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SUMMARY

Myelin-specificCD8+T cells are thought to contribute
to the pathogenesis of multiple sclerosis. Here we
modeled this contribution in mice with CD8+ T cells
recognizing ovalbumin (OVA) expressed in oligoden-
drocytes (ODCs). Surprisingly, even very high
numbers of activated OVA-reactive CD8+ T cells
failed to induce disease and were cleared from the
immune system after antigen encounter in the
central nervous system (CNS). Peripheral infection
with OVA-expressing Listeria (Lm-OVA) enabled
CD8+ T cells to enter the CNS, leading to the deletion
of OVA-specific clones after OVA recognition on
ODCs. In contrast, intracerebral infection allowed
OVA-reactive CD8+ T cells to cause demyelinating
disease. Thus, in response to infection, CD8+ T cells
also patrol the CNS. If the CNS itself is infected,
they destroyODCs upon cognate antigen recognition
in pursuit of pathogen eradication. In the sterile brain,
however, antigen recognition onODCs results in their
deletion, thereby maintaining tolerance.

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease characterized

by accumulation of lymphocytes andmacrophages in the central

nervous system (CNS), with localized inflammation and demye-

lination of axons. Depending on the subtype of MS, multiple

immune cells are detected in the lesions, including CD4+ and

CD8+ T cells (Brück et al., 2002). A pathogenic role of the latter

is supported by several observations: acute and chronic lesions

of MS patients contain more CD8+ than CD4+ T cells (Crawford

et al., 2004; Tsuchida et al., 1994), expanded myelin-reactive

cytotoxic T lymphocyte (CTL) clones are found in the CNS and

the periphery of MS patients (Babbe et al., 2000), and depletion

of CD4+ T cells in MS patients fails to improve relapse rates

whereas global T cell depletion leads to their reduction (Coles

et al., 1999; Hohlfeld and Wiendl, 2001).

In the CNS, antigen recognition by CD8+ T cells is hampered

by low expression of major histocompatibility complex (MHC)

class I antigens on neurons, oligodendrocytes (ODCs), and
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astrocytes, suggesting microglia and resident dendritic cells

(DCs) as prime targets for antigen recognition by CD8+ T cells.

However, MHC I expression is upregulated by inflammation,

and ODC-derived myelin antigens have indeed been identified

as targets for autoreactive CD8+ T cells in both humans

(Jurewicz et al., 1998) and mice (Saxena et al., 2008). Accord-

ingly, the clonal CD8+ T cell expansions in MS are likely to reflect

myelin-specific autoimmunity.

In experimental autoimmune encephalomyelitis (EAE), a group

of animal models for MS, disease is classically induced by

peripheral immunization with myelin antigens in proinflammatory

adjuvants or by transfer of encephalitogenic CD4+ T cells (Gold

et al., 2006). In recent years, however, it has been attempted

to also recapitulate the CD8+ T cell component of the disease

in several mouse models: MHC class I-restricted T cell receptor

(TCR)-transgenic mice with specificity for myelin autoantigens

have been developed (Friese et al., 2008; Huseby et al., 2001;

Ji et al., 2010), and model antigens to which well-characterized

TCR-transgenic mouse lines are available have been expressed

in the CNS (Na et al., 2008; Saxena et al., 2008). In adoptive

transfer experiments analogous to those previously performed

with encephalitogenic CD4+ T cells, however, it has been

extremely difficult to induce clinically apparent disease. For

example, transfer of very high numbers (3 3 107, corresponding

to about 10% of the endogenous CD8+ T cell population) of

in vitro preactivated hemagglutinin (HA)-specific CTLs induces

EAE in less than half of recipients expressing HA in ODCs

(Saxena et al., 2008). In another model employing TCR-trans-

genic myelin basic protein (MBP)-specific CTLs, disease induc-

tion requires transfer of 2 3 107 preactivated cells, conditioning

by irradiation, and treatment with interleukin-2 (IL-2) (Huseby

et al., 2001). In contrast, as few as 106 and 105 MBP-specific

cloned CD4+ T cells suffice to induce EAE in rats (Ben-Nun

et al., 1981) and mice (Zamvil et al., 1985), respectively, indi-

cating that the pathogenic potency of activated autoreactive

CD4+ T cells exceeds that of their CTL counterparts by more

than two orders of magnitude.

As a second option to providing overwhelming numbers of

autoreactive CD8+ T cells, TCR transgenic mouse lines have

been generated in which all or most CD8+ T cells are specific

for a natural or artificial myelin antigen. Depending on central

tolerance induction and a requirement for peripheral priming,

disease is observed in some (Friese et al., 2008; Ji et al., 2010;

Na et al., 2008) but not in other (Perchellet et al., 2004; Saxena
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et al., 2008) settings. Thus, in spite of the evidence supporting

a role for CD8+ T cells in human MS, experimental induction of

disease with autoreactive CD8+ T cells in mice requires a CD8+

T cell assault of amagnitude that can hardly be consideredwithin

the range of physiology.

In our own studies, we have generatedmice that express oval-

bumin (OVA) under the proximal MBP promoter (ODC-OVAmice)

leading to sequestration of this model antigen in the cytosol of

ODCs (Cao et al., 2006). When crossed to OT-I mice expressing

a transgenic TCR recognizing the OVA-derived SIINFEKL

peptide presented by H-2Kb, ODC-OVA mice spontaneously

develop lethal EAE at 2 weeks of age; in contrast, OVA-specific

TCR-transgenic CD4+ T cells developing in ODC-OVA mice

remain ignorant of the sequestered autoantigen (Cao et al.,

2006; Na et al., 2008).

