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As cancer cell genomes are unveiled at a breathtaking pace, the genetic principles at play in cancer
are emerging in all their complexity, prompting the assessment of classical genetic interaction
models. Here, we discuss the implications of these findings for cancer progression and heteroge-
neity and for the development of new therapeutic approaches.
Over the past 30 years, intensive research has led to a reasonable

understanding of many cellular functions at the molecular level

and how these processes go awry in cancer. However, the

genetic principles that underlie the evolution of cancer genomes

and how combinations of mutations contribute to cancer pheno-

types remain poorly defined. These underlying principles are

likely to be similar to those governing genetic variation in healthy

cells and evolutionary processes in organisms, but this assump-

tion remains untested. Here, we discuss emerging ideas on the

genetic interactions in cancer and how they may be used to

design new therapeutic approaches.

Cancer Genes and Cancer Genomes
As a cell progresses from normal to cancerous, the biological

imperative to survive and perpetuate drives fundamental

changes in the cell’s behavior. These series of attributes, which

are most succinctly described as the ‘‘Hallmarks of Cancer’’

(Hanahan and Weinberg, 2000; Luo et al., 2009b; Hanahan and

Weinberg, 2011), are required for the development of amalignant

tumor. However, numerous questions remain about how muta-

tions in DNA lead to the acquisition of these traits. First, many

‘‘cancer genes’’ still await discovery, but even when these genes

are known, it is mostly unclear how they connect to transforma-

tive phenotypes. Moreover, for specific tumor phenotypes, it is

not yet known whether transformative mutations are selected

from a smorgasbord of functionally equivalent changes in

different genes. Or, is cancer progression an ordered procession

of mutation acquisition, with each mutation individually and

incrementally increasing tumorigenicity, and is the order of

acquisition itself important or is it simply the slate of genes that

is relevant?

Although the number of cancer genomes currently available

for scrutiny is relatively small, this is set to rise dramatically

over the next year. Nevertheless, it is already apparent that the

landscapes of cancer genomes can be incredibly complex.

Tumor cells may possess a panoply (104–105) of genetic

changes compared to germline DNA, which include highly

complex structural rearrangements in combination with base

changes, insertions and deletions (i.e., indels), and copy-number

changes (i.e., amplifications and deletions). These genetic
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changes likely arise from endogenous chemical reactions with

DNA and physiological processes, such as replication, but also

from the activity of exogenous mutagenic agents, such as ultra-

violet light, chemicals in tobacco smoke, and even chemo-

therapy. The differential activity of DNA repair processes may

considerably influence whether these insults become fixed as

heritable mutations. Theoretical considerations have led to the

suggestion that only a limited number of genetic alterations

(less than 10) may be absolutely required for tumor formation;

these are usually referred to as driver mutations. If this number

is reasonably accurate, it suggests that most of the genetic

change in a tumor cell is collateral damage due to either muta-

genic exposure and/or defects in DNA repair processes; these

changes are called passenger mutations.

Mutational changes in genes can be classified biologically by

their functional effect on the encoded protein. In cancer

research, a long-standing distinction is made between ‘‘onco-

genes’’ that incur dominant gain-of-function mutations (i.e.,

neomorphic mutations) and ‘‘tumor suppressor’’ genes that

develop recessive loss-of-function mutations (hypomorphic

mutations). Together these two types of mutations drive disease

progression. Mutations can also have dominant-negative

(antimorphic) effects; when only one allele is lost, this leads to

dosage-dependent haploinsufficiency (Santarosa and Ashworth,

2004), which has also been recognized as contributing to cancer.

A functional subdivision of tumor suppressors into caretaker,

gatekeeper, and landscaper genes has also been proposed

(Kinzler and Vogelstein, 1997; Michor et al., 2004). Caretaker

genes, when mutated, lead to genomic instability and enhanced

mutation acquisition. In contrast, gatekeeper genes encode

proteins that restrain cell growth, and disrupting their function

allows enhanced cell proliferation. Finally, defective landscaper

genes foster a microenvironment conducive to tumor cell

survival. Doubtless other categories of genes will also have

a significant role in cancer.

The Nature of Genetic Interactions in Cancer
Clearly, the complexity of cellular systems does not arise from

the independent action of a large number of different genes

but is rather the result of extensive genetic interactions among
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Box 1. Glossary

This glossary presents the consensus definitions of terms used in the

text. Definitions of many terms vary, and many of the concepts and

terms overlap considerably in meaning.

Mutations and Alleles

d Driver mutation: Genetic alteration that provides an advantage to

cells facilitating tumor formation and survival. Driver mutations may

not necessarily be required at all points in the natural history of the

disease.

d Passenger mutation: Tumor-specific genetic alteration that is not

essential for tumor formation.

d Gain-of-function mutation: Mutation that increases a gene prod-

uct’s activity or results in a new function. Subclassifications include

hypermorphs, for which the mutation increases normal gene func-

tion; neomorphs, for which the dominant gain of function is distinct

from normal function; and antimorphs, for which the dominant

mutations act to oppose normal gene function.

d Loss-of-function mutation: Mutation that decreases or destroys

the gene product’s function. Subclassifications include amorphs,

where the mutation completely ablates normal function (also known

as a null mutation); and hypomorphs, where the mutation partially

disrupts normal function.

d Haploinsufficiency: An allele dosage effect in which diploid cells

carry a single active copy of a particular gene and that copy is

insufficient to support the function of two wild-type alleles.

d Caretaker, gatekeeper, and landscaper genes: A classification of

genes involved in cancer. Caretaker genes encode products that

engage in maintaining the stability of the genome, such as the genes

involved in DNA repair. Gatekeeper genes encode proteins that

restrain cell growth, and their loss of function allows enhanced cell

proliferation and the transmission of mutations. Landscaper genes

encode products that, when mutated, contribute to the abnormal,

neoplastic growth of cells by fostering a microenvironment condu-

cive to unregulated cell proliferation.

d Gradualism: The gradual and stepwise accumulation of tumorigenic

mutations over time.

d Chromothripsis: The nearly simultaneous acquisition of multiple

mutations in a tumor cell via the catastrophic shattering and then

reassembly of chromosomes.

Gene Interactions

d Epistasis or gene interaction: When the effects of one gene are

modified by one or several other genes, which are often called

modifier genes. In contrast to dominant/recessive effects that

describe the interaction between alleles of the same gene, epistatic

effects describe the interaction between genes at different loci.

