X (d) of order d is 3888 and its dimension is H X (d). Then
the Singleton bound gives that the minimum distance of C X (15) is at most 11.
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4. The vanishing ideal of certain projective binomial varieties

Let K = Fq be a finite field and let A = {v1, . . . , vs} ⊂ Zn be a point configuration. In this sec-
tion we study the geometric structure of X , the algebraic toric set parameterized by yv1 , . . . , yvs .
A sufficient condition is given for X to be a projective variety defined by binomials and a finite Null-
stellensatz is brought up in this connection. We prove that certain projective binomial varieties are
parameterized by Laurent monomials.

Let V (I A) = {[α] ∈ Ps−1 | f (α) = 0 for all f ∈ I A with f homogeneous} be the projective toric
variety defined by the toric ideal I A . We shall be interested in the following projective binomial
variety V A and in its corresponding ideal I(V A):

V A := V (I A) ∩ T = V
(

I A + ({
tq−1

i − tq−1
1

}s
i=2

))
,

where T = V ({tq−1
i − tq−1

1 }s
i=2) = {[(αi)] ∈ Ps−1 | αi ∈ K ∗ for all i} is a projective torus.

First we prove that V A is parameterized by Laurent monomials provided that A is homogeneous.
As in previous sections, let A be the matrix with column vectors v1, . . . , vs . Recall that kerZ(A)

is a free abelian group of finite rank. Let c1, . . . , cm be a set of generators of kerZ(A). Write ci =
(ci1, . . . , cis) for 1 � i � m. Consider the linear system

c11x1 +· · ·+ c1sxs − (q − 1)xs+1 = 0

...
...

...
...

cm1x1 +· · ·+ cmsxs − (q − 1)xs+m =0.

(4.1)

The integral solutions of this system form a free abelian group of finite rank. Let

γ1 = (α11, . . . ,αs1,α(s+1)1, . . . ,α(s+m)1)

...
...

...
...

...

γk = (α1k, . . . , αsk, α(s+1)k, . . . , α(s+m)k)

(4.2)

be a set of generators for this group and let α1 = (α11, . . . ,α1k), . . . ,αs = (αs1, . . . ,αsk).

Theorem 4.1. Let Z = {[(zα11
1 · · · zα1k

k , . . . , zαs1
1 · · · zαsk

k )] | zi ∈ K ∗ for all i} ⊂ Ps−1 be the algebraic toric set
parameterized by yα1 , . . . , yαs . If A = {v1, . . . , vs} is homogeneous, then

(i) Z = V A .

(ii) I(V A) = (yα−
1 t1 − yα+

1 z, . . . , yα−
s ts − yα+

s z, yq−1
1 − 1, . . . , yq−1

k − 1, y0 y1 · · · yk − 1) ∩ S.

Proof. (i) First we prove the inclusion “⊂”: Take [w] ∈ Z . Let f = ta − tb be a binomial in I A with
a = (ai) and b = (bi) in Ns . Notice that f is homogeneous because so is A. By Theorem 2.1 the ideal
I A is a binomial ideal. Thus we need only show that f (w) = 0. We can write

w = (wi) = (
zα11

1 · · · zα1k
k , . . . , zαs1

1 · · · zαsk
k

)
for some z1, . . . , zk in K ∗ . Let β be a generator of the cyclic group (K ∗, ·). Each zi can be written as
zi = β	i for some 0 � 	i � q − 2. Hence
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f (w) = (
zα11

1 · · · zα1k
k

)a1 · · · (zαs1
1 · · · zαsk

k

)as − (
zα11

1 · · · zα1k
k

)b1 · · · (zαs1
1 · · · zαsk

k

)bs

= β p1 − β p2 , where (4.3)

p1 − p2 = 	1
〈
a − b, (α11, . . . ,αs1)

〉 + · · · + 	k
〈
a − b, (α1k, . . . ,αsk)

〉
. (4.4)

From Eqs. (4.1) and (4.2) we have

〈
(c j1, . . . , c js), (α1i, . . . ,αsi)

〉 ≡ 0 mod (q − 1) (4.5)

for all i, j. The difference a − b is in the kernel of A. Thus we can write

a − b = η1(c11, . . . , c1s) + · · · + ηm(cm1, . . . , cms) (4.6)

for some ηi in Z. If we substitute the right-hand side of Eq. (4.6) into Eq. (4.4), and then use Eq. (4.5),
we obtain that p1 − p2 ≡ 0 mod (q − 1). Thus β p1 = β p2 and f (w) = 0.