To study the effect of peripheral induction of ODC-specific

autoimmunity in mice with a normal T cell repertoire, we have

now infected ODC-OVA mice with OVA-expressing Listeria

monocytogenes (Lm-OVA), which elicits a strong CD8+ T cell

response to the SIINFEKL peptide. Unexpectedly, we observed

resistance to EAE induction that wasmediated by clonal deletion

of autoreactive CD8+ T cells from the entire immune system. In

contrast, infection of the CNS itself rendered the OVA-express-

ing ODCs susceptible to destruction by OVA-specific CTLs, indi-

cating that the decision between effective immune surveillance

versus tolerance induction is made by the perception of infection

in the brain itself.

RESULTS

Lack of OVA-Specific CD8+ T Cell Response
in Lm-OVA-Infected ODC-OVA Mice
To induce a CD8+ T cell-mediated autoimmune response against

ODCs by peripheral immunization, ODC-OVA mice, in which

ODCs express cytosolic OVA, were infected with Lm-OVA.

However, EAE symptoms, T cell infiltration, or inflammation of

the CNS were not observed either during primary or during

secondary infection (data not shown).

In WT mice, Lm-OVA infection elicits massive expansion of

SIINFEKL-specific CD8+ T cells, which can make up more than

30% of the CD8+ T cell compartment at the peak of the response

(Figure 1A; Pope et al., 2001). This response was almost

completely absent in Lm-OVA-infected ODC-OVA mice, indi-

cating that a deletional mechanism acting either during T cell

development or during the immune response itself protected

the mice from autoimmune attack (Figure 1A).

ODC-OVA Mice Lack OVA-Kb-Reactive CD8+ T Cells
ToclarifywhetherOVA-reactiveCD8+ T cellsweredeleted before

or after Lm-OVA infection, 23 108 WT or ODC-OVA lymph node

(LN) cells were transferred into Rag1�/� mice, which were then

infected with Lm-OVA. Mice that had received LN cells from

ODC-OVA donors showed hardly any OVA-specific CD8+ T cell

response, whereas mice reconstituted with WT cells responded

well (Figure 1B), indicating that OVA-reactive CD8+ T cells were

deleted in ODC-OVA mice already before Lm-OVA infection.

To confirm this without the need to induce a response to OVA,

we crossed ODC-OVA mice with ‘‘Vb5 mice’’ that express only

the b chain of the OT-I TCR and therefore have a detectable pop-
ulation of Kb-OVA-reactive CD8+ T cells generated by pairing of

polyclonal TCRa chains with the transgenic b chain (Dillon et al.,

1994). Vb5 ODC-OVA mice remained healthy and without CNS

infiltrates (not shown). When their CD8+ T cell repertoire was

compared to that of Vb5 single transgenic mice, we observed

only a small difference in the frequency of Kb-OVA-reactive

CD8+ T cells by using Kb-OVA-multimer staining, which detects

high- and low-avidity cells (Figure 1C). However, comparison of

the functional avidity of Kb-OVA-reactive CD8+ T cells from

single and double transgenic mice revealed that high-avidity

OVA-reactive T cells had been completely deleted in ODC-

OVA mice (Figure 1D).

Deletion of OVA-Reactive CD8+ T Cells Is Not Mediated
by Thymic or Peripheral Stroma Cells or by
Hematopoietic Cells
Because purging of autoreactive CD8+ T cells from the T cell

repertoire can be mediated by radioresistant cells both during

thymic maturation and in the periphery, we tested whether

OVA-specific CD8+ T cells developing in irradiated ODC-OVA

mice would also be deleted. Adult mice, in which T cells are

excluded from the CNS in the absence of immune activation,

were chosen as recipients. Bone marrow cells from WT and

OT-I Thy1.1 mice were transplanted at a 4:1 ratio into irradiated

WT or ODC-OVA mice, and T cell reconstitution from both

inocula was analyzed 6 weeks later. Representation of mature

OT-I cells in the CD8+ T cell repertoire was identical in WT and

ODC-OVA recipients (Figure 1E), and their response (prolifera-

tion and interferon-g [IFN-g] secretion) to the SIINFEKL peptide

was unaffected by the host (WT or ODC-OVA) in which they

had matured (Figure 1F). In keeping with our previous biochem-

ical results (Na et al., 2008), this indicates that the neo-self

antigen OVA is expressed neither in the thymus nor in the

periphery of ODC-OVA mice at an amount that would be detect-

able by the high-affinity TCR of OT-I cells.

To extend our survey to the hematopoietic system, we also

repopulated WT mice with mixed bone marrow from OT-I and

ODC-OVA mice (1:4 ratio). The presence of the ODC-OVA trans-

gene in the bone marrow had no effect on the development of

OT-I cells in the same host (Figure 1E). Thus in ODC-OVA

mice, hematopoietic cells are also not responsible for the dele-

tion of OVA-reactive cells.

Perinatal Access to the CNS Allows Deletion
of Autoreactive CD8+ T Cells
Next, we considered perinatal access to ODCs in the CNS as an

opportunity for encounter with self-antigen leading to purging of

the repertoire. Previously, we had observed OT-I ODC interac-

tions in the brain of postnatal OT-I ODC-OVA double transgenic

mice undergoing EAE (Na et al., 2008), demonstrating the occur-

rence of such interactions. When carboxy fluorescein diaceteate

succinimidyl ester (CFSE)-labeled OT-I T cells were transferred

into 10-day-old ODC-OVA mice, they were expanded on day 5

and then deleted from the cervical LN (Figure 2A) and spleen

(not shown) on day 12 after transfer, indicating that they had

contacted OVA-presenting cells. Indeed, OVA expression was

readily observed in the developing brain as early as day 3 of

life (Figure S1 available online). In contrast, OT-I T cells trans-

ferred into adult ODC-OVA mice were neither expanded nor
Immunity 37, 134–146, July 27, 2012 ª2012 Elsevier Inc. 135
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Figure 1. Defective OVA-Specific CD8+ T Cell Response in ODC-OVA Mice

(A) OVA-reactive T cells after Lm-OVA infection. WT or ODC-OVA tg mice were infected with 5,000 cfu Lm-OVA, challenged 3 weeks later with 105 cfu, and

analyzed on day 6. OVA-Kb CD8+ T cells were determined by streptamer staining.

