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sponsible for long bone growth in children and adolescents and is regulated by
vitamin D metabolites in a cell zone-specific manner. Resting zone chondrocytes (RC cells) are regulated by
24,25-dihydroxyvitamin D3 via a phospholipase D-dependent pathway, suggesting downstream phospho-
lipid metabolites are involved. In this study, we showed that 24R,25(OH)2D3 stimulates rat costochondral RC
chondrocytes to release lysophosphatidic acid (LPA) and, therefore sought to determine the role of LPA
signaling in these cells. RC cells expressed the G-protein coupled receptors LPA1–5 and peroxisome
proliferator-activated receptor gamma (PPAR-γ). LPA and the LPA1/3 selective agonist OMPT increased
proliferation and two maturation markers, alkaline phosphatase activity and [35S]-sulfate incorporation. LPA
and 24R,25(OH)2D3's effects were inhibited by the LPA1/3 selective antagonist VPC32183(S). Furthermore,
apoptosis induced by either inorganic phosphate or chelerythrine was attenuated by LPA, based on DNA
fragmentation, TUNEL staining, caspase-3 activity, and Bcl-2:Bax protein ratio. LPA prevented apoptotic
signaling by decreasing the abundance, nuclear localization, and transcriptional activity of the tumor-
suppressor p53. LPA treatment also regulated the expression of the p53-target genes Bcl-2 and Bax to
enhance cell survival. Collectively, these data suggest that LPA promotes differentiation and survival in RC
chondrocytes, demonstrating a novel physiological function of LPA-signaling.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Lysophosphatidic acid (LPA 18:1; 1-oleoyl-2-hydroxy-sn-glycero-
3-phosphate) is a bioactive lysophospholipid that consists of a single
fatty acid chain and is produced by activated platelets and cancer cell
types [1,2]. LPA is derived from a number precursor lipids including
phosphatidic acid (PA) which is generated by the metabolism of
phosphatidylcholine (PC) by phospholipase D (PLD) [3]. LPA exerts its
effects on cells by activating the cell surface G-protein coupled
receptors (GPCRs) LPA1/Edg2, LPA2/Edg4, LPA3/Edg7, LPA4/GPR23,
and LPA5/GPR92 [4–7]. These receptors collectively stimulate the Gαi,
Gαq, Gαs, and Gα12/13 signaling pathways [4,5,8–10]. In addition to G-
protein coupled receptors, LPA has been shown to activate the nuclear
fatty acid receptor peroxisome proliferator-activated receptor gamma
(PPAR-γ) [11]. LPA signaling has been implicated in a wide array of
cellular processes including wound healing and smooth muscle
contraction as well as cell proliferation, survival, and migration [12–
17]. These latter functions support a role for LPA signaling in cancer
progression, where LPA has been shown to promote tumorigenesis by
enhancing adhesion, migration, and invasion [12,16,18].
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LPA appears to be involved in regulation of bone and cartilage. LPA
has been shown to regulate osteoblasts [19,20] and chondrocytes are
also sensitive to the lipid mediator [21] These studies suggest that LPA
may also be involved in endochondral ossification, a process involving
the formation of bone upon a cartilage template and themechanismby
which long bones in children and adolescents lengthen [22]. This
template is the result of growth, maturation, and calcification of
growth plate cartilage [23], which is regulated in part by the vitamin D
metabolites 1,25-dihydroxy vitamin D3 [1α,25(OH)2D3] and 24,25-
dihydroxy vitamin D3 [24R,25(OH)2D3] [24]. LPA acts synergistically
with 1α,25(OH)2D3 to promote osteoblast differentiation [25],
providing evidence of a relationship between this metabolite and
LPA signaling, but it is not known if there is a relationship between LPA
and 24R,25(OH)2D3.

The resting zone of the growth plate provides a reservoir of
chondrocytes that will eventually undergo terminal differentiation,
hypertrophy, and apoptosis as the growth plate matures. The cells in
the resting zone are surrounded by a proteoglycan-rich extracellular
matrix and apoptosis is a relatively infrequent event [26,27]. These
cells respond in particular to the 24R,25(OH)2D3, resulting in
increased cell maturation, matrix synthesis, and cell survival [28–
31]. 24R,25(OH)2D3 acts on resting zone chondrocytes via a PLD-
dependent mechanism [32] and many 24R,25(OH)2D3-mediated
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effects in resting zone chondrocytes have been shown to be
dependent upon PLD activation [31].