When the phenotype of multiple genes is expressed within the

context of a gene interaction, these genes are defined as epistatic;

when the genes’ phenotype is repressed within the context of the

gene interaction, these mutations are defined as hypostatic. In

functional terms, these gene interactions can also be defined as

genetic suppression or enhancement effects; that is, the combina-

tion of gene effects on a phenotype is less or more profound than the

expected combination of single-gene effects, respectively.

d Synthetic lethality: A gene interaction in which single-gene defects

are compatible with cell viability, but the combination of gene effects

results in cell death (Figure 1). The term synthetic lethality is from the

Greek, syndyάzu or ‘‘syndiazo,’’ which means ‘‘two or more features

combined.’’

d Synthetic sickness: A gene interaction in which a combination of

changes in different genes generates a greater deleterious effect

on the fitness of a cell than would be expected given the individual

phenotypes of individual mutations (Figure 1B).

Box 1. Continued

d Synthetic viability: The reverse of synthetic lethality. One gene

alteration causes lethality, but in the presence of a second alteration

in another gene, the cell is viable (Figure 1).

d Hard and soft synthetic lethalities: Describes the extent to which

synthetic lethal interactions between two genes are modulated by

changes in additional genes. Hard synthetic lethalities are relatively

unaffected by changes in additional genes, whereas soft synthetic

lethalities can be readily rescued by alterations in other genes.

Ideally, the preferred targets of cancer therapy are hard synthetic

lethalities.

d Non-cell-autonomous synthetic lethality: Synthetic lethality that

occurs between two or more genes in different cells.

d Functional buffering: The ability of complex molecular systems to

buffer against the tendency of new alleles to impair cell fitness or

viability. This term is also known as genetic canalization.

d Gene addiction: The ability of a cell to become completely depen-

dent upon the activity of a gene. In cancer, tumor cells often become

addicted to the activity of oncogenes. A prime example of gene

addiction is the dependency of chronic myelogenous leukemia cells

on the constitutive activity of ABL kinase.

d Functional redundancy: When two or more genes, proteins, or

pathways perform similar, interchangeable activities. Synthetic

lethality can occur between genes with functional redundancy.

d Induced essentiality: A refined model of the synthetic lethality

concept; when the functional buffering that occurs in response to

a cancer gene mutation results in a dependency or addiction to

another gene.

d Genetic capacitor: A protein or molecular system that restricts the

ability of genetic variation to change phenotype. Heat shock proteins

are regarded as an example of a genetic capacitor because they

restrict the deleterious effects of a highly mutated cancer proteome.

d Network compatibility: When the acquisition of successive muta-

tions in the natural history of a tumor is defined by their compatibility

with pre-existing mutations and the functional buffering that has

occurred alongside existing mutations.
them. Although definitions for ‘‘genetic interactions’’ vary, they

can often be described as epistasis and then further subclassi-

fied as either enhancement or suppressive effects. For example,

considering the effect of mutating two genes, A and B, on

a phenotype such as cell fitness (Figure 1), these genes have

an enhancement interaction when a combination of mutations

in both genes has a far greater effect on cell fitness than would

be predicted by a simple combination of individual gene effects.

Conversely, a genetic suppression interaction produces a less

profound effect when both genes are mutated than would be ex-

pected from the combination of individual gene effects. These

gene interactions can be extreme and result in cell death or at

least a significant reduction in the fitness of cells. For example,

synthetic lethality and synthetic sickness (Dobzhansky, 1946;

Lucchesi, 1968) describe the scenario where single-gene

defects are compatible with cell viability but the synthesis or

combination of gene effects results in cell death or a significant

impairment of fitness. At the other extreme is a combination of

gene effects that rescues the lethal effects of a single gene

change; we term this effect synthetic viability, given its inverse

relationship to synthetic lethality.

So how do such concepts impact upon our understanding of

the genetic interactions in cancer? Cooperative interactions
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Figure 1. Gene Interactions in Cancer
(A) Extreme forms of genetic interaction are defined by synthetic lethality
(in which a combination or synthesis of gene mutations causes cell death) and
the reverse scenario, synthetic viability (in which a combination of gene effects
rescues the lethal effects of a single gene change).
(B) Different modes of genetic interaction defined by quantitative effects on
a phenotype, such as cell fitness. Here the value 1 represents the maximal
fitness of cells, and the individual effects of changes in genes A (0.7) or B (0.5)
are shown. When no interaction between genes A and B exists, the simple
combination of effects (shown here as 0.7 3 0.5 = 0.35) is expected; any
deviation from this value suggests an interaction between genes A and B.
between oncogenes, such as the transcription factor gene

MYC and the GTPase gene RAS, have long been recognized

as contributing to the processes of transformation and

immortalization (Land et al., 1983). This type of interaction was

originally viewed as a genetic enhancement effect. However,

and perhaps counterintuitively, some cancer drivers, such as

activated mutant RAS, while imparting a selective advantage

to tumor cells can also cause deleterious effects, and gene

interactions can act to mitigate these. RAS activation causes
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oncogene-induced senescence, a process driven by the exces-

sive firing of multiple replication forks, the activation of ATM, and

a DNA damage response (Bartkova et al., 2006; Di Micco et al.,

2006). Inactivation of ATM suppresses the effect of RAS on

oncogene-induced senescence and therefore represents an

example of synthetic viability.

Similarly, loss of either BRCA1 or BRCA2 tumor suppressor

gene function in cells triggers a cell-cycle arrest at the G2/M

checkpoint that can be suppressed by the inactivation of P53

(Connor et al., 1997; Liu et al., 2007). This situation may also be

viewed as a relationship between gatekeeper and caretaker

mutations, in which caretakers such as BRCA1 and BRCA2

protect the genome against the potentially mutagenic and

tumorigenic effects of DNA damage, whereas gatekeepers

such as P53 induce cell death or cell-cycle arrest of cells that

have lost caretaker function. Similarly, loss of VHL (Von Hippel-

Lindau tumor suppressor) function normally causes cellular

senescence, but inactivation of a second tumor suppressor, RB

(Retinoblastoma), can suppress this process (Young et al., 2008).

