
Theoretical Computer Science 109 (1993) 257-274

Elsevier

257

On categorical graph grammars
integrating structural
transformations and operations
on labels *

H.J. Schneider
Lehrsiuhl ftir Programmiersprachen der Unioersiiiit Erlangen-Niirnberg. MartensstraJCe, 3, W-8520
Erlangen, Germany

Abstracr

Schneider, H.J., On categorical graph grammars integrating structural transformations and opera-

tions on labels, Theoretical Computer Science 109 (1993) 257-274.

Graph-theoretic structures are an obvious means to reason about systems of asynchronous pro-

cesses. Their dynamic behaviour can be simulated by applying productions of a graph grammar. The

present paper is motivated by looking for a formal method that is able to describe the behaviour of

systems of processes that share data structures. We generalize the categorical graph-grammar

approach by labelling the graphs with elements of a suitable category rather than with those of an

alphabet. Thus, operations can be performed on the labels while the graphs are rewritten. After

presenting the fundamental definitions and some properties, we demonstrate the usefulness of the

approach by modelling some well-known Petri nets as well as a generalized net the places of which

are labelled with graphs. Finally, we show that known theoretical techniques are applicable to the

generalized framework by exemplary discussing parallel independence of derivation steps.

1. Introduction

Graph-theoretic structures are an obvious means to reason about a lot of things in

computer science. Whereas the traditional graph theory is mainly concerned with

static properties of graphs, computer science applications also include dynamically

changing the structure. Different types of graph grammars have been developed

to describe the dynamic behaviour of graph structures. Each step corresponds to

Correspondence to: H.J. Schneider, Lehrstuhl fiir Programmiersprachen der UniversitPt Erlangen-

Niirnberg, MartensstraBe 3, W-8520 Erlangen, Germany.

*This work was partly supported by Deutsche Forschungsgemeinschaft (SFB 182 - Project Bl).

0304-3975/93/$06.00 c 1993-Elsevier Science Publishers B.V. All rights reserved

258 H.J. Schneider

applying a production, the left-hand side of which defines the applicability condition,

i.e., a subgraph and its labelling. By applying the production, we replace an occurrence

of its left-hand side by the right-hand side to alter the structure of the graph. In the

present paper, we continue a line of research in which some authors have already tried

to overcome the limitations of working with label-preserving graph morphisms. A first

approach to the problem of relabelling was given by Ehrig et al. [6] in 1981. We

generalize an idea due to Parisi-Presicce et al. [111; these authors imposed a simple

structure on the set of labels to allow variables in the productions. The approach can

easily be extended: Labelling is done in categories rather than in an alphabet. In this

way, operations can be performed on the labels while the graphs are rewritten.

The usefulness of our approach is demonstrated by a quite natural modelling of

condition/event nets and place/transition nets in the new framework. Although in this

paper we model only the token game, it is clear that the graph-grammar approach is

also suited to model dynamic systems of processes which can grow and shrink.’ As far

as we know, Wileden [17] was the first to point out that firing in a Petri net can be

interpreted in the framework of graph grammars. His approach as well as Reisig’s

[14] use arithmetics to manage the number of tokens on the places. Kreowski [S]

added a bunch of special edges to each place indicating the number of tokens and the

remaining capacity.

In Section 2, we present the fundamental definitions and prove the properties we

need. In Section 3, we apply the approach to two well-known types of Petri nets and

show that our framework also covers a generalization allowing places to be labelled

with graphs. This case is motivated by studying systems of processes which share data

structures. Finally, we exemplary characterize the parallel independence of derivation

steps in the generalized framework.

2. Labelled graph grammars

2.1. Dejinitions

We use the categorical graph-grammar approach as it is outlined, e.g., in Ehrig’s

introductory paper [2]. This approach allows us to take full advantage of some

theoretical results. Ehrig et al. [3], Kreowski [9] and Kreowski and Wilharm [lo]

have extensively studied the problem of applying productions concurrently or in

parallel.

Definition 2.1. A C-production is a pair of morphisms p =(‘B +-- ” KP’B’) in

a suitable category C.

The objects ‘B and B’ are called the left-hand side and the right-hand side of the

production, respectively. K is the so-called gluing object; in the special case of a graph

1 An example describing a parallel sorting algorithm by a graph grammar will be given in a forthcoming

paper.