These observations implicate LPA as a secondmessenger during the
promotion of cell maturation and survival in chondrocytes by 24R,25
(OH)2D3. However, the downstream targets by which LPA exerts its
effect on growth plate chondrocytes are unknown. One possibility is
Fig. 1. Resting zone chondrocytes produce LPA and express LPA receptors. LPA isoform abu
collected from resting zone chondrocytes treated with media containing vehicle alone or 1
male rat resting zone chondrocytes using Trizol. LPA receptor cDNA was generated usin
Transcriptase (Qiagen). LPA receptors fragments were amplified via polymerase chain rea
treated with complete media or varying concentrations of 24R,25(OH)2D3 in the presence o
specific activity was measured in cell layer lysates as a function of release of para-nitrophe
control, •=significant relative to 10−7 M 24R,25(OH)2D3).
that LPA acts by modulating the abundance of the tumor-suppressor
p53. LPA has been shown to promote the degradation of p53 in several
cancer cell types [33,34], resulting in increased cell survival. Reduction
of p53 protein abundance is necessary in osteoblastmaturation [35,36]
suggesting that LPA-mediated decreases in p53 may be important in
the maintenance of cartilage tissue as well.
ndance was determined by LC ESI MS/MS from cell layer lysates (A) and media (B)
0−9 to 10−7 M 24R,25(OH)2D3. (C) Total RNA was isolated from confluent cultures of
g specific reverse primers for LPA1–5, PPAR-γ, and GADPH and Omniscript Reverse
ction using sequence specific primers. (D) Male rat resting zone chondrocytes were
r absence of the LPA1/3 selective antagonist VPC3218(S) for 24 h. Alkaline phosphatase
nol from para-nitrophenylphosphate at pH 10.2. (⁎=significant relative to untreated
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The purpose of this studywas to investigate the role of LPA signaling
in the maintenance of the growth plate resting zone. Specifically, we
assessed how LPA regulates proliferation,maturation, and apoptotic cell
death in growth plate chondrocytes using resting zone cells isolated
fromadult rat costochondral growthplate cartilage asourmodel system.
We found that LPA enhances two markers of chondrocyte maturation:
alkaline phosphatase enzymatic activity and [35S]-sulfate incorporation.
In addition, LPA was found to be a potent stimulator of proliferation.
Fig. 2. LPA increasesmaturation in resting zone chondrocytes. Chondrocytematurationwas dete
(B, D, F). Male rat resting zone chondrocytes were treated with complete media or varying co
harvesting the cell monolayer. (E, F) Additionally, cells were treated with complete media or 1
Alkaline phosphatase specific activitywasmeasured in cell layer lysates as a function of release o
incorporation, cellswere labeledwith [35S]-sulfate 4 h prior to harvest. At harvest, the conditione
[35S]-sulfate incorporated determined as a function of protein in the cell layer. (⁎=significant
Lastly, LPA protects resting zone chondrocytes from apoptotic cell death
by decreasing the abundance of the tumor suppressor p53 to alter p53
target gene expression and protein abundance. Collectively, these data
suggest that LPA signaling promotes cellular proliferation, maturation
and survival in resting zone chondrocytes demonstrating a novel
physiological function of LPA signaling and providing evidence that
LPA produced by the cells in response to 24R,25(OH)2D3 stimulation
may act to mediate its effects on resting zone chondrocytes.
rminedbymeasuringalkaline phosphatase specific activity (A, C, E) and [35S]-incorporation
ncentrations of LPA (A, B) or the LPA1/3 selective agonist OMPT (C, D) for 24 h prior to
μM LPA in the presence or absence of the LPA1/3 selective antagonist VPC3218(S) for 24 h.
f para-nitrophenol from para-nitrophenylphosphate at pH 10.2. In order tomeasure sulfate
dmediawere removed, the cell layers (cells andmatrix)were collected, and the amount of
relative to untreated control, •=significant relative to 1 μM LPA).



Fig. 3. LPA enhances proliferation. DNA synthesis was determined by measuring the
incorporation of radio-labeled thymidine. Cells were grown to subconfluence and treated
with DMEM containing 1% FBS for 48 h to induce quiescence. Male rat resting zone
chondrocytes were treated with complete media or varying concentrations of LPA (A) or
the LPA1/3 selective agonist OMPT (B) for 24 h prior to harvesting the cellmonolayer. Cells
were alternatively treated with complete media or 1 μM LPA in the presence or absence of
the LPA1/3 selective antagonist VPC3218(S) for 24 h (C). Prior to harvest, cell were labeled
for 3 hwith [3H]-thymidine. Themonolayerswerewashed three timeswith PBS to remove
unincorporated [3H]. Cells were then fixed with cold 5% trichloroacetic acid followed by
lysis with 1% sodium dodecyl sulfate. The amount of [3H] activity was determined in each
sample to determine the total amount of incorporated labeled thymidine. (⁎=significant
relative to untreated control, •=significant relative to 1 μM LPA).
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2. Materials and methods

