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Graph-theoretic structures are an obvious means to reason about systems of asynchronous pro- 

cesses. Their dynamic behaviour can be simulated by applying productions of a graph grammar. The 

present paper is motivated by looking for a formal method that is able to describe the behaviour of 

systems of processes that share data structures. We generalize the categorical graph-grammar 

approach by labelling the graphs with elements of a suitable category rather than with those of an 

alphabet. Thus, operations can be performed on the labels while the graphs are rewritten. After 

presenting the fundamental definitions and some properties, we demonstrate the usefulness of the 

approach by modelling some well-known Petri nets as well as a generalized net the places of which 

are labelled with graphs. Finally, we show that known theoretical techniques are applicable to the 

generalized framework by exemplary discussing parallel independence of derivation steps. 

1. Introduction 

Graph-theoretic structures are an obvious means to reason about a lot of things in 

computer science. Whereas the traditional graph theory is mainly concerned with 

static properties of graphs, computer science applications also include dynamically 

changing the structure. Different types of graph grammars have been developed 

to describe the dynamic behaviour of graph structures. Each step corresponds to 
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applying a production, the left-hand side of which defines the applicability condition, 

i.e., a subgraph and its labelling. By applying the production, we replace an occurrence 

of its left-hand side by the right-hand side to alter the structure of the graph. In the 

present paper, we continue a line of research in which some authors have already tried 

to overcome the limitations of working with label-preserving graph morphisms. A first 

approach to the problem of relabelling was given by Ehrig et al. [6] in 1981. We 

generalize an idea due to Parisi-Presicce et al. [ 111; these authors imposed a simple 

structure on the set of labels to allow variables in the productions. The approach can 

easily be extended: Labelling is done in categories rather than in an alphabet. In this 

way, operations can be performed on the labels while the graphs are rewritten. 

The usefulness of our approach is demonstrated by a quite natural modelling of 

condition/event nets and place/transition nets in the new framework. Although in this 

paper we model only the token game, it is clear that the graph-grammar approach is 

also suited to model dynamic systems of processes which can grow and shrink.’ As far 

as we know, Wileden [17] was the first to point out that firing in a Petri net can be 

interpreted in the framework of graph grammars. His approach as well as Reisig’s 

[14] use arithmetics to manage the number of tokens on the places. Kreowski [S] 

added a bunch of special edges to each place indicating the number of tokens and the 

remaining capacity. 

In Section 2, we present the fundamental definitions and prove the properties we 

need. In Section 3, we apply the approach to two well-known types of Petri nets and 

show that our framework also covers a generalization allowing places to be labelled 

with graphs. This case is motivated by studying systems of processes which share data 

structures. Finally, we exemplary characterize the parallel independence of derivation 

steps in the generalized framework. 

2. Labelled graph grammars 

2.1. Dejinitions 

We use the categorical graph-grammar approach as it is outlined, e.g., in Ehrig’s 

introductory paper [2]. This approach allows us to take full advantage of some 

theoretical results. Ehrig et al. [3], Kreowski [9] and Kreowski and Wilharm [lo] 

have extensively studied the problem of applying productions concurrently or in 

parallel. 

Definition 2.1. A C-production is a pair of morphisms p =(‘B +-- ” KP’B’) in 

a suitable category C. 

The objects ‘B and B’ are called the left-hand side and the right-hand side of the 

production, respectively. K is the so-called gluing object; in the special case of a graph 

1 An example describing a parallel sorting algorithm by a graph grammar will be given in a forthcoming 

paper. 
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production, i.e., C is the category of graphs, it defines the boundary connecting the 

left-hand side (after applying the production: the right-hand side) to the context. 

Definition 2.2. Given a C-production p, we say that G’ is derivable from ‘G with 

respect to p: ‘GgG’ if and only if there exist an object D and a morphism K-+D such 

that both parts of Diagram 1 are pushout diagrams. 