(B) Lack of OVA-Kb-specific CD8+ T cell precursors in LN cells from ODC-OVA mice. 2 3 108 total LN cells from WT or ODC-OVA mice were transferred into

Rag1�/� mice. Spleens from recipient mice were analyzed 10 days after infection with 105 cfu Lm-OVA.
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deleted (Figure 2B). These data indicate that before the blood

brain barrier (BBB) closes, naive CD8+ T cells are able to contact

antigen-expressing ODCs in the CNS, leading to their activation

and deletion. Once the BBB is established, however, naive CD8+

T cells have no access to the CNS and hence remain ignorant of

the autoantigen OVA.

Our finding that transfer of OT-I T cells into young ODC-OVA

mice leads to their deletion rather than disease induction is

seemingly at odds with the aggressive EAE observed in OT-I

ODC-OVA double transgenic animals. Accordingly, we attemp-

ted to approach this extreme situation by increasing the number

of transferred OT-I cells per 7-day-old mouse from the 107 pres-

ently used to 5 3 107. Surprisingly, after 18 days, only 1 in 8

recipient ODC-OVAmice developed EAE whereas the remaining

mice remained healthy and effectively deleted the transferred

cells (Figures S2A and S2B). Histologic analyses revealed exten-

sive myelin damage in the diseased mouse whereas mice that

had successfully removed the autoreactive CD8+ T cells showed

normal brain architecture (Figure S2C). Thus, overwhelming

numbers of CD8+ T cells (at least 53 107) specific for a cytosolic

ODC antigen are required to cause serious damage even in

a youngmouse; below that threshold, they are deleted after initial

clonal expansion.

Peripheral Activation of ODC-Reactive CD8+ T Cells
Provides Antigen Access in Adult Mice, Leading
to Their Inactivation and Deletion
T cells specific for myelin antigens form part of the normal reper-

toire in rodents and humans (Martin et al., 1990; Ota et al., 1990;

Pette et al., 1990; Schluesener andWekerle, 1985). This situation

is modeled by the persistence of transferred naive OT-I cells in

the periphery of adult ODC-OVA mice. To investigate whether

opening of the BBB by immunization under inflammatory condi-

tions would provide access to the CNS and cause disease, we

infected adult ODC-OVA and WT mice, which had received 107

OT-I cells 1 day earlier, with Lm-OVA. In both the spleen (not

shown) and cervical LN (Figure 2C) of WT and ODC-OVA recip-

ient mice, robust clonal expansion was observed on day 5

postinfection (p.i.). However, in ODC-OVA mice, this expanded

population of OT-I cells showed impaired in vitro proliferation

and IFN-g secretion in response to the cognate peptide as

compared to the OT-I cells reisolated from WT recipients (Fig-

ure S3). Furthermore, although the expanded population of

OT-I cells persisted on day 10 p.i. in WTmice, it had been almost

fully eliminated in mice expressing OVA in the CNS (Figures 2C

and 3A). The disappearance of OT-I cells from the periphery

was not due their sequestration as viable cells in the CNS (which

did not exceed 1% of the inocula) (Figure S4), suggesting their

clonal deletion as a result of antigen encounter.
Diagrams (A and B, right) show percentages of OVA-specific T cells of CD8+ T c

(C) Presence of Kb-SIINFEKL-reactive CD8+ T cells in LN from Vb5 or ODC-OVA

(D) Absence of high-avidity Kb-SIINFEKL-reactive CD8+ T cells in ODC-OVA Vb

concentrations of SIINFEKL peptide and the response was measured by intrace

(E) No deletion of developing OT-I cells by radioresistant thymic or hematopoeitic c

mixed bone marrow cells from OT-I Thy1.1 mice together with WT or ODC-OVA m

(F) CD8+ T cells were prepared from LN of recipient mice and cultured for 3 days

IFN-g secretion was detected by ELISA.

Data are representative of three independent experiments. See also Figure S5.
In order to extend this observation to OVA-reactive CD8+

T cells from a normal repertoire, WT LN cells were transferred

into Rag-deficient mice with or without the ODC-OVA transgene

and were then infected with Lm-OVA. As shown in Figure 2D, the

robust SIINFEKL-Kb-specific CD8+ T cell response seen in non-

transgenic recipients was abolished by the ODC-OVA trans-

gene, indicating purging of the normal OVA-specific repertoire

during the response to Lm-OVA.

T cells may be enabled to cross the BBB either after specific

activation or as a result of local or systemic inflammation.

Because Lm-OVA infection leads to both systemic inflammation

and specific activation of OVA-reactive CD8+ T cells, we tried to

separate these factors by infecting adult mice with a CFSE-

labeled inocula of OT-I cells with either Lm or Lm-OVA. As

expected, infection with Lm-OVA, but not with Lm, led to

pronounced clonal expansion of OT-I cells in WT mice (Fig-

ure 3A). In ODC-OVA recipients, however, Lm infection sufficed

to induce cell division followed by deletion (Figure 3A). Thus,

inflammation-induced access to antigen resulted in proliferation

of antigen-specific peripheral naive CD8+ T cells, followed by

their removal from the immune system.