2.1. Reagents

18:1 LPA (1-oleoyl-2-hydroxy-sn-glycero-3-phosphate), OMPT
((2S)-1-oleoyl-2-O-methyl-glycero-3-phosphothionate), and
VPC32183(S) ((S)-phosphoric acid mono-{2-octadec-9-enoyla-
mino-3-[4-(pyridine-2-ylmethoxy)-phenyl]-propyl} ester) were
purchased from Avanti Polar Lipids (Alabaster, AL). All lipid species
were reconstituted in 1% charcoal-stripped bovine serum albumin
(BSA) prior to treatment of cells. Unless otherwise stated, all other
reagents were acquired from VWR International (West Chester, PA).

2.2. Cell culture

The culture system used in this study has been previously
described in detail [37]. Chondrocytes were obtained from the
resting zone (reserve zone) of costochondral cartilage from 125-g
male Sprague-Dawley rats and cultured in Dulbecco's modified Eagle
medium (DMEM) containing 10% fetal bovine serum (FBS), 1%
antibiotics, and 50 μg/ml ascorbic acid (GIBCO-BRL, Gaithersburg,
MD). Primary cells were cultured until fourth passage prior to
experimental analysis.

2.3. LPA isoforms

The abundance of LPA isoforms in lysates andmedia collected from
the resting zone chondrocyte cultures was determined by liquid
chromatography electrospray ionization tandem mass spectrometry
(LC ESI MS/MS). Resting zone chondrocytes were cultured in T75
flasks and grown until confluence. Cells were then treated for 30 min
with starvation media (1% FBS) containing 1% bovine serum albumin
(BSA) and 24R,25(OH)2D3 (10−9, 10−8, or 10−7M) (BioMol, Plymouth
Meeting, PA) or vehicle alone. After the treatment period, 1 ml of
conditioned media was collected and cell monolayers were harvested
using 0.05 M sodium hydroxide (NaOH). Media and lysate samples
were spiked with 1 pmol of 17:0 LPA (internal standard) prior to lipid
extraction via the Bligh-Dyer method [38]. LC ESI MS/MS analysis was
conducted at the Georgia Institute of Technology Bioanalytical Mass
Spectrometry Facility using a Shimadzu HPLC pump and a Q-TRAP
4000 (Applied Biosystems, Foster City, CA). Reverse phase chromato-
graphy was performed using a Supelco C18 columnwith a flow rate of
500 μl/min and an injection volume of 10 μl. The isocratic buffers were
75:25 methanol:water (v/v) and methanol each with 5 mM TEAA.
Eluted samples were then analyzed on the QTRAP 4000 and LPA
isoforms were compared to LPA standards supplied by Avanti Polar
Lipids. Peak areas of LPA isoforms were normalized to 17:0 peaks to
account for differences in lipid extraction efficiency.

2.4. LPA receptor, Bax, Bcl-2, and p53 expression

mRNA was harvested from resting zone chondrocytes using Trizol
(Invitrogen, Carlsburg, CA) and reverse transcriptase polymerase chain
reaction (RT-PCR) was used to identify the presence of the LPA receptors
LPA1–5 and PPAR-γ. The following sequence specific primers were used:
LPA1 sense: 5′-GGTTCTCTACGCTCACATC-3′, LPA1 antisense 5′-GCAGTAG-
CAAGACCAATCC-3′, LPA2 sense: 5′-CACCACCTCACAGCCATCC-3′, LPA 2
antisense: 5′-AGACATCCACAGCACTCAGC-3′, LPA3 sense: 5′-CTACAACAG-
GAGCAACAC-3′, LPA3 antisense: 5′-CCAGCAGGTAGTAGAAGG-3′, LPA4
sense: 5′-ACAACTTTAACCGCCACTGG-3′, LPA4 antisense: 5′-ATTCCT-
CCTGGTC CTGATGG-3′, LPA5 sense: 5′-ACCTTGGTGTTCCCTATAATGC-3′,
LPA5 antisense: 5′-AGCCAGAGCGTTGAGAGG-3′, PPAR-γ sense: 5′-
CCGAAGAACCATCCGATTGAAG-3′, and PPAR-γ antisense: 5′-CTCCGCCAA-
CAGCTTCTCC-3′. In order to determine the effect of LPA on p53, Bax, and
Bcl-2 mRNA expression, cells were treated with 0, 0.01, 0.1, and 1 μM LPA
for 6 h prior to harvesting the mRNA with Trizol. The following primers
were used to amplify p53, Bax, and Bcl-2: p53 sense: 5′-CCGTCCCA-
GAAGGTTGCC-3′, p53 antisense: 5′-CGC TGC TCC GAA GGT GAT-3′, Bax
sense: 5′-TTTGTTACAGGGTTTCATCC-3′, Bax antisense: 5′-CCAGTT-
CATCTCCAATTCG-3′, Bcl-2 sense: 5′-CTCGTGGCTGTCTCTGAAG-3′, Bcl-2
antisense: 5′-TCTGCTGACCTCACTTGTG-3′. Glyceraldehyde-3-phosphate
dehydrogenase (GADPH) was amplified as a control in each experiment:
GAPDH sense: 5′-ATGCAGGGATGATGTTC-3′, GAPDH antisense: 5′-
TGCACCA CCAACTGCTTAG-3′.