D is called the context object. If C is the category of graphs, we may interpret it as 

the context that remains unchanged in applying the production. 

Usually, the category C is assumed to have pushouts; in this case, the diagram can 

uniquely be completed if the production and the morphism K+D are given. On the 

other hand, however, G’ is not unambiguously defined by the production and the 

morphism ‘B-+/G. It is possible that different context objects exist (and, thus, different 

G’) or that there is no context object at all. The category of graphs is an example 

where this may happen. In our original paper on graph grammars, we have already 

given a gluing condition ensuring the existence of a context object, and we could show 

that it is unambiguous if ‘p is injective [7]. This criterion has led Raoult [13] to a new 

approach replacing ‘p by an inverse (partial) graph morphism ‘p-’ and then using 

only one pushout construction. Van den Broek [l] compared the generative power of 

both approaches. 

The definition also makes sense if we assume that only the required pushout objects 

exist. Of course, we are not allowed to use all theorems in this case without carefully 

taking into account the consequences of weakening the assumption2 

We now consider categories of labelled graphs. 

Definition 2.3. A graph G is a quadruple G = (E, V, s, t), with E and V being finite sets 

and s, t : E -+ V being mappings. 

E and V denote the set of edges and nodes (vertices), respectively. s(e) denotes the 

source node of an edge e and t(e) its target node. Considering more than one graph, we 

Diagram 1 

2 The category S-graph mentioned below is an example of such a category 
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distinguish their constituents E, V, s and t by indices or by apostrophes referring to the 

denotations of the graphs, e.g., E, is the set of edges of graph G, lEG is the labelling of 

EG, etc. 

Definition 2.4. Let G and H be graphs. A graph morphism f:(E,, V&s,, tG)-+ 

(EH, VH,sN,tH) is a pair f=(fE:EG+EH, fv: VG+ V,) of set morphisms such that 

f”SG=SHfE Af”tG=hfE. 

Limits and colimits in the category of graphs can separately be constructed for 

nodes and edges in the category of sets. 

In what follows, we generally assume that L = (LE, L,) is a pair of (small) categories 

the object sets of which are denoted by LE (edge labels) and Lv (node labels), 

respectively. 

Definition 2.5. An L-labelled graph is a sextuple G =(E, V, s, t, lE, lv), where 

G = (E, V, s, t) is a graph and lE : E+ LE, 1, : V+ Lv are mappings. 

G is called the underlying graph. 

Usually, morphisms in the category of labelled graphs preserve labels. Parisi- 

Presicce et al. [ 1 l] have extended this approach by imposing a simple structure on the 

set of labels: Graph morphisms must be compatible with this structure. Their ap- 

proach is a special case of the following definition. 

Definition 2.6. Let d and G be L-labelled graphs. An L-graph morphismf^: G-+E) is 

defined by 
_ a graph morphism S: G+H between the underlying graphs, 

~ an LE-morphismf,: 1Ec(c)+IEH(fE(c)) for each e in EG, 

- an L,-morphismf;: ~vG(u)+lvH(fV(u)) for each u in VG. 

Sometimes, we omit the indices E and V to simplify our formulae; they hold both for 

nodes and for edges. Furthermore, we do not need edge labels in our discussion of 

Petri nets, i.e., all edges are labelled by the same object. 

2.2. Colimits in the category of L-graphs 

The set of L-graphs together with L-graph morphisms is a category. The composi- 

tion of two L-graph morphisms 

is given by the composition g .fof the underlying graph morphisms, together with the 

labelling morphisms gltX, .x, where x denotes a node or an edge of Gi . The identities 

in Graph turn to identities in L-Graph if we use the identities of L to map the labels. 
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Lemma 2.7. The initial object of L-Graph is the empty graph. 

Proof. The initial object is characterized by the fact that there is exactly one mor- 

phism from it to any other object of the category. The only possibility to map the 

empty graph into a nonempty one is the empty mapping. 0 

Lemma 2.8. L-Graph has coproducts. 