On categorical graph grammars 259

production, i.e., C is the category of graphs, it defines the boundary connecting the

left-hand side (after applying the production: the right-hand side) to the context.

Definition 2.2. Given a C-production p, we say that G’ is derivable from ‘G with

respect to p: ‘GgG’ if and only if there exist an object D and a morphism K-+D such

that both parts of Diagram 1 are pushout diagrams.

D is called the context object. If C is the category of graphs, we may interpret it as

the context that remains unchanged in applying the production.

Usually, the category C is assumed to have pushouts; in this case, the diagram can

uniquely be completed if the production and the morphism K+D are given. On the

other hand, however, G’ is not unambiguously defined by the production and the

morphism ‘B-+/G. It is possible that different context objects exist (and, thus, different

G’) or that there is no context object at all. The category of graphs is an example

where this may happen. In our original paper on graph grammars, we have already

given a gluing condition ensuring the existence of a context object, and we could show

that it is unambiguous if ‘p is injective [7]. This criterion has led Raoult [13] to a new

approach replacing ‘p by an inverse (partial) graph morphism ‘p-’ and then using

only one pushout construction. Van den Broek [l] compared the generative power of

both approaches.

The definition also makes sense if we assume that only the required pushout objects

exist. Of course, we are not allowed to use all theorems in this case without carefully

taking into account the consequences of weakening the assumption2

We now consider categories of labelled graphs.

Definition 2.3. A graph G is a quadruple G = (E, V, s, t), with E and V being finite sets

and s, t : E -+ V being mappings.

E and V denote the set of edges and nodes (vertices), respectively. s(e) denotes the

source node of an edge e and t(e) its target node. Considering more than one graph, we

Diagram 1

2 The category S-graph mentioned below is an example of such a category

260 H.J. Schneider

distinguish their constituents E, V, s and t by indices or by apostrophes referring to the

denotations of the graphs, e.g., E, is the set of edges of graph G, lEG is the labelling of

EG, etc.

Definition 2.4. Let G and H be graphs. A graph morphism f:(E,, V&s,, tG)-+

(EH, VH,sN,tH) is a pair f=(fE:EG+EH, fv: VG+ V,) of set morphisms such that

f”SG=SHfE Af”tG=hfE.

Limits and colimits in the category of graphs can separately be constructed for

nodes and edges in the category of sets.

In what follows, we generally assume that L = (LE, L,) is a pair of (small) categories

the object sets of which are denoted by LE (edge labels) and Lv (node labels),

respectively.

Definition 2.5. An L-labelled graph is a sextuple G =(E, V, s, t, lE, lv), where

G = (E, V, s, t) is a graph and lE : E+ LE, 1, : V+ Lv are mappings.

G is called the underlying graph.

Usually, morphisms in the category of labelled graphs preserve labels. Parisi-

Presicce et al. [1 l] have extended this approach by imposing a simple structure on the

set of labels: Graph morphisms must be compatible with this structure. Their ap-

proach is a special case of the following definition.

Definition 2.6. Let d and G be L-labelled graphs. An L-graph morphismf^: G-+E) is

defined by
_ a graph morphism S: G+H between the underlying graphs,

~ an LE-morphismf,: 1Ec(c)+IEH(fE(c)) for each e in EG,

- an L,-morphismf;: ~vG(u)+lvH(fV(u)) for each u in VG.

Sometimes, we omit the indices E and V to simplify our formulae; they hold both for

nodes and for edges. Furthermore, we do not need edge labels in our discussion of

Petri nets, i.e., all edges are labelled by the same object.

2.2. Colimits in the category of L-graphs

The set of L-graphs together with L-graph morphisms is a category. The composi-

tion of two L-graph morphisms

is given by the composition g .fof the underlying graph morphisms, together with the

labelling morphisms gltX, .x, where x denotes a node or an edge of Gi . The identities

in Graph turn to identities in L-Graph if we use the identities of L to map the labels.

On categorical graph grammars 261

Lemma 2.7. The initial object of L-Graph is the empty graph.

Proof. The initial object is characterized by the fact that there is exactly one mor-

phism from it to any other object of the category. The only possibility to map the

empty graph into a nonempty one is the empty mapping. 0

Lemma 2.8. L-Graph has coproducts.