840 J. Hurst-Kennedy et al. / Biochimica et Biophysica Acta 1793 (2009) 836–846



841J. Hurst-Kennedy et al. / Biochimica et Biophysica Acta 1793 (2009) 836–846
2.5. Chondrocyte maturation assays

Confluent cultures were treated with LPA (0.01 nM to 1 μM) for the
times indicated below. To determine if the LPA1/3 receptor was
involved, cultures were also treated with LPA in the presence or
absence of the LPA1/3-selective agonist (2S)-1-oleoyl-2-O-methyl-
glycero-3-phosphothionate (OMPT) (Avanti Lipids, Alabaster, AL)
(0.1 nM to 1 7μM) [39] or the LPA1/3-selective antagonist (S)-
phosphoric acid mono-(2-octadec-9-enoylamino-3-[4-(pyridine-2-
ylmethoxy)-phenyl]-propyl) ester (VPC32183(S)) (Avanti Lipids)
(0.01 μM to 1 μM) [40]. Chondrocyte maturation was assessed by
examining alkaline phosphatase specific activity and [35S]-sulfate
incorporation.

To determine that 24R,25(OH)2D3 elicited its effects via an LPA-
dependent mechanism, confluent cultures of resting zone cells were
cultured for 24 h in the presence and absence of the LPA1/3 selective
antagonist VPC32183(S). Alkaline phosphatase specific activity was
measured as described below.

2.5.1. Alkaline phosphatase specific activity
Initial experiments determined the optimal time course by

treating confluent cultures with 1 μM LPA for 3, 6, 12, 18, and
24 h. Subsequent experiments were performed after treating the
cells for 24 h. Following treatment, cell monolayers were lysed using
0.1% Triton X followed by sonication of each sample for 30 s. Alkaline
phosphate activity was measured in cell layer lysates as a function of
release of para-nitrophenol from para-nitrophenylphosphate at pH
10.2. Activity was normalized to the protein concentration of the
lysates, determined using the macro-BCA assay (Macro BCA, Pierce
Chemical Co., Rockford, IL).

2.5.2. [35S]-sulfate incorporation
Mature chondrocytes produce a proteoglycan-rich extracellular

matrix that is characterized by sulfated glycosaminoglycans. To
assess the effects of LPA on chondrocyte maturation, confluent cells
were labeled with [35S]-sulfate 3 h prior to harvest. At harvest, the
conditioned media were removed, the cell layers (cells and matrix)
were collected, and the amount of [35S]-sulfate incorporated was
determined as a function of protein in the cell layer [41].

2.6. DNA synthesis

To determine if LPA regulated chondrocyte proliferation, DNA
synthesis was assessed by measuring the incorporation of radio-
labeled thymidine. Cells were grown to subconfluence and treated
with DMEM containing 1% FBS for 48 h to induce quiescence. Cells
were then treatedwith LPA (0.1 nM to 1 μM) in the presence or absence
of OMPT (0.1 nM to 1 μM) or VPC32183(S) (0.01 μM to 1 μM) for 24 h.
Prior to harvest, cell were labeled for 3 h with [3H]-thymidine. The
monolayers were washed three times with phosphate buffer solution
(PBS) to remove unincorporated [3H]. Cells were then fixed with cold
5% trichloroacetic acid followed by lysis with 1% sodium dodecyl
sulfate. The amount of [3H] activity was determined in each sample to
determine the total amount of incorporated radio-labeled thymidine.
Fig. 4. LPA protects cells from phosphate and chelerythrine-induced apoptosis. DNA fragme
treatment with the PKC inhibitor chelerythrine (A) or 7.5 mMmonobasic sodium phosphate
monolayers werewashed with DMEM three times to remove unincorporated [3H] and cell we
lysateswere centrifuged at 13,000 g for 15min to separate intact DNA from fragmented DNA.
the total amount of fragmentedDNA. TUNEL: (C) Resting zone chondrocyteswere treatedwith
presence and absence of LPA for 24h. Cellswerefixed using 4%paraformaldehyde in PBS for 1 h
analysis with light microscopy. All images were obtained using an exposure time of 1.5 s. Casp
System (Promega) (D–F). Resting zone chondrocytes were harvested after treatment with c
presence and absence of LPA and/or VPC32183(S) for 24 h. Cell lysates were incubated with
405 nm and normalized to total protein. (⁎=significant relative to untreated control, •=si
2.7. Apoptosis assays