“⊃”: Take [w] ∈ V A . We can write w = (βh1 , . . . , βhs ), where β is a generator of the cyclic
group K ∗ . Since A is homogeneous and Aci = 0, we get that f = tc+

i − tc−
i is a homogeneous bi-

nomial in I A . Thus the evaluation of f at w is zero. This means that β〈h,ci〉 = 1 for all i, where
h = (hi). Hence 〈h, ci〉 ≡ 0 mod (q − 1) for all i. Hence using Eq. (4.1) and the choice of the αi ’s we
obtain

h = λ1(α11, . . . ,αs1) + · · · + λk(α1k, . . . ,αsk), λi ∈ Z.

Making zi = βλi we have w = (βh1 , . . . , βhs ) = (zα11
1 · · · zα1k

k , . . . , zαs1
1 · · · zαsk

k ). Thus [w] ∈ Z . Part (ii)
follows from (i) and Theorem 2.13. �
Lemma 4.2. If X ⊂ Y ⊂ T and I(X) = I(Y ), then X = Y .

Proof. Let [α] = [(αi)] be a point in Y . The ideal p = ({α1ti − αit1}s
i=2) is a minimal prime of I(Y ),

then p is a minimal prime of I(X). Thus p = ({γ1ti − γit1}s
i=2) for some [(γi)] ∈ X . Notice that G1 =

{ti − (αi/α1)t1}s
i=2 and G2 = {ti − (γi/γ1)t1}s

i=2 are both reduced Gröbner basis of p with respect to
the lex ordering ts � · · · � t1. Then by the uniqueness of such basis [4] we obtain G1 = G2. Hence
αi/α1 = γi/γ1 for i = 1, . . . , s and (αi) = (α1/γ1)(γi), i.e., [(αi)] = [(γi)]. This proves that [(αi)] ∈ X ,
as required. �
Proposition 4.3. If A is homogeneous and Zn/Z{vi − v1}s

i=2 is torsion-free, then X = V A . In particular we
have equality for any A arising from a connected or bipartite graph.

Proof. The inclusion X ⊂ V A is easy to see. The ideal I(V A) is a graded radical ideal such that ti is
not a zero divisor of S/I(V A) for all i. This follows by observing the equality

I(V A) =
⋂

[P ]∈V A

I[P ]

where I[P ] = (α1t2 − α2t1,α1t3 − α3t1, . . . ,α1ts − αst1) is the prime ideal generated by the homoge-
neous polynomials of S that vanish on [P ] = [(αi)]. Hence it is seen that

(
I A + (

tq−1
2 − tq−1

1 , . . . , tq−1
s − tq−1

1

)
: (t1 · · · ts)

∞) ⊂ I(V A) ⊂ I(X).

By Theorem 2.5 equality holds everywhere. Thus I(V A) = I(X). Then by Lemma 4.2 we get
V A = X . �
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Combining this result with Theorem 2.5 we obtain:

Corollary 4.4 (Finite Nullstellensatz). If A is homogeneous and Zn/Z{vi − v1}s
i=2 is torsion-free, then

(
I A + ({

tq−1
i − tq−1

1

}s
i=2

)
: (t1 · · · ts)

∞) = I
(

V
(

I A + ({
tq−1

i − tq−1
1

}s
i=2

)))
.

In particular this equality holds for any A arising from a connected or bipartite graph.

5. Minimum distance in parameterized codes

As an application of our results, in this section we present an upper bound for the minimum
distance of a parameterized code arising from a connected non-bipartite graph. A comparison between
our bound and the Singleton bound will be given. The geometric perspective of Section 4 plays a role
here. We will give an explicit formula for the minimum distance of C X (d) when X is a projective
torus in P2.

We begin with a general fact about parameterized linear codes. The dimension of C X (d) is in-
creasing, as a function of d, until it reaches a constant value. This behavior was pointed out in [5]
(resp. [11]) for finite (resp. infinite) fields.

Proposition 5.1. (See [5,11].) Let H X (d) be the dimension of the parameterized linear code C X (d) and let r be
the regularity index of S/I(X). Then

1 = H X (0) < H X (1) < · · · < H X (r − 1) < H X (d) = |X | for d � r.