Proof. Let 6 and 6” be two L-graphs and G be the coproduct of the underlying

graphs G’ and G” in Graph. It is well known that this coproduct as well as other limits

and colimits can be constructed for nodes and edges separately. V, and EG are labelled

by using the coproduct property in Set: i.e., in the category of sets, there is exactly one

morphism lyG : VG+Lv such that the triangles in Diagram 2 commute, and the same

holds true for the edges. (Please note that this lemma does not assume existence of

coproducts in L.) To show the coproduct property in L-Graph, we have to consider

any two morphisms V,.-+V, and I&. + V, and to prove the existence of a unique

morphismf, : VG-+ VH factorizing the given morphisms. This holds true for the under-

lying graphs, and the coproduct property of Vc yields uniqueness of lye = lyH .fv. This

means that f is a morphism in L-Graph. 0

Lemma 2.9. Zf L has all jinite colimits, then L-Graph has co-equalizers.

Proof. Letid : c?‘-+G^‘~ be a pair of parallel L-graph morphisms. We have to construct

a morphism 4 in such a way that for any 6 with h^*f=h^.#, there exists a unique h;

making Diagram 3 commute: We first construct q: G”-+G as the co-equalizer of the

Diagram 2.

Diagram 3

262 H.J. Schneider

underlying graph morphismsf; g, i.e., separately for nodes and edges in the category of

sets. In a second step, we decide on how to label G. We have to define I,, and lEG and,

furthermore, morphisms

fIj”,, : l~~~~(v”)-l~~(q”(u”))

ije- : lEG-(e”)+l,,(q,(e”))

for all nodes v” and edges e” of graph G”. In addition, we have to choose the lVG and

lEG such that existence of unique morphisms

h’,: M4+&44)

&: M+MWd)

is ensured. Therefore, a node v of G must be labelled with the colimit of the diagram

that consists of all morphisms

{Xl, : l”G~(V’)4V~~~(V”) 1 q(v”)=v} u {S”, : l”&‘)+l”G”(V”) 1 q(u”)=v}.

This colimit exists because of the assumption. Edge labels are constructed

analogously. 0

In general, the diagram of which we have to construct the colimit may be rather

complicated even if the underlying graph morphisms are injective. An example may

illustrate this: We assume that

f(x;)=x;,

swl)=f(x;)=4,
and

g(x;)=X;.

Then, construction of the co-equalizer yields

q(x;)=q(x;)=q(x;)=x

and we have to label x such that IG(x) together with 4x;, , tjxy and qX. is the colimit of

Diagram 4 consisting of &, cjxi ,fx. and SX;. This difficulty arises from labelling the

graph with objects of a category. In the special case mentioned by Parisi-Presicce et al.

[ll], lG(x) is given by the greatest lower bound of all &=(x”) with q(x”)=x.

Theorem 2.10. Zf the labelling category L has all jinite colimits, then L-Graph has all
jnite colimits, too.

Proof. It is well known that a category that has initial object, coproducts and

co-equalizers has all finite colimits. 0

On categorical graph grammu-s 263

Diagram 4

A f -B

9 Q

I 7

C ’ -D

Diagram 5. Diagram 6.

The situation is simpler if we restrict consideration to those pushouts that are of

special importance in many applications:

Theorem 2.11. Let L be a category that has pushouts. If f:a+l? and 4: 2-c are
L-Graph morphisms the underlying graph morphisms of tvhich are injective, then the

pushout 4 .f= fl. cj exists in L-Graph.

Proof. First, we construct the pushout (Diagram 5) in Graph. It is well known that

this can separately be done for nodes and edges in the category of sets and that p and

4 are injective, too. In a second step, we label D in a suitable way:

(a) If dEqf[A] =pg[A], then I,(d) is the pushout object in Diagram 6, where UGA

is the unique element with d=q(f(a))=p(g(a)).

(b) If d$q[B] A dEp[C], there is a unique c~C\g[Al such that d=p(c). We define

l,(d) := I,(c), .Bd := &)

(c) Analogously, if dEq[B] A d$p[C], we use the unique b such that d =q(b) and

ID(d) := l,(b), qd := i/,(/,)

This definition turns q ._f= p. q into a pushout diagram in the category of L-graphs.

(i, denotes identity on x up to isomorphisms.) We have 4 .f= fi. 4, and for all @‘, 4’ with

3 q .f= p. q is a pushout if and only if for all p’, q’ with q’ ,f= p’ q there exists a unique h such that q’ = h q
and p’=h.p.

