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ABSTRACT 

We give a sharp asymptotic bound on the number of nodes needed for Chebyshev-type (= equal 

weight) quadrature of degree p for measures on [-1, 1] of the form w(t)/(?rm)dt, where w is 

positive on [- 1, 1) and analytic in a neighborhood of [- 1, 11. This bound is derived from a corre- 

sponding bound for Chebyshev-type quadrature for analytic weights on the unit circle. In addition, 

we present some results on Chebyshev-type quadrature on certain algebraic curves. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

Let v be a probability measure on a compact subset of the complex plane @. 
A Chebyshev-type quadrature formula for v is a numerical integration formula 
of the form 

where the nodes <I, <2, . C are points in C. The (algebraic) degree of (1.1) is .., n 
the maximal number p such that equality holds for all polynomials 4 (in one 
complex variable) of degree 5 p. See [2], [3], [6] for surveys on Chebyshev-type 
quadrature. 

Usually, we want to restrict the position of the nodes to some fixed compact 
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set. For example, if the support of v is a real interval we would like to have the 
nodes <j in that interval. Accordingly we introduce the following definition. 

Definition. Let v be a compactly supported probability measure on @ and let 
K c C be compact. We denote by NK(~; V) the minimal number n such that a 
Chebyshev-type quadrature formula of degree > p exists with all its n nodes in 
K. If the measure v is clear from the context we write simply NK(~). 

We are interested in the behavior of NK(~; V) asp ---f m. 
To a large extent this problem is open. Only for some special measures v and 

sets K the asymptotic behavior of NK(p; V) is known. Most of these results deal 
with the case when the support of Y is equal to the interval Z = [-I, l] and 
K = I. The main example is the arcsin measure K’( 1 - t2)-“2dt for which the 
Gauss quadrature formula has equal weights and so NI (2p - 1) = p for every p. 
Several other measures v on [- 1 , 11 are known for which NI( p; V) 5 p for every 
p, see [2] and the references given there. A general description of such measures 
has been given by Peherstorfer [l 1],[12]. 

In contrast, for the normalized Lebesgue measure dt/2 on [-1, 11, Bernstein 
[I] proved that Nl(p) - p2. This was later generalized by the author [8] to 
ultraspherical weights Cu(l - t2)“dt with cy > 0 for which one has 
Nt(p) -p2af2. The case -i < (Y < 0 is still open and for (Y < -f, see [lo]. 
[Here and later up N bp means that ap/bp is bounded above and below by posi- 
tive constants independent of p.] 

In this paper we will present an estimate on N,(p; V) for measures v of the 
form 

(1.2) w(t) d4t) = &_ dt 

with w positive on [-1, l] and analytic in a neighborhood of [-1, 11. Our main 
result is the following. 

Theorem 1. Let u be a probability measure on [- 1, l] of the form (1.2) where w is 
a positive analytic function on [- 1, 11. Then 

(1.3) lim sup ____ Nl(PiV) < max 1 

P-” P - fEI W(t)’ 

Remark A. An inequality in the opposite direction may be derived from a re- 
sult in Kahaner [5, Corollary 21 which we will adapt to our situation. Taking his 
v equal to our NI( p), his m equal to our p, his W equal to 1 and his p(x) equal to 
w(x)/(~Jm), K a h aner’s Corollary 2 asserts the following. If 

(N(P) -P - W[PPI < p asp -+ 03, 
then 

w(x) 2 l/(P + 2). 

As a result, 
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(1.4) liminf N’(p’ ~) 1 
----->max- 

P-m P tEI 2w(t)’ 

This inequality shows that, apart from a factor 2, inequality (1.3) is best possi- 
ble. Actually, Kahaner states his result only for Chebyshev-type quadrature 
formulas with distinct nodes, but from his proofs it is easily seen that this re- 
striction is unnecessary. 

Of course, (1.3) and (1.4) imply that NI( p; v) - p for every measure v of the 
form (1.2). For the special case w(t) = 1 - at with -1 < a < 1 the relation 
NI( p) N p was established in [9] using different methods. 

RemarkB. Weights of the form (1.2) were also considered by Peherstorfer. In 
[12, Theorem 4(a)] he proved that N1( p; v) < p + 1 for every p, if w satisfies 

w(cos(f3)) = Re G(eie) 

where G(z) is analytic and has positive real part in the disk Iz] < 3 + 2&. 
This result applies for example if w is analytic and has a positive real part in 

an ellipse E,,, 

Ep := {t E cl It + Jr2 - 11 < PI, 

with p > S(3 + 2fi). The constant 5(3 + 2fi). IS certainly not best possible. 
To see this, note that W(z) = W((Z + z-*)/2) . 1s analytic and has positive real 

part in the annulus p-l < ]zI < p. Then the coefficients aj in the Laurent ex- 
pansion W(z) = CT=_, aj zj satisfy the estimates 

lUjl(Pj+fj) 5 2, j= 1,2,..., 

cf. [4, p. 1021. We also have a0 = 1 and a-j = Uj. Now for the function 

G(Z) = 1 +2E ajzj, 
j=l 

is is clear that w(cos 0) = Re G(eie) and for jz] = Y < 3 + 2&, we have 

ReG(z) 2 1 - 2E laj(r’ > 0. 
j=l 

Thus Theorem 4(a) of [12] can be applied. 
I am grateful to Franz Peherstorfer for pointing out to me that a result of this 

type should hold. 