As a final example of genetic suppression, the reliance ofmany

tumor cells on molecular chaperones, such as HSP90, may be

viewed as reflective of an entire series of gene interaction effects.

Molecular chaperones facilitate protein folding and aggregation

in normal cells, and in tumor cells HSP90 probably suppresses

some of the deleterious effects of a highly mutated proteome,

acting as a form of genetic capacitor (Whitesell and Lindquist,

2005).

The simple gene interactions described above almost

certainly reflect the nature of biological systems: complex

networks of interactions that maintain cellular homeostasis,

fitness, and survival in the face of environmental and/or genetic

change. In essence, these gene interactions provide functional

buffering (Hartman et al., 2001), sometimes described as genetic

canalization—that is, the buffering of pathways against the

tendency of new alleles tomake nonoptimal phenotypes (Gibson

andWagner, 2000;Waddington, 1959). For example, loss of cell-

cycle checkpoints functionally buffers and reduces the delete-

rious effects of BRCA dysfunction or VHL loss, allowing the

cell to survive, albeit with a modified phenotype.

Large-scale mutagenesis studies in worms and yeast suggest

that these functional buffering networks are relatively pervasive.

Most single-gene deletion mutations do not impair viability or

fitness, at least under laboratory conditions. This suggests that

either themajority of genes are not involved inmaintaining cellular

viability or cell division or, perhaps more likely, functional buff-

ering against the dysfunction of an individual gene is common

(Giaever et al., 2002; Kamath et al., 2003). Supporting this latter

hypothesis, analysis of viable yeast strains with deletion muta-

tions indicates that nearly all mutants display perturbed gene

expression profiles. This suggests that the loss of almost any

nonessential gene may result in a compensatory change in the

molecular network (Hugheset al., 2000).Clearly, this is potentially

bad news for cancer therapies that aim to block individual path-

ways. However, systematic functional screens in model organ-

isms have also shown that each nonessential gene typically has

between 10 and 30 synthetic lethal partners (Baryshnikova

et al., 2010), suggesting that intervening at a ‘‘sweet spot’’ might

overcome compensatory network rearrangements.



Concepts of gene interaction and functional buffering are crit-

ical for understanding tumor evolution. Most existing models of

cancer progression have assumed that in the majority of cases,

the acquisition of cancer-promoting mutations occurs cumula-

tively, perhaps over years to decades (Jones et al., 2008).

However, mutagenic ‘‘big bangs,’’ such as those driven by telo-

mere attrition (O’Hagan et al., 2002), or chromothripsis (the

shattering and then reassembly of chromosomes) (Stephens

et al., 2011) challenge the universality of this gradualism dogma.

Regardless of the mechanism, it seems reasonable to assume

that cancer progression is partly shaped in some form by both

synthetic lethal and synthetic effects. For example, given that

BRCA dysfunction induces an acute cell-cycle arrest in the pres-

ence of functional P53, it seems reasonable to propose that P53

dysfunction usually precedes BRCA loss of function, generating

a permissive state and synthetic viability.

In the example above the order in which mutations occur is

likely defined by the genetic interactions involved. In other situa-

tions it may be that the nature of the genes mutated is more

important than the order (Anderson et al., 2011). Currently, it is

unknown which situation is the more prevalent phenomenon,

which is due in large part to the paucity of studies examining

the order in which oncogenic driver mutations accumulate

from an original clonal population. Nevertheless, some general

principles may be emerging.

First, for the cell to remain viable when two mutations occur

successively in a cell, the second mutation must be compatible

with the effect of the first mutation. Moreover, the second

mutation must also be compatible with any functional buffering

mechanism that mitigates the deleterious effects of the first

mutation. In addition, driver mutations cannot be synthetically

lethal with mutations that occur earlier in the ultimate tumor

cell lineage. Most mutations in the natural history of a tumor

that result in a phenotype may need to fit into this schema of

network compatibility. If this is the case, it could result in genetic

canalization. For example, in the face of tumor-associated muta-

tions and the network remodeling that mitigates the potentially

deleterious effects of mutation, the spectrum of subsequent

mutations that are compatible with these changes could be

restrictive. This could ultimately cause an evolutionary progres-

sion that is increasingly stereotyped. Moreover, this genetic

ratcheting may partially explain the relatively nonrandom histo-

logical features of tumor types. It may also explain the recurrence

of specific mutations in particular types of tumor; in some cases

once an initial driver mutation is in place, the eventual fate of any

surviving daughter cell is essentially sealed, or at least partially

defined.

Heterogeneity in Cancer: Context Dependence
of the Phenotypic Effects of Mutations
Multiple mechanisms have been proposed to explain the pheno-

typic heterogeneity of cancer, including differences in the cells of

origin, heterotypic interactions between cancer cells and their

microenvironment, and the plasticity of so-called cancer ‘‘stem

cells’’ (i.e., cells that have an indefinite potential for self-renewal

and that drive tumorigenesis) (Vargo-Gogola and Rosen, 2007;

Visvader, 2011). In addition, the interplay among the functional

consequences of genetic and heritable epigenetic aberrations,
synthetic lethal and viable interactions, and genetic canalization

likely play major roles in generating the diversity of cancer

phenotypes.

The availability of cancer genomes at base-pair resolution is

allowing a detailed analysis of the relationships between cancer

genotypes and phenotypes (Figure 2). In particular, the genomes

of ‘‘rare’’ types of cancers are providing useful information. Rare

types of cancer, which often have specific histological appear-

ance, may be driven by pathognomonic genetic aberrations

(i.e., ones that are distinctively characteristic of a particular

disease) (Figure 2C). An example of this comes from sequencing

studies in two rare and histologically distinct types of ovarian

cancer, granulosa cell tumors and clear cell carcinomas. Muta-

tions in the transcription factor FOXL2 (Shah et al., 2009a) are

common in granulosa cell tumors, whereas ovarian clear cell

carcinomas have recurrent genetic changes affecting a few

driver genes, particularly ARID1A (AT Rich-interactive domain

1A [SWI-like]) and PPP2R1A (Protein Phosphatase, Subunit A,

R1-alpha isoform) (Jones et al., 2010; Wiegand et al., 2010).