The role of LPA in chondrocyte survival was assessed by examining
its ability to reduce apoptosis induced by two apoptogens, inorganic
phosphate and chelerythrine [42,43]. Apoptotic cell death was
determined by measuring by caspase-3 activity, TUNEL staining, and
DNA fragmentation. Confluent cultures of resting zone chondrocytes
were treated with either 10−5 M chelerythrine or 7.5 mM monobasic
sodium phosphate to induce apoptosis. LPA (0.01 μM, 0.1 μM, or 1 μM),
VPC32183(S) (0.01 μM, 0.1 μM, or 1 μM), or the vehicle was added to
the cultures.

2.7.1. Caspase-3 activity
Caspase-3 activity was determined using the Colorimetric

CaspACE™ Assay System from Promega (Madison, WI). Cells were
harvested 24 h post treatment with 200 μl cell lysis buffer followed by
two 10 s periods of sonication. After harvest, 2 μl of the caspase-3
selective substrate DEVD-pNA was added to each well containing
100 μl of cell lysate and incubated at 37 °C for 4 h. DEVD-pNA cleavage
into the colorimetric product pNAwasmeasured at 405 nm. Caspase-3
activity was normalized to protein content as determined by the
Pierce Macro BCA Protein Assay Kit.

2.7.2. DNA fragmentation
Cells were labeled with [3H]-thymidine for 4 h prior to treatment.

At the end of the treatment period, cell monolayers were washed with
DMEM three times to remove unincorporated [3H] and cells were
lysed with TE buffer (10 mM Tris–HCl, 1 mM EDTA, 0.2% Triton X-100)
for 30 min. Cell lysates were centrifuged at 13,000 g for 15 min to
separate intact DNA from fragmented DNA. The amount of incorpo-
rated [3H]-thymidine was determined in each fraction to establish the
total amount of fragmented DNA.

2.7.3. TUNEL staining
DNA nicking was measured using the In Situ Cell Death Detection

Kit (Roche Applied Science, Indianapolis, IN). After treatment, cells
were fixed using 4% paraformaldehyde in PBS for 1hour. To detect
nicks, cells were incubated with horse radish peroxidase-conjugated
dUTP for 1 h at 37 °C. Nicks were visualized with DAB substrate
(3,3-diaminobenzidinetetrahydrochloride) also purchased from
Roche.

2.8. Regulation of p53

Confluent cultures in T75 flasks were treated for 6 h with 0, 0.01,
0.1, and 1 μM LPA. After treatment, the cell monolayer was washed
twice with PBS and harvested with RIPA buffer. mRNA for p53 was
determined as described above. The abundance of p53 protein in
both the whole cell lysate and nuclear and cytoplasmic fractions
was determined by ELISA (p53 pan ELISA, Roche) and normalized to
total cellular or total fraction protein as determined by Pierce Macro
BCA Protein Assay Kit. Nuclear and cytoplasmic fractions were
isolated by centrifuging whole cell lysates for 10 min at 13,000 rpm.
The resulting supernatants (cytoplasmic fraction) were collected
ntation: Resting zone chondrocytes were labeled with [3H]-thymidine for 4 h prior to
(B) in the presence and absence of LPA for 24 h. At the end of the treatment period, cell
re lysed with TE buffer (10mM Tris–HCl, 1 mM EDTA, 0.2% Triton X-100) for 30min. Cell
The amount of incorporated [3H]-thymidinewas determined in each fraction to establish
completemedia (control), chelerythrine or 7.5mMmonobasic sodiumphosphate in the
. DNAnickingwas assessed using the In situ Cell DeathDetectionKit (Roche) followed by
ase-3 activity: Caspase-3 activity was measured using the Colorimetric CaspACE™ Assay
omplete media (control), chelerythrine or 7.5 mM monobasic sodium phosphate in the
the caspase-3 substrate DEVD-pNA. Cleavage of DEVD-pNA into pNA was measured at

gnificant relative to 7.5 mM PO4 alone or 10−5 M CHEL alone).