The minimum distance of C X (d) has the opposite behavior. It is decreasing, as a function of d,
until it reaches a constant value.

Proposition 5.2. If δd > 1 (resp. δd = 1), then δd > δd+1 (resp. δd+1 = 1).

Proof. To show the first assertion assume that δd > 1. For any homogeneous polynomial F in S we
set Z X (F ) = {[P ] ∈ X | F (P ) = 0}. By definition of δd it suffices to show that

max
{∣∣Z X (F )

∣∣: F ∈ Sd; evd(F ) 
= 0
}

< max
{∣∣Z X (F )

∣∣: F ∈ Sd+1; evd+1(F ) 
= 0
}
.

Let F be a polynomial in Sd such that evd(F ) 
= 0 and with |Z X (F )| as large as possible. As δd > 1,
there are [P1] 
= [P2] in X with P1 = (1,a2, . . . ,as) and P2 = (1,b2, . . . ,bs) such that F (Pi) 
= 0 for
i = 1,2. Then ak 
= bk for some k. Let G = F (akt1 − tk). Thus G ∈ Sd+1, G does not vanish on X because
G(P2) 
= 0 and G has more zeros than F . This proves the inequality above. The second assertion is
also easy to show. �

The method of proof of the next result can also be applied to other families of parameterized
codes, e.g., to parameterized codes arising from Ehrhart clutters [24] or from bipartite graphs.

We come to our main application.

Theorem 5.3. Let G be a connected non-bipartite graph with s edges, let V G = {y1, . . . , yn} be its vertex set,
and let X be the algebraic toric set parameterized by the set of monomials yi y j such that {yi, y j} is an edge
of G. If δd is the minimum distance of C X (d) and d � 1, then

δd �
{

(q − 1)n−(k+2)(q − 1 − 	) if d � (q − 2)(n − 1) − 1,

1 if d � (q − 2)(n − 1),

where k and 	 are the unique integers so that k � 0, 1 � 	 � q − 2 and d = k(q − 2) + 	.
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Proof. Let v1, . . . , vs be the set of all ei + e j ∈ Rn such that {yi, y j} is an edge of G . Thus X is the
algebraic toric set parameterized by yv1 , . . . , yvs . As G is a connected non-bipartite graph, there is a
connected subgraph H of G with the same vertex set as G and with a unique cycle of odd length.
Thus H is connected non-bipartite has n vertices and n edges. We may assume that {v1, . . . , vn} is
the set of all ei + e j ∈ Rn such that {yi, y j} is an edge of H .

Consider the algebraic toric set parameterized by yv1 , . . . , yvn :

X1 = {[(
xv1 , . . . , xvn

)] ∣∣ xi ∈ K ∗ for all i
} ⊂ Pn−1.

We claim that I(X1) = ({tq−1
i − tq−1

n }n−1
i=1 ). Let B ′ be the matrix whose columns are the vectors in

B′ = {(v1,1), . . . , (vn,1)}. From the proof of Corollary 3.8, we obtain that the group Zn+1/ZB′ is
torsion-free, and since B′ is linearly independent, using Corollary 2.10(b) we obtain

({
tq−1

i − tq−1
n

}n−1
i=1

) = (({
tq−1

i − tq−1
n

}n−1
i=1

)
: (t1 · · · tn)

∞)
= (

I B′ + ({
tq−1

i − tq−1
n

}n−1
i=1

)
: (t1 · · · tn)

∞)
= I(X1).

This completes the proof of the claim. Let T = {[(x1, . . . , xn)] | xi ∈ K ∗ ∀i} be a projective torus in Pn−1.
By Corollary 2.8, we have I(T) = I(X1). Consequently by Lemma 4.2, we conclude the equality T = X1.