Some rare cancer types also have similar phenotypes and driver

events but can occur in different anatomic sites. For example,

adenoid cystic carcinomas of both breast and salivary glands

are characterized by almost identical histological features, and

both tumors carry the oncogenic MYB-NFIB fusion gene (Pers-

son et al., 2009) (Figure 2A). These examples suggest that

sequencing the phenotypic extremes represented by the

‘‘rare’’ cancer types may constitute a way to reduce the hetero-

geneity of cancers a priori and thus facilitate the identification of

recurrent driver mutations.

Adding an increasing level of complexity to our understanding

of genotype-phenotype relationships in cancer, a number of

tumors are now known to share identical driver mutations even

though the tumors arise in distinct anatomical sites and exhibit

different histological features and clinical behavior. These obser-

vations suggest that some mutations may generate divergent

phenotypes in different environments and cell types

(Figure 2B). Activating KIT (v-kit Hardy-Zuckerman 4 feline

sarcoma viral oncogene homolog) mutations drive not only

gastrointestinal stromal tumors but also mucosal and acral

(i.e., palmoplantar and subungual) melanomas and mast cell

disorders (Davies et al., 2006; Davies and Samuels, 2010). In

addition, the ETV6-NTRK3 (ETS variant 6-neurotrophic tyrosine

kinase, receptor, type 3) fusion gene can drive tumors from

distinct anatomical sites, with different differentiation lineages

and dissimilar clinical behaviors (Lannon and Sorensen, 2005).

Although it is not completely clear why this occurs, the interplay

between cell of origin and the specific mutation undoubtedly

provides some explanation for convergent and divergent pheno-

types (Figures 2A and 2B). One possible mechanism underlying

this phenomenon might be that a driver mutation has an overt

impact on the ability of cells to differentiate, so that these aber-

rations cause convergence toward the same phenotype regard-

less of the cell of origin. Nevertheless, in other cases, the cell

origin does influence the phenotype. For example, mutations in

Ctnnb1 (b-catenin) have little impact on progenitor cell popula-

tions in the cerebellum, but they may drive medulloblastoma

development when present in embryonic dorsal brainstem cells

(Gibson et al., 2010).
Cell 145, April 1, 2011 ª2011 Elsevier Inc. 33



Figure 2. Genotypic-Phenotypic Correlations in Cancer
(A) Convergent phenotypes: tumors of similar, if not identical, phenotypesmay
be driven by distinct genetic aberrations. Convergent phenotypes are,
perhaps, best exemplified by gastrointestinal stromal tumors, which have
remarkably similar histological characteristics and clinical behavior but are
driven by mutations in either KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral
oncogene homolog) or PDGFRA (platelet-derived growth factor receptor,
peptide A), or more rarely by mutations in SDHB (succinate dehydrogenase
complex, subunit B, iron sulfur [Ip]) or SDHC (succinate dehydrogenase
complex, subunit C, integral membrane protein, 15 kDa) (Janeway et al., 2011).
In addition, mouse models have demonstrated that inactivation of Brca1 and
Tp53 in lumenal progenitor and basal cells of the mouse mammary gland lead
to the development of tumors with similar histological features, immunohis-
tochemical characteristics, and transcriptomic profiles (Liu et al., 2007;
Molyneux et al., 2010).
(B) Divergent phenotypes: tumors of distinct phenotypes (originating either
in the same cell or from cells of different cell lineage) and having distinct
clinical behaviors may possess identical driver genetic aberrations. For
example, subgroups of gastrointestinal stromal tumors, mucosal and acral
melanomas, as well as mast cell disorders are all driven by activating KIT
mutations. Likewise, the oncogenic ETV6-NTRK3 (ETS variant 6-neurotrophic
tyrosine kinase, receptor, type 3) fusion gene is one of the defining features of
congenital fibrosarcomas, cellular mesoblastic nephromas, secretory carci-
nomas of the breast, acute myeloid leukemias, tumors from distinct anatom-
ical sites, distinct differentiation lineages, and different clinical behaviors
(Lannon and Sorensen, 2005).
(C) Correlations between prevalence, phenotypic diversity, and genetic
heterogeneity of epithelial malignancies. Common epithelial malignancies are
phenotypically diverse, given that they comprise operational subgroups of
multiple diseases and are not discrete biological entities. These cancers are
often genetically unstable they often harbor a multitude of mutations that are
usually private (i.e., unique to an individual cancer) and that may affect several
molecular pathways. Tumors with phenotypes that are relatively homoge-
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In addition to the genetic heterogeneity between cancers,

strong evidence now indicates that genetic heterogeneity also

occurs within individual tumors (Anderson et al., 2011; Ding

et al., 2010; Mullighan et al., 2008; Shah et al., 2009b). A substan-

tial proportion of cancers may be composed of a mosaic of

nonmodal populations of cells (i.e., populations that account

for <50% of all cancer cells) that, although they share the same

initiatingevent, evolve through theacquisitionofadditionalgenetic

aberrations. This evolution may explain not only the phenotypic

diversity within a given cancer (Geyer et al., 2010) but also the

cancer’s proclivity to metastasize to distinct anatomical sites

(Ding et al., 2010; Shah et al., 2009b) as well as its resistance to

both chemotherapy and targeted therapies (Mullighan et al.,

2008).

Genetic differences between primary tumor and metastatic

deposits and the existence of genetic heterogeneity with a tumor

raise some interesting questions about the universal importance

of the phenomenon of tumor self-seeding by circulating cancer

cells (Kim et al., 2009) and ‘‘cancer stem cells’’ (Anderson

et al., 2011). The phenotypic diversity within cancers has been

ascribed to the existence of cancer stem cells and their ability

to differentiate down multiple lineages (Reya et al., 2001).

However, in one study, sorted populations of both putative

cancer stem cells and more differentiated cells displayed similar

genetic heterogeneity found in the bulk of the tumor (Anderson

et al., 2011). Moreover, at least in some cases, phenotypically

distinct areas within a given tumor are underpinned by distinct

patterns of genetic alterations (Geyer et al., 2010). Finally,

leukemias that were genetically heterogeneous at the time of

diagnosis maintain this genetic heterogeneity upon serial trans-

plantation (Anderson et al., 2011). These results do not neces-

sarily refute the case for cancer stem cells, but at least in these

situations, a Darwinian or clonal cancer evolution mechanism

for cancer heterogeneity appears much more likely.