Proof. Let 6 and 6” be two L-graphs and G be the coproduct of the underlying 

graphs G’ and G” in Graph. It is well known that this coproduct as well as other limits 

and colimits can be constructed for nodes and edges separately. V, and EG are labelled 

by using the coproduct property in Set: i.e., in the category of sets, there is exactly one 

morphism lyG : VG+Lv such that the triangles in Diagram 2 commute, and the same 

holds true for the edges. (Please note that this lemma does not assume existence of 

coproducts in L.) To show the coproduct property in L-Graph, we have to consider 

any two morphisms V,.-+V, and I&. + V, and to prove the existence of a unique 

morphismf, : VG-+ VH factorizing the given morphisms. This holds true for the under- 

lying graphs, and the coproduct property of Vc yields uniqueness of lye = lyH .fv. This 

means that f is a morphism in L-Graph. 0 

Lemma 2.9. Zf L has all jinite colimits, then L-Graph has co-equalizers. 

Proof. Letid : c?‘-+G^‘~ be a pair of parallel L-graph morphisms. We have to construct 

a morphism 4 in such a way that for any 6 with h^*f=h^.#, there exists a unique h; 

making Diagram 3 commute: We first construct q: G”-+G as the co-equalizer of the 

Diagram 2. 

Diagram 3 
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underlying graph morphismsf; g, i.e., separately for nodes and edges in the category of 

sets. In a second step, we decide on how to label G. We have to define I,, and lEG and, 

furthermore, morphisms 

fIj”,, : l~~~~(v”)-l~~(q”(u”)) 

ije- : lEG-(e”)+l,,(q,(e”)) 

for all nodes v” and edges e” of graph G”. In addition, we have to choose the lVG and 

lEG such that existence of unique morphisms 

h’,: M4+&44) 

&: M+MWd) 

is ensured. Therefore, a node v of G must be labelled with the colimit of the diagram 

that consists of all morphisms 

{Xl, : l”G~(V’)4V~~~(V”) 1 q(v”)=v} u {S”, : l”&‘)+l”G”(V”) 1 q(u”)=v}. 

This colimit exists because of the assumption. Edge labels are constructed 

analogously. 0 

In general, the diagram of which we have to construct the colimit may be rather 

complicated even if the underlying graph morphisms are injective. An example may 

illustrate this: We assume that 

f(x;)=x;, 

swl)=f(x;)=4, 
and 

g(x;)=X;. 

Then, construction of the co-equalizer yields 

q(x;)=q(x;)=q(x;)=x 

and we have to label x such that IG(x) together with 4x;, , tjxy and qX. is the colimit of 

Diagram 4 consisting of &, cjxi ,fx. and SX;. This difficulty arises from labelling the 

graph with objects of a category. In the special case mentioned by Parisi-Presicce et al. 

[ll], lG(x) is given by the greatest lower bound of all &=(x”) with q(x”)=x. 

Theorem 2.10. Zf the labelling category L has all jinite colimits, then L-Graph has all 
jnite colimits, too. 

Proof. It is well known that a category that has initial object, coproducts and 

co-equalizers has all finite colimits. 0 
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Diagram 4 

A f -B 

9 Q 

I 7 

C ’ -D 

Diagram 5. Diagram 6. 

The situation is simpler if we restrict consideration to those pushouts that are of 

special importance in many applications: 

Theorem 2.11. Let L be a category that has pushouts. If f:a+l? and 4: 2-c are 
L-Graph morphisms the underlying graph morphisms of tvhich are injective, then the 

pushout 4 .f= fl. cj exists in L-Graph. 

Proof. First, we construct the pushout (Diagram 5) in Graph. It is well known that 

this can separately be done for nodes and edges in the category of sets and that p and 

4 are injective, too. In a second step, we label D in a suitable way: 

(a) If dEqf[A] =pg[A], then I,(d) is the pushout object in Diagram 6, where UGA 

is the unique element with d=q(f(a))=p(g(a)). 