Fig. 5. LPA reduces p53 at the translational level but not at the transcriptional level. RNA from resting zone chondrocyte cultures treated with 0, 0.01, 0.1, or 1 μM LPA for 6 h was
collected using Trizol (A). p53 and GAPDH cDNAwere generated using specific reverse primers and Omniscript Reverse Transcriptase (Qiagen). Gene fragments were then amplified
via polymerase chain reaction using sequence specific primers. Resting zone chondrocyte cultureswere treatedwith completemedia or with LPA for 6 h prior harvest. The abundance
of p53 wasmeasured in both thewhole cell lysate (B) and the nuclear and cytoplasmic fractions (C) by p53 pan ELISA (Roche). p53-mediated transcriptionwas assessed as a function
of normalized luciferase activity (D). Cells were transfected with p53-controlled firefly luciferase and constitutively active Renilla luciferase. 24 h post-transfection, cells were treated
with LPA for 16 h prior to measuring luciferase activity.
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and the pellets (nuclear fraction) were resuspended in 500 μl RIPA
buffer.

To assess changes in p53-mediated transcription, luciferase
reporter gene assays were conducted as previously described [44].
Cells were transfected with two plasmids: one containing p53-
controlled firefly luciferase (pp53_TA-Luc, Clonetech, Mountain
View, CA) and the other carrying constitutively expressed Renilla
luciferase (pLR-TK, Promega, Madison, WI). 24 h after transfection,
cells were treated with 0, 0.01, 0.1, and 1 μMLPA for 16 h and luciferase
activity was measured using the Dual Luciferase Reporter Assay kit
(Promega, Madison, WI).

2.9. Abundance of Bax, Bcl-2, and p21 protein

Western blots were performed to determine the effect of LPA on the
protein abundance of Bax, Bcl-2, and p21. Cell culture lysates were
prepared from confluent resting zone cells andwere resolved on 10% SDS-
polyacrylamide gels. Blots of the gels were probed with monoclonal
antibodies against Bax (Δ 21, Santa Cruz Biotechnology, Inc.), Bcl-2 (DC 21,
Santa Cruz Biotechnology, Inc.), p21 (BD Pharmingen, San Jose, CA), or
GAPDH (MAB374 Chemicon, Billerica, MA). Immunoreactive bands were
detected using 1:5000 dilutions of horseradish peroxidase-conjugated
goat anti-rabbit IgG or goat anti-mouse IgG (Jackson Immunoresearch,
West Grove, PA), and visualized using enhanced chemiluminescence
(Super-Signal WestPico Chemiluminescent Substrate (Pierce Biotechnol-
ogy, Rockford, IL). mRNA for Bax and Bcl-2 were performed as described
above.

2.10. Statistical analysis

Each experiment had six independent cultures per variable to
ensure sufficient power to detect statistically significant differences. All
experiments were conducted multiple times to validate the observa-
tions, but data from a single representative experiment are shown in
the figures and are expressed as means±SEM. Statistical analysis was
conducted using ANOVA analysis followed by Student's T-test with a
Bonferroni modification. Differences in means were considered to be
statistically significant if the p value was less than 0.05.



Fig. 6. Bax and Bcl-2 mRNA and protein abundance are regulated by LPA. (A) Total RNA
was isolated from male rat resting zone chondrocyte cultures using Trizol. Bax, Bcl-2,
and GAPDH cDNAwas generated using specific reverse primers and Omniscript Reverse
Transcriptase (Qiagen). Gene fragments were amplified via polymerase chain reaction
using sequence specific primers. (B) Resting zone chondrocyte cultures were treated
with complete media or with LPA for 6 h prior to immunoblotting of whole-cell extracts
with mouse anti-Bcl-2, mouse anti-Bax, or mouse anti-GAPDH antibodies. (C)
Calculated Bcl-2:Bax mRNA and protein ratios in response to LPA treatment from
panels A and B.
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3. Results

3.1. Resting zone chondrocytes produce LPA and express LPA receptors

LC ESI MS/MS showed that three LPA isoforms, 16:0 LPA, 18:1 LPA,
and 18:0 LPA, were present in both the cell monolayer (Fig. 1A) and
conditioned media (Fig. 1B), indicating the existence of both
intracellular and extracellular LPA in cultures of RC cells. 24R,25
(OH)2D3 increased the abundance of 16:0 and 18:1 LPA in the media,
but not in the cell monolayer. The effect of 24R,25(OH)2D3 on both LPA
forms was dose-dependent and was greatest in cultures treated with
10−8 M. RT-PCR using sequence-specific primers detected the
presence of the five cell surface G-protein coupled receptors, LPA1–5,
and the nuclear receptor PPAR-gamma (Fig. 1C). Distinct bands for
LPA1, LPA3, and LPA4 were observed. Bands for LPA2 and LPA5 were
present but to a lesser extent.