Deep sequencing of cancer metastases indicates that, as with

primary cancers, metastases may be composed of multiple

clones that have acquired genetic abnormalities not detectable

in the primary tumor (Anderson et al., 2011; Ding et al., 2010;

Mullighan et al., 2008; Shah et al., 2009b). Independent studies

of leukemias have now demonstrated that the clones harboring

the most complex patterns of genetic aberrations are not neces-

sarily the dominant clones or the clones that will be the source of

relapse after therapy (Anderson et al., 2011; Mullighan et al.,

2008). In fact, instead of outright competition or predatory inter-

actions, a more complex interplay between genetically distinct

populations within a cancer may take place (Marusyk and

Polyak, 2010). Examples have been documented of both

commensalism, or a positive interaction in which one clone

benefits the other without itself being affected, and mutualism,

or cooperation between cancer cell populations (Calbo et al.,
neous usually have low-to-moderate levels of genetic instability and are driven
by a limited repertoire of genetic aberrations, which are relatively recurrent.
Rare cancer types are phenotypically homogeneous and are often driven by
pathognomonic genetic aberrations. Not all rare cancer types have low levels
of genetic instability, but even when they are more genetically unstable, the
repertoire of genetic aberrations found in rare and phenotypically homoge-
neous cancers appears to be more limited than that found in common cancer
types.



Figure 3. Therapeutic Implications of Gene

Interactions
(A) Classical synthetic lethality and induced essenti-
ality (Tischler et al., 2008). Classically, synthetic lethal
relationships (shown here between gene A and gene
B) have generally been discussed in terms of func-
tional redundancy between genes or proteins that
have similar functions (top). This model describes
systems where A and B are relatively interchangeable
in terms of function. Although this model likely applies
to some forms of synthetic lethality, the revised model
of induced essentiality is particularly pertinent to
cancer (bottom). This model relies upon the inherent
plasticity of biological networks and their ability to
respond to perturbation. Here, loss of gene A is
compatible with viability but only because molecular
networks reorder to accommodate this perturbation.
In this new state, gene B is now essential, and its
inhibition causes cell death (i.e., synthetically lethal
with gene A).
(B) Some lethal genetic interactions likely occur
because of the interaction of genes only within one
cell (i.e., cell-autonomous synthetic lethality) (top).
However, gene interactions between different cells
can also cause lethality (bottom). This could be in cells
that directly interact with the tumor cells (e.g., fibro-
blasts) or distant cells producing growth-promoting
hormones such as estrogen.
2011). These phenomena may be related to the high prevalence

of genetic heterogeneity within cancers and the observation that,

at early and late stages of disease evolution, there may be no

absolute dominance of a single clone (Marusyk and Polyak,

2010).

The impact of intratumor heterogeneity on the metastatic

ability of a given cancer has been the subject of considerable

discussion (Klein, 2009). Data from gene expression profiling

studies led to the suggestion that the metastatic behavior of

a cancer was determined at an early stage and that all cells within

a given cancer would have a similar proclivity to give rise to

metastases (Weigelt et al., 2003). Recent sequencing studies

have called into question these concepts. In pancreatic cancers,

metastatic clones may harbor specific genetic aberrations, and

the acquisition of metastatic ability occurs at a later stage. There

is evidence to suggest that it may take at least 5 years for a fully

malignant but nonmetastatic clone to transform into ametastatic

‘‘founder’’ clone (Yachida et al., 2010). On the other hand, clinical

observations suggest that the existence of clones fully capable

of metastatic dissemination may be present at the early stage

of the development of some types of cancer, such as ‘‘triple-

negative’’ breast cancers (Foulkes et al., 2010). It seems likely

that in different cancer types, the timing differs for the emergence

of a clone fully capable of metastatic dissemination. Moreover,

this timing may depend on the size of the cancer cell pool, the

levels of genetic instability, intratumor genetic heterogeneity,

and proliferation rates of cancer cells (Foulkes et al., 2010).

Therapeutic Implications
Although some of the concepts we present in this Perspective

could be viewed as semantic or even speculative, we believe

they may have considerable utility in the development of new
therapeutic approaches for cancer. Over the past few years,

rapid and significant advances have been made in directly tar-

geting the dependency or addictions that some tumor cells

have on gain-of-function oncogenic mutations, such as the

BCR-ABL fusion gene, the ERBB2 amplification, and the BRAF

V600E mutation (reviewed by Lord and Ashworth, 2010 and

Haber, this issue). Conversely, little progress has been made in

targeting tumor suppressor gene dysfunction, despite the rela-

tively long-standing ability to identify and characterize these

genes. However, by applying synthetic lethal concepts, this is

nowpossible. The first example, at least knowingly, of a synthetic

lethal therapy to reach the clinic is the targeting of BRCA1- or

BRCA2-deficient tumor cells with PARP (poly(ADP-ribose)

polymerase) inhibitors, and this potential success story estab-

lishes a new paradigm for drug development (Ashworth, 2008).

In essence, the relationship between BRCA and PARP is a true

synthetic lethal one; normally PARP activity is not essential, but

in the absence of BRCA gene function, PARP activity is critical

for cell survival. Rather than representing a strict functional

redundancy between BRCA and PARP, this effect is more likely

to be an induced essentiality effect (Tischler et al., 2008)

(Figure 3A) and a form of functional buffering. In clinical trials,

PARP inhibitors can elicit significant and sustained antitumor

responses in patients with BRCA1 or -2mutant tumors that arise

at different sites, such as breast, ovary, and prostate (Fong et al.,

2009). Likewise, in vitro BRCA-deficient cells, even those with

experimentally imposed BRCA dysfunction, are profoundly

sensitive to PARP inhibitors, almost regardless of the histology

or genetic background involved. The BRCA-PARP synthetic

lethality also appears relatively unaffected by potential compen-

satory changes in the cell. This may be because there are few

buffering mechanisms for this particular gene interaction, and
Cell 145, April 1, 2011 ª2011 Elsevier Inc. 35



this interaction thus constitutes what we term a hard synthetic

lethality.

From a network perspective, BRCA-PARP gene interaction

may be part of a relatively small network with few synthetic

viability interactions that can rescue the BRCA-PARP synthetic

lethality. Regardless of whether this is the case, one mechanism

of resistance to PARP inhibitors in cells with BRCA2 mutations

are secondary mutations that reinstate a functional BRCA2

isoform, resulting in one of the first examples of synthetic lethal

resistance (Edwards et al., 2008). If this mechanism turns out

to be pervasive, then it supports the hypothesis that few

synthetic viability interactions exist that can rescue PARP inhib-

itor resistance.