264 H.J. Schneider

4’ . f = 8’ ‘4, we can construct a unique 9 satisfying 4’ = s*. 4 and p’ = s^ - j. The underlying

graph morphism s is uniquely defined in the category of graphs. By construction of I,,

there is only one way to make s a morphism in L-Graph. If we restrict consideration to

injective graph morphisms, 4 .f= 8. lj is a pushout in L-Graph if and only if 4 .f= p. g is

a pushout in Graph and labelling is defined as above. 0

Of course, the dual constructions also hold.

3. Examples

We start with comparing our approach to playing the token game in a Petri net.

Such a net consists of two disjoint node sets: the places and the transitions. Edges

connect input places to transitions and transitions to output places. Whereas this

underlying bipartite graph defines the static structure of the system, its dynamic

behaviour is controlled by labelling the places. A transition is called enabled if its

input places are labelled appropriately. Then, the transition can fire; this step changes

the labelling of both the input places and the output places. We want to construct

a graph grammar the productions of which correspond to firing the transitions of the

net. More precisely we have Claims 3.1 and 3.2.

Claim 3.1. A transition in the net is activated ifand only gthe corresponding production
is applicable to the net.

Claim 3.2. Firing a transition in the net corresponds to a derivation step in the grammar

and vice versa.

As long as we are only interested in simulating the token game, the structure of the

net is not changed and we can concentrate upon choosing an appropriate labelling

category.

3.1. Places with at most one token

Let us first consider a rather simple example. We assume the places of the Petri net

to be marked or not, i.e., at most one token can be put on a place. A transition is

allowed to “fire” if all predecessors are marked (m) and all successors are not (fi).

A characteristic situation is given in Fig. 1: the left-hand side and the right-hand side

of this figure describe the same piece of a large net before the transition fires and after

it has done.

In Fig. 2, we see this step in the graph-grammar framework. The pieces we have

shown in Fig. 1 become the left-hand side ‘B and the right-hand side B’ of a graph

production. The gluing graph K is a discrete graph consisting of all places involved in

this step. The morphisms ‘p and p’ are given by numbering the places in a suitable way:

‘p(i)=‘i, p’(i)= i’.

On categorical graph grammars 265

Fig. 1. A simple Petri net transition.

‘1 : m ‘2 : 7n srt’ @@

L& -PI-t

a
‘3 : ?ii 0 3:1

I I

Ii : m 5 : 772 “?p
j:l. R

1’ : 7% 2’ : Tii ‘ii’
h
3’ : m

I

it : 7ii i’:Pi

qp

t?

3’ : In

Fig. 2. Graph grammar interpretation of the simple transition.

In the sequel, we shall omit these numbers in order to avoid overloading the figures;

the morphisms are then given by the relative positions of the places.4

4 For the same reason, we do not consider the labelling of the transition and of the edges. Putting different

labels on the transitions yields an unambiguous correspondence between productions and transitions.

266 H.J. Schneider

Next, we have to discuss how to label the gluing graph K appropriately. We cannot

use label-preserving morphisms because corresponding places are labelled differently.

We choose a very simple category S to label the places: The objects are m,fi and

an additional bottom element I; the nontrivial morphisms are I+m and I+fi.

These morphisms allow us to label the places of the gluing graph by the bottom

element, which is compatible with both m and rii. Thus, ‘p and p’ are S-graph

morphisms.5

Let us now consider the applicability of such a production p to a Petri net ‘G. As we

have mentioned in the discussion following Definition 2.2, we have to look for an

S-graph morphism mapping the left-hand side ‘B into ‘G and then to find a morphism

K-+D making the left-hand part of the derivability diagram a pushout. Both steps

place some restrictions on the structure of ‘G, more precisely on the places that are

adjacent to the transition considered:

- All places mentioned in the production must also be present in ‘G, i.e., the

morphism must not identify some places. We can satisfy this condition by restrict-

ing the category to morphisms the underlying graph morphisms of which are

injective.

~ In ‘G, no additional places may be adjacent to this transition. This is ensured by the

fact that there is no node in the gluing graph the image of which is the transition; the

gluing condition we have already mentioned [7] says that such a node cannot be

connected to edges of ‘G that are not an image of an edge in ‘B.

The last point we have to mention is how to label the gluing nodes in the context

graph D. If we consider only the left-hand part of the derivability diagram, we can use

either the bottom element or the label of the corresponding place in ‘B. But in the

latter case, there does not exist a pushout object G’ on the right-hand side! Thus, we

have to choose the “minimal” context object.