(b) If d$q[B] A dEp[C], there is a unique c~C\g[Al such that d=p(c). We define 

l,(d) := I,(c), .Bd := &) 

(c) Analogously, if dEq[B] A d$p[C], we use the unique b such that d =q(b) and 

ID(d) := l,(b), qd := i/,(/,) 

This definition turns q ._f= p. q into a pushout diagram in the category of L-graphs. 

(i, denotes identity on x up to isomorphisms.) We have 4 .f= fi. 4, and for all @‘, 4’ with 

3 q .f= p. q is a pushout if and only if for all p’, q’ with q’ ,f= p’ q there exists a unique h such that q’ = h q 
and p’=h.p. 
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4’ . f = 8’ ‘4, we can construct a unique 9 satisfying 4’ = s*. 4 and p’ = s^ - j. The underlying 

graph morphism s is uniquely defined in the category of graphs. By construction of I,, 

there is only one way to make s a morphism in L-Graph. If we restrict consideration to 

injective graph morphisms, 4 .f= 8. lj is a pushout in L-Graph if and only if 4 .f= p. g is 

a pushout in Graph and labelling is defined as above. 0 

Of course, the dual constructions also hold. 

3. Examples 

We start with comparing our approach to playing the token game in a Petri net. 

Such a net consists of two disjoint node sets: the places and the transitions. Edges 

connect input places to transitions and transitions to output places. Whereas this 

underlying bipartite graph defines the static structure of the system, its dynamic 

behaviour is controlled by labelling the places. A transition is called enabled if its 

input places are labelled appropriately. Then, the transition can fire; this step changes 

the labelling of both the input places and the output places. We want to construct 

a graph grammar the productions of which correspond to firing the transitions of the 

net. More precisely we have Claims 3.1 and 3.2. 

Claim 3.1. A transition in the net is activated ifand only gthe corresponding production 
is applicable to the net. 

Claim 3.2. Firing a transition in the net corresponds to a derivation step in the grammar 

and vice versa. 

As long as we are only interested in simulating the token game, the structure of the 

net is not changed and we can concentrate upon choosing an appropriate labelling 

category. 

3.1. Places with at most one token 

Let us first consider a rather simple example. We assume the places of the Petri net 

to be marked or not, i.e., at most one token can be put on a place. A transition is 

allowed to “fire” if all predecessors are marked (m) and all successors are not (fi). 

A characteristic situation is given in Fig. 1: the left-hand side and the right-hand side 

of this figure describe the same piece of a large net before the transition fires and after 

it has done. 

In Fig. 2, we see this step in the graph-grammar framework. The pieces we have 

shown in Fig. 1 become the left-hand side ‘B and the right-hand side B’ of a graph 

production. The gluing graph K is a discrete graph consisting of all places involved in 

this step. The morphisms ‘p and p’ are given by numbering the places in a suitable way: 

‘p(i)=‘i, p’(i)= i’. 
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Fig. 1. A simple Petri net transition. 

‘1 : m ‘2 : 7n srt’ @@ 

L& -PI-t 

a 
‘3 : ?ii 0 3:1 

I I 

Ii : m 5 : 772 “?p 
j:l. R 

1’ : 7% 2’ : Tii ‘ii’ 
h 
3’ : m 

I 

it : 7ii i’:Pi 

qp 

t? 

3’ : In 

Fig. 2. Graph grammar interpretation of the simple transition. 

In the sequel, we shall omit these numbers in order to avoid overloading the figures; 

the morphisms are then given by the relative positions of the places.4 

4 For the same reason, we do not consider the labelling of the transition and of the edges. Putting different 

labels on the transitions yields an unambiguous correspondence between productions and transitions. 
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Next, we have to discuss how to label the gluing graph K appropriately. We cannot 

use label-preserving morphisms because corresponding places are labelled differently. 