In contrast to the hard synthetic lethality observed between

BRCA and PARP, some of the recently identified gene interac-

tions involving RAS, although still de facto synthetic lethalities,

seem more susceptible to changes in cell type, context, and/or

genetic background (Barbie et al., 2009; Luo et al., 2009a; Scholl

et al., 2009); this effect we term soft synthetic lethality. This indi-

cates that the resilience of any synthetic lethal or gene addiction

effect must be stringently addressed on multiple genetic back-

grounds before consideration as a therapeutic approach. Exper-

imentally, these areas are now relatively straightforward to

address. With improvements in genetic screening approaches,

such as RNA interference, it is now feasible to systematically

identify synthetic lethal interactions and test how influenced

these are by compensatory network modifications (Ashworth

and Bernards, 2010).

Cancer therapy applies a highly stringent form of selective

pressure upon the tumor cell; the molecular mechanisms that

functionally buffer the inhibition of a cancer drug target and

that cause synthetic viability are most likely selected for and

have the potential to lead to therapy resistance. This is perhaps

most obviously seen in the numerous reports that describe resis-

tance to signal transduction kinase inhibitors that target the

mitogenic, prosurvival, and antiapoptotic functions of onco-

genes like BRAF (Johannessen et al., 2010; Nazarian et al.,

2010; Villanueva et al., 2010). After a strong initial response,

the therapeutic effect of BRAF inhibitors appears abrogated by

compensatory changes in the activity of other signaling path-

ways. From a genetics perspective, this could be seen as

synthetic viability between the drug target and the gene(s) that

leads to the compensatory mechanism. Hopefully, targeting

these compensatory mechanisms and the use of combinatorial

therapies, which simultaneously hit the primary target and the

likely buffering and resistance mechanisms, will prove useful.

Regardless of whether this turns out to be the case, clearly it is

not sufficient only to identify cancer drug targets that are tumor

selective; these targets must also be robust in the face of genetic

interactions and network compensation. Such networks of

genetic interactions are being comprehensively catalogued in

model organisms for which technical methods and many math-

ematical and computational approaches are already estab-

lished. It is debatable whether a significant number of these

gene interaction effects directly translate across species. There-

fore, identifying global networks in human cells, although techni-

cally challenging, is a major objective and potential outcome

from the burgeoning field of systems or network biology.
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Given the growing understanding of the interplay between

tumor cells and their microenvironment, and also between

individual tumor cells themselves (e.g., commensalism and

mutualism), it may be possible to exploit gene interactions that

occur between cells rather than within individual cells as a thera-

peutic approach. For example, a drug could induce changes in

the microenvironment or even macroenvironment that are

synthetically lethal with a mutation or gene addiction in a tumor

cell. Such non-cell-autonomous synthetic lethality (Figure 3B)

could already be represented by the interaction between

CYP19A1 (the gene-encoding aromatase) and genes encoding

estrogen receptors, like ESR1. Aromatase inhibitors, such as

anastrozole and letrozole, inhibit the production of estrogens by

targeting aromatase; this inhibition of hormone production

targets the genetic dependency of some breast tumor cells

upon ESR1 and estrogen signaling (Johnston and Dowsett,

2003). The identification of additional heterotypic cell-cell inter-

action networks will require the development of appropriate

in vitro or in vivo screening methodologies that better reflect the

biology of cancer.

Here, we have tried to make the case that viewing cancer

through the prism of genetic interactions may help us better

understand cancer biology and the development of new thera-

peutic approaches. However, it is important to emphasize that

these concepts by themselves merely generate hypotheses,

and their practical application will require a thorough under-

standing of the molecular mechanisms involved.
ACKNOWLEDGMENTS

We thank Breakthrough Breast Cancer, Cancer Research UK, The Breast

Cancer Campaign, The Breast Cancer Research Foundation, AACR, and

The Komen Foundation for their continued support. We acknowledge NHS

funding to the NIHR Royal Marsden Hospital Biomedical Research Centre.

J.S.R.-F. is the recipient of the 2010 CRUK Future Leaders Prize.
REFERENCES

Anderson, K., Lutz, C., van Delft, F.W., Bateman, C.M., Guo, Y., Colman, S.M.,

Kempski, H., Moorman, A.V., Titley, I., Swansbury, J., et al. (2011). Genetic

variegation of clonal architecture and propagating cells in leukaemia. Nature

469, 356–361.

Ashworth, A. (2008). A synthetic lethal therapeutic approach: poly(ADP) ribose

polymerase inhibitors for the treatment of cancers deficient in DNA double-

strand break repair. J. Clin. Oncol. 26, 3785–3790.

Ashworth, A., and Bernards, R. (2010). Using functional genetics to understand

breast cancer biology. Cold Spring Harb. Perspect. Biol. 2, a003327.

Barbie, D.A., Tamayo, P., Boehm, J.S., Kim, S.Y., Moody, S.E., Dunn, I.F.,

Schinzel, A.C., Sandy, P., Meylan, E., Scholl, C., et al. (2009). Systematic

RNA interference reveals that oncogenic KRAS-driven cancers require

TBK1. Nature 462, 108–112.

Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N.,

Vassiliou, L.V., Kolettas, E., Niforou, K., Zoumpourlis, V.C., et al. (2006). Onco-

gene-induced senescence is part of the tumorigenesis barrier imposed by

DNA damage checkpoints. Nature 444, 633–637.

Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn,

J.Y., Ou, J., San Luis, B.J., Bandyopadhyay, S., et al. (2010). Quantitative

analysis of fitness and genetic interactions in yeast on a genome scale. Nat.

Methods 7, 1017–1024.



Calbo, J., vanMontfort, E., Proost, N., van Drunen, E., Beverloo, H.B., Meuwis-

sen, R., and Berns, A. (2011). A functional role for tumor cell heterogeneity in

a mouse model of small cell lung cancer. Cancer Cell 19, 244–256.

Connor, F., Bertwistle, D., Mee, P.J., Ross, G.M., Swift, S., Grigorieva, E.,

Tybulewicz, V.L., and Ashworth, A. (1997). Tumorigenesis and a DNA repair

defect in mice with a truncating Brca2 mutation. Nat. Genet. 17, 423–430.