3.2. Places with more than one token

A generalization of the simple Petri net leads to nets the places of which can contain

more than one token. We leave out the special case of undistinguishable tokens, which

usually are depicted by points, and immediately pass over to distinguishable ones. In

this case, the places as well as the edges of the net are labelled with multisets, i.e., some

elements may occur more than once. A transition is enabled if the label of each

predecessor place includes the label of the edge connecting this predecessor to the

transition. Firing removes the elements of the edge label from the place and adds the

labels of the outgoing edges to those of the successor places.

5 Please, note that there is no S-graph morphism ‘B +B’ although the underlying unlabelled graphs are

isomorphic. Furthermore, it is to be mentioned that by construction ‘p and p’ certainly are monomor-
phisms, but fail to be coretractions. This means that categorical proofs must not use existence of a left

inverse.

On categorical graph grammars 267

Since the idea of grammatical derivation step is to remove the left-hand side of

a production from the given graph, we have to reorganize labelling: We do not attach

the tokens that are to be removed or added to the edges. On the left-hand side of the

production, the predecessor places contain the tokens that are to be removed;

analogously, the successor places on the right-hand side contain the tokens that are

added in applying the production. The upper part of Fig. 3 shows a production

removing a and b from one place and b from another place, while an a is added to the

third place.6

We can straightforwardly embed this type of Petri nets into our graph-grammar

framework by using a labelling category M the objects of which are multisets. In

choosing the morphisms of this category, we could try to generalize the concept of the

structured alphabet: A unique morphism A -+B exists if and only if A c B, where

c denotes the multiset inclusion. But this approach does not work, because the

pushout construction corresponds to labelling the places in the pushout object with

b Q

0 3:

1

b R k ab

Fig. 3. A Petri net with multiple tokens.

1’ : 2’ :

-IL
‘ip

t,
3’ : a

I

6 As in the previous example, primed numbers are used to indicate the morphisms, e.g., in the left-hand

side of the production, ‘1 denotes the place that is mapped onto the first place mentioned above.

268 H.J. Schneider

the usual set union, whereas we need the disjoint union. Appropriate morphisms are

the mappings of multisets that preserve the “type” of the tokens, i.e., an a can only be

mapped to an a, etc. As in the previous case, we have to restrict discussion to

monomorphisms in order to establish the equivalence between derivation steps and

firing transitions. In the category M-Graph, the monomorphisms are given by injec-

tive graph morphisms, together with injective mappings of the token sets.

The category of multisets is also able to handle nets with places of limited capacity.

The idea is based on viewing free positions as special tokens moving backwards

through transitions. Free positions are not computed from occupying tokens: general-

izing our first model based on the category of S-graphs, the correspondence between

occurrences and free positions must correctly be set up in the rules. Special symbols,

marked by a bar, are used to indicate free positions. If the capacity is separately

defined for each symbol x, we mark a free position by a corresponding X. Otherwise,

only one symbol, e.g., fi, is additionally required. Of course, it is possible to use places

with limited capacity and places without this restriction in the same grammar.

3.3. Places labelled with graphs

Now, we leave Petri nets: The generalized definition of L-graphs and L-graph

morphisms allows us to consider nets the places of which are labelled with graphs. For

reason of simplification, however, we restrict the labelling category to the usual

category of labelled graphs, i.e., the graph morphisms of the labelling category

preserve labels.’ We call this category G-Graph.
The example of Fig. 4 is a detail of a system of processes that share a common

memory containing structured data. For a moment, let us think of a system of

producers and consumers. If the elements put into the buffer by the producer can be

removed in an arbitrary order, the multiple-token approach is adequate. This does no

00

Fig. 4. A metaproduction in a net labelled with graphs.

‘The more general case would also be of interest. Then, we get a close relationship to Pratt’s [12]
hierarchical graphs.

On categorical graph grammars

I
0
I

WI t-c
h

-

R

I

c2 a

Fig. 5. A transition in a net labelled with graphs.

longer hold true if we require the buffer to observe a special strategy, e.g., to be

a FIFO-queue. In our example, the leftmost predecessor place of the transition is the

buffer place. It contains a graph representing the queue; a special node, labelled with h,

points to the first element of the queue and t to the last element. The second

predecessor place is part of the consumer process. When it is labelled with m, this

process is ready to consume the next element of the queue. After this step, the former

head x of the queue is on the successor place in the consumer process, whereas

h points to the next element of the queue in the buffer.