We choose a very simple category S to label the places: The objects are m,fi and 

an additional bottom element I; the nontrivial morphisms are I+m and I+fi. 

These morphisms allow us to label the places of the gluing graph by the bottom 

element, which is compatible with both m and rii. Thus, ‘p and p’ are S-graph 

morphisms.5 

Let us now consider the applicability of such a production p to a Petri net ‘G. As we 

have mentioned in the discussion following Definition 2.2, we have to look for an 

S-graph morphism mapping the left-hand side ‘B into ‘G and then to find a morphism 

K-+D making the left-hand part of the derivability diagram a pushout. Both steps 

place some restrictions on the structure of ‘G, more precisely on the places that are 

adjacent to the transition considered: 

- All places mentioned in the production must also be present in ‘G, i.e., the 

morphism must not identify some places. We can satisfy this condition by restrict- 

ing the category to morphisms the underlying graph morphisms of which are 

injective. 

~ In ‘G, no additional places may be adjacent to this transition. This is ensured by the 

fact that there is no node in the gluing graph the image of which is the transition; the 

gluing condition we have already mentioned [7] says that such a node cannot be 

connected to edges of ‘G that are not an image of an edge in ‘B. 

The last point we have to mention is how to label the gluing nodes in the context 

graph D. If we consider only the left-hand part of the derivability diagram, we can use 

either the bottom element or the label of the corresponding place in ‘B. But in the 

latter case, there does not exist a pushout object G’ on the right-hand side! Thus, we 

have to choose the “minimal” context object. 

3.2. Places with more than one token 

A generalization of the simple Petri net leads to nets the places of which can contain 

more than one token. We leave out the special case of undistinguishable tokens, which 

usually are depicted by points, and immediately pass over to distinguishable ones. In 

this case, the places as well as the edges of the net are labelled with multisets, i.e., some 

elements may occur more than once. A transition is enabled if the label of each 

predecessor place includes the label of the edge connecting this predecessor to the 

transition. Firing removes the elements of the edge label from the place and adds the 

labels of the outgoing edges to those of the successor places. 

5 Please, note that there is no S-graph morphism ‘B +B’ although the underlying unlabelled graphs are 

isomorphic. Furthermore, it is to be mentioned that by construction ‘p and p’ certainly are monomor- 
phisms, but fail to be coretractions. This means that categorical proofs must not use existence of a left 

inverse. 
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Since the idea of grammatical derivation step is to remove the left-hand side of 

a production from the given graph, we have to reorganize labelling: We do not attach 

the tokens that are to be removed or added to the edges. On the left-hand side of the 

production, the predecessor places contain the tokens that are to be removed; 

analogously, the successor places on the right-hand side contain the tokens that are 

added in applying the production. The upper part of Fig. 3 shows a production 

removing a and b from one place and b from another place, while an a is added to the 

third place.6 

We can straightforwardly embed this type of Petri nets into our graph-grammar 

framework by using a labelling category M the objects of which are multisets. In 

choosing the morphisms of this category, we could try to generalize the concept of the 

structured alphabet: A unique morphism A -+B exists if and only if A c B, where 

c denotes the multiset inclusion. But this approach does not work, because the 

pushout construction corresponds to labelling the places in the pushout object with 

b Q 

0 3: 

1 

b R k ab 

Fig. 3. A Petri net with multiple tokens. 

1’ : 2’ : 

-IL 
‘ip 

t, 
3’ : a 

I 

6 As in the previous example, primed numbers are used to indicate the morphisms, e.g., in the left-hand 

side of the production, ‘1 denotes the place that is mapped onto the first place mentioned above. 
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the usual set union, whereas we need the disjoint union. Appropriate morphisms are 

the mappings of multisets that preserve the “type” of the tokens, i.e., an a can only be 

mapped to an a, etc. As in the previous case, we have to restrict discussion to 

monomorphisms in order to establish the equivalence between derivation steps and 

firing transitions. In the category M-Graph, the monomorphisms are given by injec- 

tive graph morphisms, together with injective mappings of the token sets. 