Davies, M., Hennessy, B., and Mills, G.B. (2006). Point mutations of protein

kinases and individualised cancer therapy. Expert Opin. Pharmacother. 7,

2243–2261.

Davies, M.A., and Samuels, Y. (2010). Analysis of the genome to personalize

therapy for melanoma. Oncogene 29, 5545–5555.

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C.,

Schurra, C., Garre, M., Nuciforo, P.G., Bensimon, A., et al. (2006). Oncogene-

induced senescence is a DNA damage response triggered by DNA hyper-

replication. Nature 444, 638–642.

Ding, L., Ellis, M.J., Li, S., Larson, D.E., Chen, K., Wallis, J.W., Harris, C.C.,

McLellan, M.D., Fulton, R.S., Fulton, L.L., et al. (2010). Genome remodelling

in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005.

Dobzhansky, T. (1946). Genetics of natural populations. Xiii. Recombination

and variability in populations of Drosophila pseudoobscura. Genetics 31,

269–290.

Edwards, S.L., Brough, R., Lord, C.J., Natrajan, R., Vatcheva, R., Levine, D.A.,

Boyd, J., Reis-Filho, J.S., and Ashworth, A. (2008). Resistance to therapy

caused by intragenic deletion in BRCA2. Nature 451, 1111–1115.

Fong, P.C., Boss, D.S., Yap, T.A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mor-

timer, P., Swaisland, H., Lau, A., O’Connor, M.J., et al. (2009). Inhibition of poly

(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J.

Med. 361, 123–134.

Foulkes, W.D., Reis-Filho, J.S., and Narod, S.A. (2010). Tumor size and

survival in breast cancer–a reappraisal. Nat. Rev. Clin. Oncol. 7, 348–353.

Geyer, F.C., Weigelt, B., Natrajan, R., Lambros, M.B., de Biase, D., Vatcheva,

R., Savage, K., Mackay, A., Ashworth, A., and Reis-Filho, J.S. (2010). Molec-

ular analysis reveals a genetic basis for the phenotypic diversity of metaplastic

breast carcinomas. J. Pathol. 220, 562–573.

Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S.,

Lucau-Danila, A., Anderson, K., Andre, B., et al. (2002). Functional profiling of

the Saccharomyces cerevisiae genome. Nature 418, 387–391.

Gibson, G., and Wagner, G. (2000). Canalization in evolutionary genetics:

a stabilizing theory? Bioessays 22, 372–380.

Gibson, P., Tong, Y., Robinson, G., Thompson, M.C., Currle, D.S., Eden, C.,

Kranenburg, T.A., Hogg, T., Poppleton, H., Martin, J., et al. (2010). Subtypes

of medulloblastoma have distinct developmental origins. Nature 468, 1095–

1099.

Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100,

57–70.

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: The next gener-

ation. Cell 144, 646–674.

Hartman, J.L.t., Garvik, B., and Hartwell, L. (2001). Principles for the buffering

of genetic variation. Science 291, 1001–1004.

Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour,

C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., et al. (2000). Functional

discovery via a compendium of expression profiles. Cell 102, 109–126.

Janeway, K.A., Kim, S.Y., Lodish, M., Nose, V., Rustin, P., Gaal, J., Dahia, P.L.,

Liegl, B., Ball, E.R., Raygada, M., et al. (2011). Defects in succinate dehydro-

genase in gastrointestinal stromal tumors lacking KIT and PDGFRAmutations.

Proc. Natl. Acad. Sci. USA 108, 314–318.

Johannessen, C.M., Boehm, J.S., Kim, S.Y., Thomas, S.R., Wardwell, L.,

Johnson, L.A., Emery, C.M., Stransky, N., Cogdill, A.P., Barretina, J., et al.

(2010). COT drives resistance to RAF inhibition through MAP kinase pathway

reactivation. Nature 468, 968–972.

Johnston, S.R., and Dowsett, M. (2003). Aromatase inhibitors for breast

cancer: lessons from the laboratory. Nat. Rev. Cancer 3, 821–831.
Jones, S., Chen, W.D., Parmigiani, G., Diehl, F., Beerenwinkel, N., Antal, T.,

Traulsen, A., Nowak, M.A., Siegel, C., Velculescu, V.E., et al. (2008). Compar-

ative lesion sequencing provides insights into tumor evolution. Proc. Natl.

Acad. Sci. USA 105, 4283–4288.

Jones, S., Wang, T.L., Shih Ie, M., Mao, T.L., Nakayama, K., Roden, R., Glas,

R., Slamon, D., Diaz, L.A., Jr., Vogelstein, B., et al. (2010). Frequent mutations

of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science

330, 228–231.

Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kana-

pin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic func-

tional analysis of the Caenorhabditis elegans genome using RNAi. Nature

421, 231–237.

Kim, M.Y., Oskarsson, T., Acharyya, S., Nguyen, D.X., Zhang, X.H., Norton, L.,

and Massague, J. (2009). Tumor self-seeding by circulating cancer cells. Cell

139, 1315–1326.

Kinzler, K.W., and Vogelstein, B. (1997). Cancer-susceptibility genes. Gate-

keepers and caretakers. Nature 386, 761–763.

Klein, C.A. (2009). Parallel progression of primary tumors andmetastases. Nat.

Rev. Cancer 9, 302–312.

Land, H., Parada, L.F., and Weinberg, R.A. (1983). Tumorigenic conversion of

primary embryo fibroblasts requires at least two cooperating oncogenes.

Nature 304, 596–602.

Lannon, C.L., and Sorensen, P.H. (2005). ETV6-NTRK3: a chimeric protein

tyrosine kinase with transformation activity in multiple cell lineages. Semin.

Cancer Biol. 15, 215–223.

Liu, X., Holstege, H., van der Gulden, H., Treur-Mulder, M., Zevenhoven, J.,

Velds, A., Kerkhoven, R.M., van Vliet, M.H., Wessels, L.F., Peterse, J.L.,

et al. (2007). Somatic loss of BRCA1 and p53 in mice induces mammary

tumors with features of human BRCA1-mutated basal-like breast cancer.

Proc. Natl. Acad. Sci. USA 104, 12111–12116.

Lord, C.J., and Ashworth, A. (2010). Biology-driven cancer drug development:

back to the future. BMC Biol. 8, 38.