Let δ′
d be the minimum distance of C X1 (d). Next we show that δd � δ′

d . By Corollary 3.8 one has
|X | = |X1| = (q − 1)n−1. Therefore the projection map

θ1 : X → X1,
[
(α1, . . . ,αs)

] �→ [
(α1, . . . ,αn)

]
is an isomorphism of multiplicative groups. For any homogeneous polynomial F , we denote its zero
set by Z X (F ) = {[P ] ∈ X | F (P ) = 0}. Let S ′ = K [t1, . . . , tn] = ⊕∞

d=0 S ′
d and let F1 ∈ S ′

d be a polynomial
such that evd(F1) 
= 0 and with |Z X1(F1)| as large as possible, i.e., we choose F1 so that δ′

d = |X1| −
|Z X1 (F1)|. We can regard the polynomial F1 = F1(t1, . . . , tn) as an element of S and denote it by F .
The map θ1 induces a bijective map

θ1 : Z X (F ) �→ Z X1(F1), [P ] �→ θ1
([P ]).

Therefore we have the inequality

max
{∣∣Z X (F )

∣∣: F ∈ Sd; evd(F ) 
= 0
}

� max
{∣∣Z X1(F1)

∣∣: F1 ∈ S ′
d; evd(F1) 
= 0

}
.

Consequently δd � δ′
d .

Case (I): First we consider the case 1 � d � (q − 2)(n − 1) − 1. Let

M = max
{∣∣Z X1(F1)

∣∣: F1 ∈ S ′
d; evd(F1) 
= 0

}
,

M1 = (q − 1)n−k−2((q − 1)k+1 − (q − 1) + 	
)
.

Next we show that M � M1. It suffices to exhibit a homogeneous polynomial F1 in S ′ of degree d with
exactly M1 roots in X1 = T. Let β be a generator of the cyclic group (K ∗, ·). Consider the polynomial
F1 = f1 f2 · · · fk g	 , where f1, . . . , fk, g	 are given by
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f1 = (βt1 − t2)
(
β2t1 − t2

) · · · (βq−2t1 − t2
)
,

f2 = (βt1 − t3)
(
β2t1 − t3

) · · · (βq−2t1 − t3
)
,

...

fk = (βt1 − tk+1)
(
β2t1 − tk+1

) · · · (βq−2t1 − tk+1
)
,

g	 = (βt1 − tk+2)
(
β2t1 − tk+2

) · · · (β	t1 − tk+2
)
.

Now, the roots of F1 in X1 are in one-to-one correspondence with the union of the following sets:

{1} × {
β i}q−2

i=1 × (
K ∗)n−2

,

{1} × {1} × {
β i}q−2

i=1 × (
K ∗)n−3

,

...

{1} × · · · × {1} × {
β i}q−2

i=1 × (
K ∗)n−(k+1)

,

{1} × · · · × {1} × {
β i}	

i=1 × (
K ∗)n−(k+2)

.

Therefore the number of zeros of F1 in X1 is given by

∣∣Z X1(F1)
∣∣ = (q − 2)

[
(q − 1)n−2 + (q − 1)n−3 + · · · + (q − 1)n−(k+1)

] + 	(q − 1)n−(k+2)

= (q − 1)n−(k+2)
[
(q − 1)k+1 − (q − 1) + 	

] = M1,

as required. Thus M � M1. Altogether we get

δd � δ′
d = min

{∥∥evd(F1)
∥∥: evd(F1) 
= 0; F1 ∈ S ′

d

}
= |X1| − max

{∣∣Z X1(F1)
∣∣: F1 ∈ S ′

d; evd(F1) 
= 0
}

� (q − 1)n−1 − (
(q − 1)n−k−2((q − 1)k+1 − (q − 1) + 	

))
= (q − 1)n−k−2((q − 1) − 	

)
,

where ‖evd(F1)‖ is the number of non-zero entries of evd(F1). This completes the proof of the case
1 � d � (q − 2)(n − 1) − 1.

Case (II): Next we consider the case d � (q − 2)(n − 1). Since I(X1) = ({tq−1
i − tq−1

1 }n
i=2), the Hilbert

series of S ′/I(X1) is given by F X1 (t) = (1 − tq−1)n−1/(1 − t)n . Hence the regularity index of S ′/I(X1)

equals (n − 1)(q − 2). Thus dimK C X1 (d) = |X1| for d � (n − 1)(q − 2). By the Singleton bound we get

1 � δd � δ′
d � |X1| − dimK C X1(d) + 1 = 1

for d � (n − 1)(q − 2). Thus δd = 1 for d � (n − 1)(q − 2). �
Remark 5.4. If G is an odd cycle of length n � 3 and X is the algebraic toric set parameterized by the
edges of G , then the minimum distance of C X (d) equals δ′

d [28]. This means that for any odd cycle the
bound of Theorem 5.3 is sharper that the Singleton bound for any d � 1. For connected non-bipartite
graphs which are not cycles, our bound is sharper than the Singleton bound within a certain range
(see Example 5.5).