The category of multisets is also able to handle nets with places of limited capacity. 

The idea is based on viewing free positions as special tokens moving backwards 

through transitions. Free positions are not computed from occupying tokens: general- 

izing our first model based on the category of S-graphs, the correspondence between 

occurrences and free positions must correctly be set up in the rules. Special symbols, 

marked by a bar, are used to indicate free positions. If the capacity is separately 

defined for each symbol x, we mark a free position by a corresponding X. Otherwise, 

only one symbol, e.g., fi, is additionally required. Of course, it is possible to use places 

with limited capacity and places without this restriction in the same grammar. 

3.3. Places labelled with graphs 

Now, we leave Petri nets: The generalized definition of L-graphs and L-graph 

morphisms allows us to consider nets the places of which are labelled with graphs. For 

reason of simplification, however, we restrict the labelling category to the usual 

category of labelled graphs, i.e., the graph morphisms of the labelling category 

preserve labels.’ We call this category G-Graph. 
The example of Fig. 4 is a detail of a system of processes that share a common 

memory containing structured data. For a moment, let us think of a system of 

producers and consumers. If the elements put into the buffer by the producer can be 

removed in an arbitrary order, the multiple-token approach is adequate. This does no 

00 

Fig. 4. A metaproduction in a net labelled with graphs. 

‘The more general case would also be of interest. Then, we get a close relationship to Pratt’s [12] 
hierarchical graphs. 
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I 
0 
I 

WI t-c 
h 

- 

R 

I 

c2 a 

Fig. 5. A transition in a net labelled with graphs. 

longer hold true if we require the buffer to observe a special strategy, e.g., to be 

a FIFO-queue. In our example, the leftmost predecessor place of the transition is the 

buffer place. It contains a graph representing the queue; a special node, labelled with h, 

points to the first element of the queue and t to the last element. The second 

predecessor place is part of the consumer process. When it is labelled with m, this 

process is ready to consume the next element of the queue. After this step, the former 

head x of the queue is on the successor place in the consumer process, whereas 

h points to the next element of the queue in the buffer. 

The production of Fig. 4 is a metaproduction in the sense of van Wijngaarden et al. 

[16]; it defines an infinite set of productions the elements of which we can get by 

substituting concrete labels for the variables x and y. In Fig. 5, we have substituted 

a for x and c for y, and we apply the resulting production to a concrete net case. As in 

our previous examples, the context is indicated by some edges only. Before the 

derivation step is applied, the buffer contains a and c with a being the head; 

afterwards, a has been deleted and h points to c. The unchanged part of the queue 

belongs to the context graph. 
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Remark. At the first glance, this production seems to be restricted to buffers that 

contain at least two elements. An appropriate convention, however, allows us to avoid 

this restriction: we suppose the buffer contents to be terminated by a special element n. 

This element may be substituted for y, but not for x. 

4. Parallel independence of productions 

4.1. The parallel independence theorem 

Studying the behaviour of systems of processes, we are interested in some properties 

of derivation sequences that reflect asynchronous behaviour. Typical problems are 

characterizing parallel and sequential independence, amalgamating parallel produc- 

tions or replacing a derivation sequence by one production. We demonstrate the 

applicability of our approach by considering parallel independence of derivation 

steps: If two productions are applicable to a given graph G, the result may depend on 

the order of application, or even the second production is no longer applicable after 

the first has been applied. Of course there is no problem if the left-hand sides of both 

productions are mapped into disjoint parts of G. But Ehrig [2] observed that this 

condition is too strong. 

Definition 4.1. Two derivation steps (Diagram 7) are called parallel-independent 

if and only if there exist morphisms CX~:‘B~-+D~ and x~:‘B~-+D~ with 

gi=‘j!j2.ai A g2=‘@1.!Q. 