Lucchesi, J.C. (1968). Synthetic lethality and semi-lethality among functionally

related mutants of Drosophila melanogaster. Genetics 59, 37–44.

Luo, J., Emanuele, M.J., Li, D., Creighton, C.J., Schlabach, M.R., Westbrook,

T.F., Wong, K.K., and Elledge, S.J. (2009a). A genome-wide RNAi screen iden-

tifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137,

835–848.

Luo, J., Solimini, N.L., and Elledge, S.J. (2009b). Principles of cancer therapy:

Oncogene and non-oncogene addiction. Cell 136, 823–837.

Marusyk, A., and Polyak, K. (2010). Tumor heterogeneity: causes and conse-

quences. Biochim. Biophys. Acta 1805, 105–117.

Michor, F., Iwasa, Y., and Nowak, M.A. (2004). Dynamics of cancer progres-

sion. Nat. Rev. Cancer 4, 197–205.

Molyneux, G., Geyer, F.C., Magnay, F.A., McCarthy, A., Kendrick, H., Natrajan,

R., Mackay, A., Grigoriadis, A., Tutt, A., Ashworth, A., et al. (2010). BRCA1

basal-like breast cancers originate from luminal epithelial progenitors and

not from basal stem cells. Cell Stem Cell 7, 403–417.

Mullighan, C.G., Phillips, L.A., Su, X., Ma, J., Miller, C.B., Shurtleff, S.A., and

Downing, J.R. (2008). Genomic analysis of the clonal origins of relapsed acute

lymphoblastic leukemia. Science 322, 1377–1380.

Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R.C., Lee, H., Chen, Z., Lee,

M.K., Attar, N., Sazegar, H., et al. (2010). Melanomas acquire resistance to

B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977.

O’Hagan, R.C., Chang, S., Maser, R.S., Mohan, R., Artandi, S.E., Chin, L., and

DePinho, R.A. (2002). Telomere dysfunction provokes regional amplification

and deletion in cancer genomes. Cancer Cell 2, 149–155.

Persson, M., Andren, Y., Mark, J., Horlings, H.M., Persson, F., and Stenman,

G. (2009). Recurrent fusion of MYB and NFIB transcription factor genes in

carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA

106, 18740–18744.
Cell 145, April 1, 2011 ª2011 Elsevier Inc. 37



Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells,

cancer, and cancer stem cells. Nature 414, 105–111.

Santarosa, M., and Ashworth, A. (2004). Haploinsufficiency for tumor

suppressor genes: when you don’t need to go all the way. Biochim. Biophys.

Acta 1654, 105–122.

Scholl, C., Frohling, S., Dunn, I.F., Schinzel, A.C., Barbie, D.A., Kim, S.Y.,

Silver, S.J., Tamayo, P., Wadlow, R.C., Ramaswamy, S., et al. (2009).

Synthetic lethal interaction between oncogenic KRAS dependency and

STK33 suppression in human cancer cells. Cell 137, 821–834.

Shah, S.P., Kobel, M., Senz, J., Morin, R.D., Clarke, B.A., Wiegand, K.C.,

Leung, G., Zayed, A., Mehl, E., Kalloger, S.E., et al. (2009a). Mutation of

FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med. 360, 2719–2729.

Shah, S.P., Morin, R.D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., Dela-

ney, A., Gelmon, K., Guliany, R., Senz, J., et al. (2009b). Mutational evolution

in a lobular breast tumor profiled at single nucleotide resolution. Nature 461,

809–813.

Stephens, P.J., Greenman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J.,

Pleasance, E.D., Lau, K.W., Beare, D., Stebbings, L.A., et al. (2011). Massive

genomic rearrangement acquired in a single catastrophic event during cancer

development. Cell 144, 27–40.

Tischler, J., Lehner, B., and Fraser, A.G. (2008). Evolutionary plasticity of

genetic interaction networks. Nat. Genet. 40, 390–391.

Vargo-Gogola, T., and Rosen, J.M. (2007). Modelling breast cancer: one size

does not fit all. Nat. Rev. Cancer 7, 659–672.
38 Cell 145, April 1, 2011 ª2011 Elsevier Inc.
Villanueva, J., Vultur, A., Lee, J.T., Somasundaram, R., Fukunaga-Kalabis, M.,

Cipolla, A.K., Wubbenhorst, B., Xu, X., Gimotty, P.A., Kee, D., et al. (2010).

Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in

melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer

Cell 18, 683–695.

Visvader, J.E. (2011). Cells of origin in cancer. Nature 469, 314–322.

Waddington, C.H. (1959). Canalization of development and genetic assimila-

tion of acquired characters. Nature 183, 1654–1655.

Weigelt, B., Glas, A.M., Wessels, L.F., Witteveen, A.T., Peterse, J.L., and van’t

Veer, L.J. (2003). Gene expression profiles of primary breast tumors main-

tained in distant metastases. Proc. Natl. Acad. Sci. USA 100, 15901–15905.

Whitesell, L., and Lindquist, S.L. (2005). HSP90 and the chaperoning of cancer.

Nat. Rev. Cancer 5, 761–772.

Wiegand, K.C., Shah, S.P., Al-Agha, O.M., Zhao, Y., Tse, K., Zeng, T., Senz, J.,

McConechy, M.K., Anglesio, M.S., Kalloger, S.E., et al. (2010). ARID1A muta-

tions in endometriosis-associated ovarian carcinomas. N. Engl. J. Med. 363,

1532–1543.

Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M.,

Hruban, R.H., Eshleman, J.R., Nowak, M.A., et al. (2010). Distant metastasis

occurs late during the genetic evolution of pancreatic cancer. Nature 467,

1114–1117.

Young, A.P., Schlisio, S., Minamishima, Y.A., Zhang, Q., Li, L., Grisanzio, C.,

Signoretti, S., and Kaelin, W.G., Jr. (2008). VHL loss actuates a HIF-indepen-

dent senescence programme mediated by Rb and p400. Nat. Cell Biol. 10,

361–369.


	Genetic Interactions in Cancer Progression and Treatment
	Cancer Genes and Cancer Genomes
	The Nature of Genetic Interactions in Cancer
	Heterogeneity in Cancer: Context Dependence of the Phenotypic Effects of Mutations
	Therapeutic Implications
	Acknowledgments
	References