The production of Fig. 4 is a metaproduction in the sense of van Wijngaarden et al.

[16]; it defines an infinite set of productions the elements of which we can get by

substituting concrete labels for the variables x and y. In Fig. 5, we have substituted

a for x and c for y, and we apply the resulting production to a concrete net case. As in

our previous examples, the context is indicated by some edges only. Before the

derivation step is applied, the buffer contains a and c with a being the head;

afterwards, a has been deleted and h points to c. The unchanged part of the queue

belongs to the context graph.

270 NJ. Schneider

Remark. At the first glance, this production seems to be restricted to buffers that

contain at least two elements. An appropriate convention, however, allows us to avoid

this restriction: we suppose the buffer contents to be terminated by a special element n.

This element may be substituted for y, but not for x.

4. Parallel independence of productions

4.1. The parallel independence theorem

Studying the behaviour of systems of processes, we are interested in some properties

of derivation sequences that reflect asynchronous behaviour. Typical problems are

characterizing parallel and sequential independence, amalgamating parallel produc-

tions or replacing a derivation sequence by one production. We demonstrate the

applicability of our approach by considering parallel independence of derivation

steps: If two productions are applicable to a given graph G, the result may depend on

the order of application, or even the second production is no longer applicable after

the first has been applied. Of course there is no problem if the left-hand sides of both

productions are mapped into disjoint parts of G. But Ehrig [2] observed that this

condition is too strong.

Definition 4.1. Two derivation steps (Diagram 7) are called parallel-independent

if and only if there exist morphisms CX~:‘B~-+D~ and x~:‘B~-+D~ with

gi=‘j!j2.ai A g2=‘@1.!Q.

This characterization can be interpreted as follows: If we apply p1 first, we are able

to apply p2 subsequently by embedding its left-hand side into Hi (instead of G) by the

morphism p’i . a2. The result does not depend on the order of applying the productions

if they behave well. Ehrig and Kreowski [S] studied the special case of sets. Their

proofs take full advantage of set-theoretic concepts. Especially, the morphisms under

consideration must be injective mappings, and the proofs are based on analyzing the

elements one by one. The proof cannot be generalized to arbitrary categories because

it uses the so-called triple-pushout condition that is not satisfied in each case. In

‘Bi ‘Pi Ici Pi c B;

Si

i= 1,2

Diagram 7

On categorical graph grammars 271

(1)

(1) (2) (3)

I t I 7 ,
C -D & - D2 - GI

Diagram 8. Diagram 9

a recent paper, Ehrig et al. [4] restricted discussion to categories that allow to prove

the parallel independence theorem (PIT).

Definition 4.2. We call a category C a PIT-category with respect to a class M of

distinguished morphisms if the following conditions are satisfied:

(a) If morphisms BtA+C are in M, there exists a pushout diagram (1) as in

Diagram 8 and B+D+C are also in M.

(b) If morphisms B+DtC are morphisms in M, there exists a pullback diagram (1)

and Bt A -tC are also in M.

(c) If in Diagram 9 all morphisms are in M, the diagrams (1 + 3) and (2 + 3) are

pushouts, and diagram (3) is a pullback, then (l),(2) and (3) are pushouts.

In such a category, it is possible to prove the parallel independence theorem:

Theorem 4.3. If in a PIT-category two derivation steps

are parallel-independent and ‘pi, pi, gi (i = 1, 2) are in M, then there exists a G, such that

The proof, that can be carried out without leaving the categorical framework, is

analogous to that in the category of sets [2].

4.2. Application of the theorem

If we want to apply the theorem to the examples of Section 3, we have to show that

these categories satisfy the PIT condition. In the category of unlabelled graphs,

a commutative diagram is a pushout if and only if both the node and the edge

component are pushouts in the category of sets, and the same holds true for pullbacks.

212 H.J. Schneider

This means that Graph is a PIT-category with respect to injections as Ehrig and

Kreowski [S] have proved. Therefore, we can restrict our discussion to consider the

influence of labelling.

Theorem 4.4. G-Graph is a PIT-category with respect to the following class M of

morphisms: f is in M if and only if the underlying graph morphism f is injective and all

fx are injective graph morphisms.