24R,25(OH)2D3 exerted its effects on chondrocyte maturation via
an LPA1/3 dependent mechanism. The LPA1/3-selective antagonist
VPC32183(S) attenuated 24R,25(OH)2D3-mediated increases in alka-
line phosphatase activity (Fig. 1D).

3.2. Exogenous LPA enhances chondrocyte maturation

Initial time course experiments showed that LPA increased
alkaline phosphatase specific activity at 24 h, but no LPA effect
was observed prior to this time point (data not shown). For this
reason, all future maturation experiments were conducted following
a 24 hour exposure to the lipid mediator. Both LPA and the LPA1/3-
selective agonist OMPT increased alkaline phosphatase activity in the
resting zone chondrocytes in a dose dependent manner at
concentrations ranging from 0.01 μM to 1 μM (Fig. 2A and C). The
same concentrations of LPA and OMPT also increased [35S]-sulfate
incorporation (Fig. 2B and D). Furthermore, VPC32183(S) attenuated
LPA-mediated increases in both alkaline phosphatase activity and
[35S]-sulfate incorporation in a dose dependent manner (Fig. 2E and
F), indicating that the effects of LPA stimulation are dependent upon
activation of LPA1 and/or LPA3.

3.3. LPA increases DNA synthesis in a dose-dependent manner

Treatment of pre-confluent cells culture with 1 μM LPA or OMPT
enhanced DNA synthesis 100% over control cultures (Fig. 3A and B).
Inhibition of LPA1 and LPA3 with VPC321283(S) inhibited LPA-
mediated increases in proliferation (Fig. 3C). These data demonstrate
LPA promotes proliferation in resting zone chondrocytes through
activation of LPA1 and/or LPA3.

3.4. LPA reduces the stimulatory effects of phosphate and chelerythrine
apoptosis

Both phosphate and chelerythrine increased DNA fragmentation
relative to the control in a dose-dependent manner (Fig. 4A and B).
LPA doses ranging from 0.01 μM to 1 μM completely and partially
rescued phosphate and chelerythrine-induced DNA fragmentation,
respectively. Similarly, LPA reduced DNA nicking induced by both
apoptogens, evidenced by reduced TUNEL staining (Fig. 4C).
Inorganic phosphate and chelerythrine also increased caspase-3
activity and LPA reduced this marker of apoptosis as well (Fig. 4D, E).
The rescue of Pi-induced caspase-3 activity by LPA was attenuated by
VPC32183(S) (4F).

3.5. LPA promotes cell survival via p53 signaling

Control cultures of resting zone chondrocytes expressed p53
mRNA (Fig. 5A) and protein (Fig. 5B). Treatment with LPA had no
effect on p53 mRNA at 6 h, but there was a decrease in p53 protein
at this time point. Nuclear p53 protein was decreased by LPA,
whereas, cytoplasmic p53 did not change in response to the
treatment (Fig. 5C). Both p53-mediated transcription (Fig. 5D) and
the abundance of the p53-target gene p21 (data not shown) were
decreased by LPA. Moreover, LPA decreased both the mRNA
expression (Fig. 6A) and protein abundance (Fig. 6B) of Bax.
Conversely, both Bcl-2 mRNA and protein abundance were increased
by LPA (Fig. 6A, B).
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4. Discussion

Our results indicate that LPA is an autocrine regulator in the
growth plate resting zone. Resting zone chondrocytes contain
intracellular LPA and secrete extracellular LPA. The LPA isoforms
identified, 16:0, 18:1, and 18:0, are the most biologically relevant of
the LPA isoforms [45–47]. In addition, LPA receptors are present in
RC cells, demonstrating that they have the potential to respond to
this phospholipid metabolite. Moreover, 24R,25(OH)2D3 increased
the extracellular abundance of LPA 16:0 and LPA 18:1 and the
LPA1/3-selective antagonist VPC32183(S) attenuated 24R,25
(OH)2D3-mediated maturation, suggesting that LPA may act as
downstream mediators of vitamin D metabolite effects on resting
zone cells.