102 C. Rentería-Márquez et al. / Finite Fields and Their Applications 17 (2011) 81–104
Example 5.5. Let G be the following complete graph on five vertices and let X be the algebraic toric
set parameterized by all yi y j such that {yi, y j} is an edge of G .

� �y2

� y1
�
�
�
��

������

y5

�y4 � y3

�
�
��

�
�

��

�
�� �

��
������

�
�
�
��

Let C X (d) be the parameterized code of order d over the field K = F7 and let bd (resp. δ′
d) be the

Singleton bound (resp. the bound of Theorem 5.3). Then the minimum distance of C X (d) is bounded
by min{bd, δ

′
d}. Using Macaulay2 [16], together with Theorem 2.1, we obtain:

d 1 2 3 4 5 6 7 8 9 10 11 12 13
bd 1287 1252 1162 977 646 316 127 36 6 1 1 1 1
δ′

d 1080 864 648 432 216 180 144 108 72 36 30 24 18

d 14 15 16 17 18 19 20
δ′

d 12 6 5 4 3 2 1

Thus our bound is better than the Singleton bound for d = 1, . . . ,6. For d > 7 is the other way
around. If T is a projective torus in P4, it is seen that the minimum distance of CT(d) is exactly δ′

d ,
i.e., the upper bound δ′

d is the minimum distance of a linear code.

A linear code is called maximum distance separable (MDS for short) if equality holds in the Singleton
bound. Reed–Solomon codes are MDS [32, p. 42]. The next result is not hard to show. It follows by
adapting the argument of [32, p. 42].

Proposition 5.6. Let T = {[(x1, x2)] | xi ∈ K ∗ for i = 1,2} be a projective torus in P1 . Then the minimum
distance δd of the parameterized code CT(d) is given by

δd =
{

q − 1 − d if 1 � d � q − 3,

1 if d � q − 2,

and CT(d) is an MDS code.

Finally we compute the minimum distance for the parameterized code defined by a projective
torus in P2.

Proposition 5.7. Let T = {[(x1, x2, x3)] | xi ∈ K ∗ for all i} be a projective torus in P2 . Then the minimum
distance δd of the parameterized code CT(d) is given by

δd =

⎧⎪⎨
⎪⎩

(q − 1)2 − d(q − 1) if 1 � d � q − 2,

2q − d − 3 if q − 1 � d � 2q − 5,

1 if d � 2q − 4.

Proof. The case 1 � d � q − 2 was shown in [14, Theorem 2]. To show the second case assume that
q − 1 � d � 2q − 5. By Corollary 2.8, the vanishing ideal I(T) is a complete intersection generated by
tq−1

2 − tq−1
1 and tq−1

3 − tq−1
1 . Therefore the inequality δd � 2q − d − 3 is a direct consequence of [18,

Theorem 4.4]. Next, we write d = (q − 2) + 	 where 1 � 	 � q − 3. Let β be a generator of (K ∗, ·). The
homogeneous polynomial
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F = (βt1 − t2) · · · (β(q−2)t1 − t2
)
(βt1 − t3) · · · (β	t1 − t3

)
has degree d and the zero set ZT(F ) of F in T is the set:

({1} × {
β i}q−2

i=1 × K ∗) ∪ ({1} × {1} × {
β i}	

i=1

)
.

Therefore the number of zeros of F in T is given by

∣∣ZT(F )
∣∣ = (q − 2)(q − 1) + 	.

This implies that

δd � (q − 1)2 − (
(q − 2)(q − 1) + 	

) = 2q − d − 3.

Thus δd = 2q − d − 3. Finally, since the vanishing ideal of T is a complete intersection, the regularity
index of K [t1, t2, t3]/I(T) is equal to 2(q − 2). Thus by the Singleton bound we get that δd = 1 for
d � 2q − 4. �

The lower bound of Hansen [18, Theorem 4.4]—for the minimum distance of evaluation codes on
complete intersections—that we used in the proof above has been nicely generalized in [12, Theo-
rem 3.2].
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