Proof. Conditions a and b of Definition 4.2 are satisfied because of the construction in

Theorem 2.11 and the dual one: In case a of Theorem 2.11, @ and 4 inherit injectivity of

Jand S, respectively; the other cases are trivial. Now, we consider Diagram 9 and

assume x to be a node (or an edge) of Gi. We have to study three cases:
_ x has pre-images in B1 as well as in B2.
_ x has a pre-image in B,, but not in B, or vice versa.

~ x has neither a pre-image in B1 nor in B,.

First, let x have a pre-image in B1 as well as in B2. The pushout properties of (2 + 3)

and (1 + 3) ensure existence of pre-images in K 1 and Kz, and, therefore, in De, D 1 and

D2. As we have already mentioned, the triple-pushout condition holds in the category

of unlabelled graphs. Thus, we can separately apply the construction in Theorem 2.11

to each square, and we get the same diagram with the graphs being replaced by the

labels of x and of its pre-images. This completes the proof of this case because we have

assumed to be now in the category of graphs with label-preserving morphisms. Next,

let x have a pre-image in Bi, but not in B2. There are two subcases: x has a pre-image

in D1 or it has not. In the second subcase, the labels of x and its pre-images are

isomorphic; this follows from the construction in Theorem 2.11 and the dual construc-

tion because (2 + 3) is a pushout and (3) is a pullback. In the first subcase, the pushout

property of (2 + 3) ensures that there is a pre-image in K 1 and, therefore, in D,. At the

level of labels, i.e., the graphs in the diagram being replaced by x and its pre-images,

we have the situation of the factorization lemma for pushouts that was proved by

Ehrig and Kreowski [S]. Thus, diagrams (2) and (3) are pushouts. In the last case,

x must have pre-images in both D1 and D2; therefore, in DO, too. Since Dz+G1 is part

of the pushout diagram (1 + 3), the labels of x and its pre-image in D, are isomorphic

according to Theorem 2.11. The same holds true for D1 -+G, , and, trivially, the

pullback is also a pushout. This completes the proof. 0

In this category, the parallel independence theorem says that we can apply produc-

tions concurrently even if they share places. But we have to ensure that the contents of

these places can be divided among the different productions in a suitable way. More

precisely, we must be able to embed the left-hand side of one production into the

context graph of the second; this context also comprises the unaffected part of the data

structure that is contained in the common places.

Corollary 4.5. M-Graph is a PIT-category with respect to label-preserving multiset
injections.

On categorical graph grammars 273

Proof. M-Graph is a full subcategory of G-Graph, for we get the objects of M-Graph

by requiring the labels to be discrete graphs. Therefore, we can immediately transfer

the results we have just got in the general case. 0

We illustrate this case by considering the example of Fig. 3. If the predecessor place

that is originally labelled with {a,~, b, b} is also the predecessor place of another

transition that consumes a or b or both elements, firing of this second transition is

independent of the depicted step. The result is not affected by the order of executing

these derivation steps. We can say that they may be applied in parallel.

The situation in S-Graph is a little bit more complicated because S certainly has all

pullbacks, but not all pushouts. The pushouts of interest, however, satisfy the triple-

pushout condition. We can show Theorem 4.3 if we restrict the assumption c of

Definition 4.2:

. . . if the diagrams (1 + 3) and (2 + 3) are pushouts that may occur in derivation steps

. . .

No further difficulties arise in choosing M: since there is atmost one morphism

between two labels, we can use injective graph morphisms together with any label

morphism.

Because of the simple structure of the set of label morphisms, there is only one

nontrivial case in proving c of Definition 4.2. Let x be a node that has pre-images in

B1 as well as in B2, but with different labels, e.g., the pre-image in B1 is labelled with

m and that in B, with 1. Now, we use the fact that the derivation steps assume all

gluing nodes and their images in the context graph to be labelled with the bottom

element. Therefore, the pre-images of x in K1, K2, Bz, Do and D1 are labelled with

I and those in B, and D, with m. Then, Theorem 2.11 yields all squares to be

pushouts. cl

In the category S-Graph, the parallel independence theorem leads to the well-

known fact that two enabled transitions can fire in parallel only if they have no

predecessor or successor place in common. If they have, the morphisms Sli cannot exist

since in the context graphs Di all places adjacent to the firing transitions must be

labelled with I and there is no morphism m+J_ or fi+_L.