To evaluate the effects of CD8+ T cell activation itself on the

ability to reach the target antigen in the CNS, OT-I cells were

activated in vitro before transfer into adult recipients, and their

presence in cervical LN was monitored. In ODC-OVA mice, the

transferred activated OT-I cells were deleted, whereas they

declined only moderately in WT recipients, as is expected during

clonal contraction (Figure 3B). Note that as compared to the

deletion of naive peripheral CD8+ T cells stimulated by Lm-

OVA (Figure 2C), deletion occurred faster, presumably because

the phase of clonal expansion and sensitization to deletion had

occurred already in vitro. These data suggest that activated

CD8+ T cells can cross the BBB and interact with antigens ex-

pressed by ODCs, leading to their removal from the peripheral

repertoire.

Transplantation of OVA-Transgenic ODCs
into the Cerebellum Suffices for Deletion
of Peripheral OVA-Specific CD8+ T Cells
To rigorously rule out a contribution of OVA expressed outside of

the CNS to the observed deletion, in vitro cultured WT or ODC-

OVA ODC precursors were stereotactically transplanted into

the cerebellum of WT mice (Habisch et al., 2007). Three weeks

later, OVA expression was readily detectable in the cerebellum

of mice that had received transgenic, but not of those which

had received WT, cells (Figure 4A). OT-I CD8+ T cells were

then transferred followed by Lm-OVA infection. In the periphery

of mice transplanted with ODC-OVA ODCs, OT-I cells were

strongly reduced compared to recipient mice with a WT ODC
ells. Aggregate data from two independent experiments are shown.

Vb5 mice as shown by streptamer staining.

5 mice. Polyclonally preactivated CD8+ T cells were restimulated with titrated

llular (i.c.) detection of IFN-g.

ells of ODC-OVAmice. As indicated, irradiatedWT or ODC-OVAmice received

ice (1:4). 6 weeks later, spleen cells were stained for reconstitution of T cells.

with SIINFEKL. Proliferation was measured by 3H thymidine incorporation and
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Figure 2. Access of OT-I Cells to OVA-Expressing ODCs Leads to Their Activation and Deletion

(A) Activation and deletion of postnatally transferred OT-I cells in ODC-OVA hosts. CFSE-labeled OT-I Thy1.1 CD8+ T cells were transferred into 10-day-oldWT or

ODC-OVA mice; cervical LNs were analyzed 5 and 12 days later. See also Figures S1 and S2.
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Figure 3. Both Systemic Inflammation and Cell-Intrinsic Activation Lead to Deletion of OT-I Cells in Adult ODC-OVA Mice

(A) Deletion by systemic inflammation. Adult WT or ODC-OVAmice adoptively transferred with CFSE-labeled OT-I Thy1.1 CD8+ T cells were infected withWT Lm

or Lm-OVA; cervical LNs were analyzed 5 or 10 days after infection. Data are shown from two experiments with three to six animals, each with SD. See also

Figure S4.

(B) Deletion of transferred in vitro activated OT-I cells. In vitro activated OT-I CD8+ T cells were transferred into adult WT or ODC-OVAmice and cervical LNs were

analyzed at indicated time points. A CD8+ T cell gate was used in dot plots and graphs. Bar graph shows aggregate data from three experiments with two to three

animals each with SD.

See also Figure S5.
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transplant (Figures 4B and 4C). These data show that the pres-

ence of OVA in CNS-resident ODCs is sufficient for deletion of

peripheral OVA-specific T cells after immune activation.

Deletion of ODC-Reactive CD8+ T Cells Is Blocked
by VLA-4-Specific mAb
If OVA expression in the CNS suffices for deletion of peripherally

activated OVA-reactive CD8+ T cells, these cells must migrate

into the CNS via the BBB. Interaction of very late antigen-4

(VLA-4) with its ligand, vascular cell adhesion molecule-1

(VCAM-1), which is expressed on CNS endothelium, is required

for T cell entry into the CNS (Yednock et al., 1992). Previous

reports had shown that VLA-4 Ab treatment reverses clinical

symptoms of EAE and results in the clearance of leukocytes

from the CNS (Kent et al., 1995; Léger et al., 1997). We therefore

transferred activated OT-I T cells into ODC-OVA mice under-
(B) Antigenic ignorance of OT-I cells in adult ODC-OVA hosts. Naive OT-I CD8+ T

Cervical LNs were analyzed at indicated time points. Bar graph shows average p

(C) Activation and deletion of formerly ignorant OT-I cells in adult ODC-OVAmice a

T cells followed by infection with Lm-OVA; cervical LNs were analyzed at indicat

(D) Deletion of OVA-reactive CD8+ T cells from the normal repertoire by transg

transferred into Rag1�/� or ODC-OVA Rag1�/� mice. Spleens from recipient mic

Data shown in diagrams (right panels) were obtained with a CD8+ T cell gate and

experiments. See also Figure S5.
going treatment with VLA-4-specific Ab. VLA-4 Ab-treated

ODC-OVA mice showed markedly reduced deletion of OT-I

T cells compared to isotype control Ab-treated mice, in line

with the notion that transgression of the BBB is required for the

deletion of OVA-reactive CD8+ T cells (Figure 5A).