This characterization can be interpreted as follows: If we apply p1 first, we are able 

to apply p2 subsequently by embedding its left-hand side into Hi (instead of G) by the 

morphism p’i . a2. The result does not depend on the order of applying the productions 

if they behave well. Ehrig and Kreowski [S] studied the special case of sets. Their 

proofs take full advantage of set-theoretic concepts. Especially, the morphisms under 

consideration must be injective mappings, and the proofs are based on analyzing the 

elements one by one. The proof cannot be generalized to arbitrary categories because 

it uses the so-called triple-pushout condition that is not satisfied in each case. In 

‘Bi ‘Pi Ici Pi c B; 

Si 

i= 1,2 

Diagram 7 
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(1) 

(1) (2) (3) 

I t I 7 , 
C -D & - D2 - GI 

Diagram 8. Diagram 9 

a recent paper, Ehrig et al. [4] restricted discussion to categories that allow to prove 

the parallel independence theorem (PIT). 

Definition 4.2. We call a category C a PIT-category with respect to a class M of 

distinguished morphisms if the following conditions are satisfied: 

(a) If morphisms BtA+C are in M, there exists a pushout diagram (1) as in 

Diagram 8 and B+D+C are also in M. 

(b) If morphisms B+DtC are morphisms in M, there exists a pullback diagram (1) 

and Bt A -tC are also in M. 

(c) If in Diagram 9 all morphisms are in M, the diagrams (1 + 3) and (2 + 3) are 

pushouts, and diagram (3) is a pullback, then (l),(2) and (3) are pushouts. 

In such a category, it is possible to prove the parallel independence theorem: 

Theorem 4.3. If in a PIT-category two derivation steps 

are parallel-independent and ‘pi, pi, gi (i = 1, 2) are in M, then there exists a G, such that 

The proof, that can be carried out without leaving the categorical framework, is 

analogous to that in the category of sets [2]. 

4.2. Application of the theorem 

If we want to apply the theorem to the examples of Section 3, we have to show that 

these categories satisfy the PIT condition. In the category of unlabelled graphs, 

a commutative diagram is a pushout if and only if both the node and the edge 

component are pushouts in the category of sets, and the same holds true for pullbacks. 
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This means that Graph is a PIT-category with respect to injections as Ehrig and 

Kreowski [S] have proved. Therefore, we can restrict our discussion to consider the 

influence of labelling. 

Theorem 4.4. G-Graph is a PIT-category with respect to the following class M of 

morphisms: f is in M if and only if the underlying graph morphism f is injective and all 

fx are injective graph morphisms. 

Proof. Conditions a and b of Definition 4.2 are satisfied because of the construction in 

Theorem 2.11 and the dual one: In case a of Theorem 2.11, @ and 4 inherit injectivity of 

Jand S, respectively; the other cases are trivial. Now, we consider Diagram 9 and 

assume x to be a node (or an edge) of Gi. We have to study three cases: 
_ x has pre-images in B1 as well as in B2. 
_ x has a pre-image in B,, but not in B, or vice versa. 

~ x has neither a pre-image in B1 nor in B,. 

First, let x have a pre-image in B1 as well as in B2. The pushout properties of (2 + 3) 

and (1 + 3) ensure existence of pre-images in K 1 and Kz, and, therefore, in De, D 1 and 