5. Conclusion

The research we have reported on is part of a larger project concerned with different

multiprocessor environments. We need a formal basis to discuss mapping logical

process structures into different hardware structures, and we are thoroughly con-

vinced that the graph-grammar approach is better suited than others. In a previous

paper [15], we considered another aspect of systems of asynchronous processes. We

translated the statements of the program into graph productions and defined the

“traces” the system can run through by the set of derivable graphs. In that paper, we

274 H.J. Schneider

did not lay emphasis on synchronization mechanisms. Of course, both concepts can

be combined. Another special aspect we are also interested in is application of our

results to database theory.

Acknowledgment

The author thanks H. Ehrig, B. Hindel, M. Liiwe, G. Schied (who especially made

valuable contributions to G-Graph) and the referees for carefully reading previous

versions of this paper and for their helpful suggestions.

References

[l] P.M. van den Broek, Comparison of two graph-rewrite systems, Theoret. Comput. Sci. 61 (1988)

67-81.

[2] H. Ehrig, Introduction to the algebraic theory of graph grammars (a survey), in: Proc. 1st Graph
Grammar Workshop, Lecture Notes in Computer Science, Vol. 73 (Springer, Berlin, 1979) l-69.

[3] H. Ehrig, P. Boehm, U. Hummert and M. L(iwe, Distributed parallelism of graph transformations, in:

Proc. 13th Internat. Workshop on Graph-theoretic Concepts in Computer Science, Lecture Notes in

Computer Science, Vol. 314 (Springer, Berlin, 1988) 1-19.

[4] H. Ehrig, A. Habel, H.J. Kreowski and F. Parisi-Presicce, Parallelism and concurrency in high level

replacement systems, Math. Structures Comput. Sci., to appear.

[5] H. Ehrig and H.J. Kreowski, Pushout properties an analysis of gluing constructions, Math. Nachr.

91(1979) 135-149.

[6] H. Ehrig, H.J. Kreowski, A. Maggiolo-Schettini, B.K. Rosen and J. Winkowski, Transformations of

structures - an algebraic approach, Math. Systems Theory 14 (1981) 305-334.
[7] H. Ehrig, M. Pfender and H.J. Schneider, Graph grammars - an algebraic approach, in: Proc. 14th

Ann. Conf: on Switching and Automata Theory (1973) 167-180.

[S] H.J. Kreowski, A comparison between Petri-nets and graph grammars, Lecture Notes in Computer

Science, Vol. 100 (Springer, Berlin, 1981) 306-317.

[9] H.J. Kreowski, Is parallelism already concurrency? part 1: derivations in graph grammars, in: Proc.
3rd Internat. Workshop on Graph Grammars and Their Applications to Computer Science, Lecture

Notes in Computer Science, Vol. 291 (Springer, Berlin, 1987) 343-360.
[lo] H.J. Kreowski and A. Wilharm, Is parallelisms already concurrency? - part 2: non-sequential

processes in graph grammars, in: Proc. 3rd Internat. Workshop on Graph Grammars and Their
Applications to Computer Science, Lecture Notes in Computer Science, Vol. 291 (Springer, Berlin,

1987) 361-377.

[1 l] F. Parisi-Presicce, H. Ehrig and U. Montanari, Graph rewriting with unification and composition,

Lecture Notes in Computer Science, Vol. 291 (Springer, Berlin, 1987) 496-514.

[12] T. Pratt, Pair grammars, graph languages, and string-to-graph translations, J. Comput. System Sci.
5 (1971) 560-595.

[13] J.C. Raoult, On graph rewritings, Theoret. Comput. Sci. 32 (1984) l-24.
[14] W. Reisig, A graph grammar representation of nonsequential processes, Lecture Notes in Computer

Science, Vol. 100 (Springer, Berlin, 1981) 318-325.
[15] H.J. Schneider, Describing distributed systems by categorical graph grammars. in: Proc. 15th Internat.

Workshop on Graph-theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Vol.

411 (Springer, Berlin, 1990) 121-135.

[16] A. van Wijngaarden et al. Report on the algorithmic language ALGOL 68, Numer. Math. 14 (1969)
79-218.

[17] J.C. Wileden, Relationships between graph grammars and the design and analysis of concurrent

software, Lecture Notes in Computer Science, Vol. 73 (Springer, Berlin, 1979) 456-463.