Deletion of Autoreactive CD8+ T Cells Is Probably due
to Autoantigen Recognition on the ODCs Themselves
Recognition of OVA by OT-I cells could occur either directly on

ODCs, which express low amounts of Kb-SIINFEKL complexes

(about 90 per cell) (Na et al., 2009), or after antigen transfer to mi-

croglia or dendritic cells. First, we excluded expression of even

small amounts of cell-intrinsic OVA by microglia and dendritic

cells in ODC-OVA mice by using a sensitive polymerase chain

reaction (PCR) and flow cytometry-sorted cells (Figure S5). We

then tested for secondary presentation through the in vivo
cells were labeled with CFSE and transferred into adult WT or ODC-OVA mice.

ercent cell of OT-I among CD8+ T cells from five to seven mice.

fter Lm-OVA infection. ODC-OVA orWTmice received naive OT-I Thy1.1 CD8+

ed time points after infection. See also Figures S3 and S4.

enic expression of OVA in ODCs. 2 3 108 total LN cells from WT mice were

e were analyzed 10 days after infection with 105 cfu Lm-OVA.

are presented as mean ± standard deviation (SD) of two to three independent
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Figure 4. Transplantation of ODCs from ODC-OVA Mice Confers Deletion of OT-I Cells in Lm-OVA-Infected WT Mice

(A) Detection of OVA in transplanted ODCs. Cultured ODC precursors from WT or ODC-OVA mice were transplanted into the cerebellum of WT recipient mice

3 weeks before analysis by immune histology. OVA staining was seen throughout the whole cerebellar white matter only in mice transplanted with OVA-ODC.

(B and C) Deletion of OT-I cells. 3 weeks posttransplantation, mice received CFSE-labeled OT-I CD8+ T cells i.p. followed by Lm-OVA infection; OT-I cells

recovered from cervical LN were analyzed on days 5 and 10 p.i. A CD8+ T cell gate was used in dot plots and graphs. Aggregate data from two independent

experiments are shown.

See also Figure S5.
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activation of TCR transgenic CD4+ T cells (OT-II cells). Previ-

ously, we had shown that if OVA is released from ODCs by an

overwhelming number of CD8+ T cells, as is the case in OT-I

ODC-OVA double transgenic mice, activation of OT-II cells is

readily observed in the cervical LN (Na et al., 2008). Accordingly,

in vitro activated CFSE-labeled OT-I CD8+ T cells were trans-

ferred to adult ODC-OVAmice together with naive CFSE-labeled

OT-II cells as indicators for secondary presentation. As

expected, transferred OT-I T cells were deleted in ODC-OVA

but not in WT recipients, whereas the cotransferred OT-II cells

remained quiescent in both WT and ODC-OVA mice (Figure 5B).

Thus at least with regard to DCs, which also present antigens via

the MHC class II endocytic pathway, secondary presentation of

cytosolic OVA derived fromODCs does not seem to play a role in

antigen recognition by and deletion of OT-I cells.

As a second test for the direct recognition of Kb-SIINFEKL on

ODCs by OT-I cells, we used blockade with mAb 25D1.16, which

selectively binds to this MHC-peptide complex (Porgador et al.,
140 Immunity 37, 134–146, July 27, 2012 ª2012 Elsevier Inc.
1997). In vivo, 25D1.16 is able to block activation of OT-I cells by

OVA-transgenic ODCs, but not by exogenous OVA cross-pre-

sented by dendritic cells (Na et al., 2009). When in vitro preacti-

vatedOT-I cells were transferred into ODC-OVAmice, which had

also received 25D1.16, deletion was fully prevented (Figure 5A).

This result supports our hypothesis that deletion of OVA-reactive

CD8+ T cells is a consequence of antigen recognition at the

surface of ODCs as opposed to cross-presentation by profes-

sional APCs.

Deletion of Autoreactive CD8+ T Cells by Autoantigen-
Expressing ODCs Involves Fas-Mediated Apoptosis
OVA recognition by OT-I cells on ODCs results in IFN-g

release in vivo (Na et al., 2008). Because IFN-g induces

FasL expression in ODCs (Pouly et al., 2000), triggering of

apoptosis in antigen-activated CD8+ T cells by the Fas pathway

appeared as a possible mechanism for the observed deletion.

To test this, we blocked FasL with a Fas-Fc fusion protein in
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(A) Blockade with antibodies. In vitro activated CFSE-labeled OT-I Thy1.1 cells were transferred into WT or ODC-OVA mice that received Abs to VLA-4 or to the
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See also Figure S5.
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Lm-OVA-infected ODC-OVA mice and indeed observed

substantial if not complete prevention of OT-I T cell deletion

(Figure 6A).

Taken together, our data suggest that antigen recognition on

ODCs by previously activated CD8+ T cells scanning the brain

induces their apoptosis in situ. As in other settings where high

numbers of lymphocytes undergo apoptosis, such as thymic

T cell selection, it was, however, difficult to ‘‘find the bodies’’

by immune histology or flow cytometry because of their very

rapid removal by macrophages. We therefore devised a method

that exploits transfer of the lipophilic dye CM-Dil to the phago-

cytes that eat the labeled cells. Indeed, a pilot experiment

employing apoptosis induction in labeled thymocytes in the

presence of peritoneal macrophages showed strong transfer of

label from the thymocytes to the phagocytes (Figure 6B).

This method was then used to look for traces of dead OT-I

cells in the CNS. Indeed, flow cytometry revealed a significant

number of labeled microglia cells in ODC-OVA, but only a few

in WT mice that had received labeled OT-I cells 3 days earlier

(Figure 6C). Labeled microglia cells were also visible by immune

histology of the cerebellum (Figure 6D). Taken together, our data

indicate that removal of apoptotic ODC-reactive CD8+ T cells

occurs at least in part within the CNS itself.