D2. As we have already mentioned, the triple-pushout condition holds in the category 

of unlabelled graphs. Thus, we can separately apply the construction in Theorem 2.11 

to each square, and we get the same diagram with the graphs being replaced by the 

labels of x and of its pre-images. This completes the proof of this case because we have 

assumed to be now in the category of graphs with label-preserving morphisms. Next, 

let x have a pre-image in Bi, but not in B2. There are two subcases: x has a pre-image 

in D1 or it has not. In the second subcase, the labels of x and its pre-images are 

isomorphic; this follows from the construction in Theorem 2.11 and the dual construc- 

tion because (2 + 3) is a pushout and (3) is a pullback. In the first subcase, the pushout 

property of (2 + 3) ensures that there is a pre-image in K 1 and, therefore, in D,. At the 

level of labels, i.e., the graphs in the diagram being replaced by x and its pre-images, 

we have the situation of the factorization lemma for pushouts that was proved by 

Ehrig and Kreowski [S]. Thus, diagrams (2) and (3) are pushouts. In the last case, 

x must have pre-images in both D1 and D2; therefore, in DO, too. Since Dz+G1 is part 

of the pushout diagram (1 + 3), the labels of x and its pre-image in D, are isomorphic 

according to Theorem 2.11. The same holds true for D1 -+G, , and, trivially, the 

pullback is also a pushout. This completes the proof. 0 

In this category, the parallel independence theorem says that we can apply produc- 

tions concurrently even if they share places. But we have to ensure that the contents of 

these places can be divided among the different productions in a suitable way. More 

precisely, we must be able to embed the left-hand side of one production into the 

context graph of the second; this context also comprises the unaffected part of the data 

structure that is contained in the common places. 

Corollary 4.5. M-Graph is a PIT-category with respect to label-preserving multiset 
injections. 
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Proof. M-Graph is a full subcategory of G-Graph, for we get the objects of M-Graph 

by requiring the labels to be discrete graphs. Therefore, we can immediately transfer 

the results we have just got in the general case. 0 

We illustrate this case by considering the example of Fig. 3. If the predecessor place 

that is originally labelled with {a,~, b, b} is also the predecessor place of another 

transition that consumes a or b or both elements, firing of this second transition is 

independent of the depicted step. The result is not affected by the order of executing 

these derivation steps. We can say that they may be applied in parallel. 

The situation in S-Graph is a little bit more complicated because S certainly has all 

pullbacks, but not all pushouts. The pushouts of interest, however, satisfy the triple- 

pushout condition. We can show Theorem 4.3 if we restrict the assumption c of 

Definition 4.2: 

. . . if the diagrams (1 + 3) and (2 + 3) are pushouts that may occur in derivation steps 

. . . 

No further difficulties arise in choosing M: since there is atmost one morphism 

between two labels, we can use injective graph morphisms together with any label 

morphism. 

Because of the simple structure of the set of label morphisms, there is only one 

nontrivial case in proving c of Definition 4.2. Let x be a node that has pre-images in 

B1 as well as in B2, but with different labels, e.g., the pre-image in B1 is labelled with 

m and that in B, with 1. Now, we use the fact that the derivation steps assume all 

gluing nodes and their images in the context graph to be labelled with the bottom 

element. Therefore, the pre-images of x in K1, K2, Bz, Do and D1 are labelled with 

I and those in B, and D, with m. Then, Theorem 2.11 yields all squares to be 

pushouts. cl 

In the category S-Graph, the parallel independence theorem leads to the well- 

known fact that two enabled transitions can fire in parallel only if they have no 

predecessor or successor place in common. If they have, the morphisms Sli cannot exist 

since in the context graphs Di all places adjacent to the firing transitions must be 

labelled with I and there is no morphism m+J_ or fi+_L. 

5. Conclusion 

The research we have reported on is part of a larger project concerned with different 

multiprocessor environments. We need a formal basis to discuss mapping logical 

process structures into different hardware structures, and we are thoroughly con- 

vinced that the graph-grammar approach is better suited than others. In a previous 

paper [15], we considered another aspect of systems of asynchronous processes. We 

translated the statements of the program into graph productions and defined the 

“traces” the system can run through by the set of derivable graphs. In that paper, we 
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did not lay emphasis on synchronization mechanisms. Of course, both concepts can 

be combined. Another special aspect we are also interested in is application of our 

results to database theory. 
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