This study demonstrates that LPA signaling plays a role in the
maintenance of the resting zone cartilage by promoting the
survival of the chondrocyte pool (Fig. 7). At least two mechanisms
are involved in the inhibition of apoptosis. LPA acts via reduced
p53 and its downstream mediator p21, reduced Bax and increased
Bcl-2. This is particularly important because resting zone cells serve
as the pool for the growth zone and premature cell death in the
resting zone could result in premature closure of the growth plate
and limb shortening. In addition, LPA stimulated DNA synthesis,
suggesting that LPA is involved in maintaining the pool of resting
zone chondrocytes via proliferation. LPA has been shown to act as a
mitogen in other systems [13,21,48–50], as well as in primary rat
articular chondrocytes [21]. However, it decreased proliferation of
T/C-28a2 cells, a human articular chondrocyte-like cell line [51],
raising the possibility that its effects are cell specific.

In addition to its stimulatory effects on DNA synthesis, LPA
increased [35S]-sulfate incorporation, suggesting an increase in the
synthesis of a sulfated proteoglycan extracellular matrix around the
newly generated chondrocytes. Alkaline phosphatase specific activity
also increased, supporting the hypothesis that the chondrocytes were
Fig. 7. Proposed mechanism of LPA signaling in the resting zone. 24R,25(OH)2D3

phosphatidylcholine (PC) to phosphatidic acid (PA) leading to LPA production. LPA stim
incorporation, and proliferation. LPA also decreases the abundance and transcriptional ac
decrease in caspase-3 activity.
producing a mature matrix containing alkaline phosphatase-rich
extracellular matrix vesicles [52].

Our results strongly support a physiological role for LPA in
promoting chondrocyte survival in the resting zone. We demon-
strated by four different methods (DNA fragmentation, TUNEL
staining, caspase-3 activity, and Bcl-2/Bax ratio) that LPA signaling
reduced the induction of apoptosis by two agents shown previously
to stimulate the apoptotic pathway in resting zone chondrocytes in
vitro [42,43]. Moreover, the ability of LPA to rescue the apoptotic
effect of Pi was attenuated by the LPA1/3 receptor antagonist,
indicating that LPA1/3 signaling was responsible. The timing of
programmed cell death is crucial in the maintenance of the growth
plate. Inhibition of apoptotic signaling in hypertrophic chondrocytes
prevents their terminal differentiation [53], resulting in lengthening
of the growth plate as is typically seen in the vitamin D-deficient
rickets. Phosphate plays an important role in this process [54], but it
isn't known if the phosphate content is also a regulator of apoptosis
in the resting zone.

Cell proliferation is associated with an increase in protein kinase C
(PKC) in many cell types [55,56], and LPA reduced the effects of PKC
inhibition by chelerythrine. Previously we have showed that 24R,25
(OH)2D3 stimulates PKC and cell proliferation in resting zone
chondrocytes via a PLD-dependent mechanism [57]. Our results
suggest that LPA may mediate this response.

The LPA-induced decrease in the cellular abundance of the tumor
suppressor p53 may be involved as well. The reduction of p53
correlates enhanced cell survival [58], indicating that the inhibition
of p53 is the mechanism of LPA-mediated protection against cell
death. The inhibition of p53 has also been implicated in the
maturation of osteoblasts [35,36], suggesting that LPA-mediated
decreases in p53 may be significant in chondrocyte maturation in
addition to enhancing survival in these cells. LPA altered p53-
mediated transcription and the expression of the p53-target genes
p21, Bax and Bcl-2 at the transcriptional and translational level. The
-mediated stimulation of phospholipase D (PLD) promotes the conversion of
ulates LPA1 and/or LPA3, resulting in increases alkaline phosphatase activity, [35S]-
tivity of the tumor suppressor p53 causing an increase in the Bcl-2:Bax ratio and a



845J. Hurst-Kennedy et al. / Biochimica et Biophysica Acta 1793 (2009) 836–846
change in the cellular Bax to Bcl-2 ratio would result in the
inhibition of the release of cytochrome c from the mitochondria
[59], halting the initiation of the apoptotic proteolytic caspase
cascade. This is supported by our finding that LPA inhibits
chelerythrine and phosphate-induced caspase-3 activity via an
LPA1/3 mediated mechanism. Collectively, our results define a
pathway for LPA-mediated enhancement of cell survival and
chondrocyte maturation by which LPA decreases the abundance of
p53 to alter p53-target gene expression resulting in the inhibition of
caspase activity.

In summary, LPA was found to be a stimulator of resting zone
chondrocyte proliferation and maturation and an inhibitor of
chondrocyte apoptosis. This confirms a physiological role for LPA as
a regulator of growth plate cartilage, and suggests that LPA produced
via 24R,25(OH)2D3-stimulated PLD activity may mediate the actions
of the secosteroid in growth plate resting zone chondrocytes.
Additionally, this establishes LPA as a potential therapeutic regula-
tory agent in controlling the processes of endochondral bone
formation during long bone growth and development and during
fracture repair.
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