CNS Infection Makes ODCs Susceptible to CD8+ T Cell
Attack
The ability of ODCs to delete even a large number of CD8+ T cells

from the repertoire begs the question how the immune system
can successfully deal with intracellular pathogens infecting the

brain. To address this issue, the site of infection with Lm-OVA

was moved from the periphery to the CNS. Based on previous

experience with mice expressing OVA in neurons (Sanchez-

Ruiz et al., 2008), ODC-OVA and control mice received only

106 OT-I cells 1 day prior to an intracerebral infection with 103

Lm-OVA. Interestingly, starting at day 8 after infection, after

complete elimination of the bacteria from the CNS, 100% of

ODC-OVA mice developed limp tail weakness and hind leg

paresis that persisted throughout the entire period of the study,

i.e., 50 days after infection, whereas all WT mice (Figures 7A and

7B) and infected ODC-OVA mice without OT-I transfer (not

shown) remained healthy. Neuropathological analysis identified

a CD8+ T cell-mediated autoimmune response directed against

ODCs in brain and spinal cord. One day preceding neurologic

symptoms, numerous CD8+ T cells had homed to the brain of

ODC-OVA mice, preferentially to the white matter where they

formed inflammatory clusters (Figure 7C). In the spinal cord,

CD3+ T cells were present in the posterior column (Figure 7E).

Inflammation progressed up to day 14 after infection, when de-

myelination in the brain and the spinal cord was prominent (Fig-

ure 7G). In contrast, only a few CD3+ T cells patrolled the CNS in

WT mice, and demyelination was absent (Figures 7F and 7H).

DISCUSSION

We have reported here the efficient deletion of autoreactive

CD8+ T cells from the immune system by ODCs expressing their
Immunity 37, 134–146, July 27, 2012 ª2012 Elsevier Inc. 141
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(A) Inhibition of deletion by blockade of FasL. ODC-OVA or WT mice were treated with 1 mg of Fas-Fc fusion protein every second day, starting 1 day before

adoptive transfer of OT-I CD8+ T cells. Next day, mice were infected with Lm-OVA; cervical LNs were analyzed on day 10 p.i. with a CD8+ T cell gate.

(B) Use of lipophilic dye to detect macrophages having digested apoptotic cells. CM-Dil-labeled thymocytes were cultured overnight with peritoneal macro-

phages in the presence of dexamethason and analyzed by flow cytometry.

(C) Microglia cells dispose of apoptotic OT-I cells in ODC-OVA mice. In vitro activated CM-Dil-labeled OT-I cells were transferred into WT or ODC-OVA mice.

3 days later, leukocytes were prepared from brain and spinal cord and analyzed by flow cytometry for CM-Dil-labeled Mac1+ cells.

(D) Detection of CM-Dil-labeled microglia cells in situ. Cryosections were stained for Mac-3 expression (green). Note scattered CM-Dil-labeled microglia cells in
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independent experiments are shown.

See also Figure S5.
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cognate antigen in the uninfected brain, whereas demyelinating

CD8+ T cell-mediated disease ensues if the CNS itself is infected

with an intracellular pathogen expressing the sameODC autoan-

tigen. Deletion requires recirculation through the CNS and

can occur either postnatally, when the BBB is not fully formed

yet, or in the adult if CD8+ T cells are enabled to enter the

CNS. Enablement can be cell intrinsic, i.e., a result of their

activation, or due to systemic inflammation. Both neonatal and

adult purging of ODC-reactive CD8+ T cells is preceded by

a proliferative phase that is likely to be required for sensitizing

the cells to activation-induced cell death (Plunkett et al., 2000)

and during which the functional fitness of autoreactive CD8+

T cells headed for deletion is already impaired. Deletion of

ODC-reactive CD8+ T cells in the perinatal period is seen both

in mice with an unmanipulated repertoire and ‘‘Vb5 mice’’ with

a CD8+ T cell repertoire enriched for OVA reactivity, the model

antigen employed, and after transfer of high numbers (up to
142 Immunity 37, 134–146, July 27, 2012 ª2012 Elsevier Inc.
5 3 107) of high-affinity OVA-reactive OT-I cells into 7-day-old

ODC-OVA mice. Thus, ODCs readily cope with even an unphy-

siologically high representation of autoreactive CD8+ T cells

during the perinatal period.

Initially, we had suspected that perinatal deletion of Kb-

SIINFEKL-reactive cells in ODC-OVA mice is due to intrathymic

antigen expression. Medullary epithelial cells are potent negative

selectors of the emerging T cell repertoire by ectopic expression

of tissue antigens or fragments thereof (Kyewski and Klein,

2006). This has also been reported for MBP (Farhadi et al.,

2003), the protein lending ODC specificity to OVA in ODC-OVA

mice via its regulatory sequences, and for OVA itself expressed

under the control of the rat insulin promotor (Kurts et al., 1996,

1997b). Our earlier search for thymic OVA by immune histology,

immunoblotting, or RT-PCR had failed to provide such evidence

in ODC-OVA mice (Cao et al., 2006), and in our current

experiments, negative selection by thymic or extrathymic
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Figure 7. Intracerebral Infection of OT-I-Loaded ODC-OVA Mice Leads to Demyelinating Disease

(A and B) EAE score and incidence. ODC-OVA and WT mice received an i.v. injection of 106 OT-I CD8+ T cells 1 day prior to intracerebral infection with 103 Lm-

OVA and were monitored for EAE score. Mean and SD are shown (Mann-Whitney U test; *p < 0.05; **p < 0.025).

(C–H) Neuropathological characteristics.

(C and D) CD8+ T cell infiltration in periventricular white matter 7 days p.i. in ODC-OVA (C) but not WT (D) mouse.

(E and F) Numerous CD3+ T cells in the posterior column of the spinal cord in an ODC-OVA mouse at day 7 after infection (arrows, E), whereas only single CD3+

T cells reside at the border of the graymatter to the whitematter of the posterior column of the spinal cord in a C57BL/6mouse (arrows, F). Immunohistochemistry

with slight hemalum counterstaining, original magnification 3200.

(G and H) Widespread demyelination in the spinothalamic fascicle at day 14 after infection (arrows, G). Insert in (G) demonstrates vacuolar demyelination and

myelin debris in the spinothalamic fascicle. Spinal cord of WT control mouse is normal (H).

See also Figure S5.
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radioresistant or hematopoietic cells was ruled out by using adult

bone marrow radiation chimeras.

Perinatal tolerance induction by a tissue-specific self antigen

has previously been reported for CD8+ T cells recognizing trans-
genic Kb on keratinocytes (Alferink et al., 1998). Similar to our

findings, access to antigen through trafficking in the neonate

was required for tolerance induction, but the outcome was func-

tional rather than deletional tolerance.
Immunity 37, 134–146, July 27, 2012 ª2012 Elsevier Inc. 143
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In spite of the remarkable efficiency of perinatal deletion

currently observed, myelin-specific CD8+ T cells are found in

the periphery of both humans and rodents (Martin et al., 1990;

Ota et al., 1990; Pette et al., 1990; Schluesener and Wekerle,

1985), presumably because of export from the thymus after

formation of the BBB. By using adult ODC-OVA mice adoptively

transferred with OT-I cells, we found that such cells can indeed

persist in the immune system. However, provision of access to

the CNS by systemic inflammation or by activation of the autor-

eactive CD8+ T cells themselves was sufficient to induce deletion

also in the adult setting. Accordingly, removal of autoreactive

CD8+ T cells from the repertoire by recirculation through the

CNS appears to be a life-long series of events triggered by

infections.

Several independent experimental approaches strongly

suggest that deletion of the recirculating CD8+ T cells is due to

autoantigen expression by the ODCs themselves: PCR analysis

showed its exclusive expression in ODCs and stereotactic trans-

plantation mapped the effect to this cell type. In addition, inter-

ference of VLA-4 blockade with deletion provides further support

for the need for CD8+ T cells to cross the BBB (Yednock et al.,

1992). A requirement for crosspresentation by professional

APC appears unlikely for the following reasons. First, we have

previously shown by using mixed ODC cultures from wild-type

and ODC-OVA mice expressing H-2b or H-2d that H-2b ODC-

OVA ODCs and not contaminating cross-presenting cell types

directly activate OT-I cells (Na et al., 2008). Second, the failure

to see activation of OT-II CD4+ T cells cotransferred with OT-I

T cells into ODC-OVA mice at least rules out the participation

of DCs which re-present antigens to both CD4+ and CD8+

T cells. Finally, we have previously shown that recognition of

exogenously applied OVA by OT-I cells cannot be blocked by

the Kb-SIINFEKL-specific mAb 25D1.16 in vivo, whereas OT-I

activation by OVA-expressing ODCs is readily blocked both

in vitro and in vivo (Na et al., 2009). The ability of this mAb to fully

interfere with OT-I deletion, therefore, strongly suggests that

recognition leading to deletion occurred on the oligodrendocytes

themselves, rather than by cross-presenting professional APCs.

This is in contrast to the deletion of autoreactive OT-I CD8+

T cells in the rat insulin promoter (RIP)-mOVA model, which

depends on cross-presentation of pancreatic b cell-derived

OVA by resting dendritic cells in the draining LN and reaches

saturation of its protective capacity already at 106 transferred

cells (Kurts et al., 1997a).

Together, our data indicate that antigen recognition on ODCs

by CD8+ T cells scanning the brain leads to their destruction. The

observed participation of the Fas-FasL system in apoptotic

removal of CD8+ T cells is in keeping with the known ability of

IFN-g produced by the attacking CD8+ T cells (Na et al., 2008)

to upregulate FasL on ODCs (Pouly et al., 2000) but does not

rule out the participation of FasL expressed by other cells.

Together, our results suggest a scenario where ODC-specific

CD8+ T cells gain access to the CNS as a result of specific acti-

vation or peripherally induced inflammation. Here, they acquire

sensitivity to apoptosis induction by antigen recognition on

ODCs while downregulating their effector functions. After further

recirculation, through the periphery and the CNS, they finally

receive a death signal from the ODCs that have upregulated

FasL. Only recently, a distinct time-window of recirculation of
144 Immunity 37, 134–146, July 27, 2012 ª2012 Elsevier Inc.
OVA-specific CD8+ T cells through the CNS has been described

after Lm-OVA infection, in line with our proposal (Young et al.,

2011).

Another nonlymphoid extrathymic cell type was recently

reported to delete autoreactive CD8+ T cells (Lee et al., 2007).

These specialized LN stromal cells use the autoimmune regu-

lator Aire to promiscuously express tissue-specific antigens to

CD4+ and CD8+ T cells, much like thymic medullary epithelial

cells. In contrast, ODCs do not express MHC class II glycopro-

teins (Turnley et al., 1991) and only low amounts of MHC

class I, which are increased by IFN-g exposure.

Death of CD4+ T lymphocytes in the brain of mice undergoing

EAE has been extensively described (Gold et al., 2006; Pender

et al., 1991; Schmied et al., 1993). However, although these

reports document T cell apoptosis in situ (Schmied et al.,

1993), they do not describe purging of the peripheral immune

system by filtration through the CNS. Myelin-reactive CD8+

T cells may behave differently from CD4+ T cells, because they

can find their target antigen onODCs themselves, not depending

on their representation by microglia or DCs.

Importantly, we found one setting in which the ability of ODCs

to purge the peripheral repertoire is turned into the opposite: if

infection is in the CNS itself, the invading CD8+ T cells are

enabled to destroy ODCs expressing a pathogen-derived (and

maybe also a crossreactive self-) antigen. Thus, presence or

absence of local inflammation in the CNS decides whether

CD8+ T cells will destroy ODCs on which they detect an antigen,

or will be destroyed themselves. Although this important deci-

sion-making process is clear from our present work, future

research will clarify its precise cellular and molecular mecha-

nisms. Whatever these may be, our studies may open the door

for a better understanding of the role of antiviral CD8+ T cell

responses, in particular to EBV (Jilek et al., 2008), in the develop-

ment of MS. Indeed, the reported crossreactivity of EBV-specific

CD8+ T cells with myelin antigens (Lang et al., 2002) and the

presence of EBV in B cells of the CNS of MS patients (Serafini

et al., 2007; Stowe et al., 2007) may provide a setting where local

inflammation prevents ODCs from removing potentially harmful

CD8+ T cells.

EXPERIMENTAL PROCEDURES

Mice

ODC-OVA mice (Cao et al., 2006), OT-I TCR transgenic mice (Hogquist et al.,

1993), Vb5 TCRb chain transgenicmice (Fink et al., 1992), and Thy1.1 congenic

C57BL/6 mice (Jackson ImmunoResearch Laboratories) were kept in path-

ogen-free animal facilities. All in vivo studies were performed according to

NIH guidelines under permits from the governments of Lower Frankonia (for

Würzburg) and North-Rhine Westphalia (Cologne).

L. monocytogenes Infection

Mice were infected with 105 colony forming units (cfu) Lm-OVA (Pope et al.,

2001) or WT Lm in PBS intravenously. To prime for secondary responses,

mice were infected with 5,000 cfu 3 weeks earlier. Intracerebral infection of

mice was performed and disease severity was scored on a 1 to 6 scale as

described previously (Sanchez-Ruiz et al., 2008).

CD8+ T Cell Isolation and In Vitro Activation

CD8+ T cells were isolated from the LN of OT-I mice via MACS beads (Miltenyi

Biotech, Bergisch-Gladbach, Germany) and labeled with 10 mMCFSE (Invitro-

gen, Grand Island, NY). For stimulation, isolated CD8+ T cells were cultured
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with anti-CD3- plus anti-CD28-coated beads (Invitrogen) in the presence of

recombinant human (rh) IL-2 (Novartis, Basel, CH) for 6 days and labeled

with 10 mM CFSE. Cells were transferred i.p. into WT or ODC-OVA mice.

Determination of functional avidity of SIINFEKL-specific CD8+ T cells

followed the protocol by Zehn and Bevan (2006).

Bone Marrow Chimeras

Irradiated (11.5Gy) mice received 1.6 3 107 bone marrow cells from WT or

ODC-OVA mice together with 4 3 106 bone marrow cells from OT-I Thy1.1

mice i.v. Analysis was 6 weeks later.

ODC Cultivation and Transplantation

ODC precursor cells were isolated and cultured as previously described

(Na et al., 2008). 5 3 104 cultured ODCs were stereotactically implanted into

left and right areas of the cerebellum. Coordinates were as follows: P, 6.5;

L, ±1.7; V, 1.6 mm from bregma and dural surface with the toothbar set at 5,

earbar at 10; injection rate, 0.25 ml/min; cannula left in place for 2 min. Mice

were used for OT-I transfer experiments 3 weeks later.

In Vivo Application of Antibodies and FasL Blocking Fusion Protein

Mice were treated with 75 mg of VLA-4 Ab (Southern Biotechnology Inc.,

Cambridge, MA), 100 mg of isotype control, or 100 mg of 25D1.16 Abs

(Porgador et al., 1997) i.p. on days �1, +2, and +4 of cell transfer. For FasL

blocking, 1 mg Fas-Fc fusion protein (Apogenix, Heidelberg, Germany) was

injected i.p. every second day after Lm-OVA infection for 10 days.

Flow Cytometry

Lymphocytes were stained with the following Abs (all from BD PharMingen):

anti-CD8-FITC, anti-CD8-APC, anti-CD90.1-PerCP, and anti-TCR Va2-PE.

Streptamer staining was performed by Strep-Tactin kit (IBA, St. Louis, MO)

as described by the manufacturer. Data were acquired on a FACSCalibur (BD

Bioscience) and analyzed by FlowJo software (Tree Star Inc, Ashland, OR).

Histopathology

Brain and spinal cord were embedded in Paraffin or Tissue-Tek O.C.T.

compound (Sakura Finetek). Cresyl vivolet-luxol fast blue staining and immu-

nohistochemical staining was performed as described previously (Na et al.,

2008; Sanchez-Ruiz et al., 2008).

Leukocyte Isolation from Spinal Cord

Leukocytes were isolated from spinal cords with percoll gradient as described

previously (Na et al., 2008) and analyzed by flow cytometry.

Cell Labeling with CM-Dil

Thymocytes or LN cells were stained with 10 mMCM-Dil (Invitrogen) according

tomanufacturer’s instructions. Labeled thymocytes were cocultured with peri-

toneal macrophages overnight in the presence of 10 nM dexamethasone

(Sigma) and stained for flow cytometry analysis.

Statistical Analysis

Analysis was performed by GraphPad Prism 4.0 (GraphPad Software). Data

are presented as mean ± SD; p values were determined by two-tailed

Student’s t tests.
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