To obtain Theorem 1 we first consider measures on the unit circle C in the 
complex plane, C := {z E @ 1 IzI = 1). We denote by D the unit disk, D := 

{z E @ 1 1zI 5 l}, and by X the normalized Lebesgue measure on C (total mass 
one). Let v be a probability measure on the unit circle of the form dv = WdA 

where W is positive on C and analytic in a neighborhood of C. For such a 
measure, we will prove the following two estimates. 
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Theorem 2. Let Y be a probability measure on the unit circle of the form 
du = WdA where W is positive on C and analytic in a neighborhood of C. Then we 

have (a) 

(1.5) lim sup ND(PiV) < max 1 

p-00 P - lz(=l W(z) 

and(b) 

(1.6) lim sup Nc(P; ~) 2 
<max- 

P+m P IzI= 1 W(z) . 

Remark C. For v = X we have No(p) = 1 (one node at the origin) and 

NC(P) =p+l ( no d es at the vertices of a regular (p + I)-gon). This example 
shows that it is not always true that ND(P) N p for measures satisfying the 
conditions of Theorem 2. Thus (1.5) is not always best possible. 

Remark D. The estimate (1.6) is best possible, except for the factor 2, since we 
have the following estimate from below 

(1.7) 
liminf Nc(P; v) 1 

>max--- 
P-m P 12/=1 W(z)’ 

This can be proved using the same ideas used in [5] to prove (1.4). 

We finish this introduction by stating briefly the contents of the following 
sections. We start in Section 2 by proving three lemmas that will be used in the 
proofs of Theorem 2. In Section 3 we prove part (a) of Theorem 2 and in Sec- 
tion 4 we prove part (b). In Section 5 Theorem 1 is deduced from Theorem 2. 
Finally, we present in Section 6 an application of Theorem 2 to Chebyshev-type 
quadrature on certain algebraic curves, including ellipses. 

2. PRELIMINARIES 

With any probability measure v with support in a disk IzI < R, we associate 
the function 

(2.1) fv(z) = exp(J log(z - <)dv(<)), Izl > R, 

where we take log(z - c) equal to an arbitrary value of logz plus the principal 
value of log( 1 - c/z). Clearly, fy is an analytic function for ]z( > R and fy(z) 
behaves like z for (z/ + 00. It is easy to see that 

(2.2) fV(z) = zexp (- kgt z z-‘), IzJ > R, 

where the ck are the moments of V, 

(2.3) ck = j- Ckdv(<), k > 0. 

Our construction of Chebyshev-type quadrature formulas is based on the fol- 
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lowing lemma. This result is not new, but we have included the proof for con- 
venience. Closely related results can be found in [9], [IO], [ll], [12], [14]. 

Lemma 3. Let u be a compactly supportedprobability measure. Let p, n E N and 

suppose F,(z) = JJ= 1 (Z - Cj) is a P IV o nomial of degree n such that 

(2.4) fV(z)” = F,(z) + C~(Z”-~- ‘), (z --f 00). 

Then 

J 4(Gdv(C) = i j$I +(ci) 

for every polynomial q!~ of degree 5 p. 

Proof. Dividing (2.4) by z” and taking logarithms we get by (2.2) 

-nC -z O” ck -k = log fi 

k=l k j=l 

= -5 2 (;Xz-k+(7(z-r+l). 

k=lj=l k 

Comparing the coefficients of zPk and using (2.3) we fmd 

.l-Ckd40 =ij$ $3 k= l,...,p. 

Since v is a probability measure we also have equality for k = 0 and the lemma 
follows. 0 

For measures Y as in Theorem 2 the function fV has an analytic continuation 
to the exterior of a smaller disk. The precise statement is in the following 
lemma. For r > 0, we denote by C, the circle \z] = r and by A, the normalized 
Lebesgue measure on C,. 

Lemma 4. Let v be a probability measure on the unit circle such that dv = WdX 
where W is positive on C and analytic in a neighborhood of C. Then there is t-0 < 1 
and for every r E (ro, 1) a probability measure u, on C, of the form dur = WrdX, 
such that 

(2.5) fu,(z) =fv(z), lzl > 1, 

[that is, fu, is an analytic continuation off” to Iz( > r], and 

(2.6) lim sup ( Wr(rz) - W(z)\ = 0. 
r/” 1 121 = 1 

Proof. Suppose W has the Laurent expansion 

(2.7) W(Z) = 2 UjZj, U-j = iij. 
j=-m 
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Then the negative Laurent coefficients are equal to the moments of V. Since W 

has an analytic continuation to a neighborhood of C the series (2.7) converges 
inanannulusR~‘<~z~<RforsomeR>1.SetforrE(R-’,I), 

0 .M 
(2.8) Wr(Z) := C ajZ’ + C ajF2jZj, R-’ -=c Iz( < Rr2. 

j=-m j=l 

The function W, is real on the circle C, and it is easy to see that (2.6) holds. 
Since W is positive on C, this implies that there is ro E [R-l, 1) such that W, is 
strictly positive on C, for every r E (ro, 1). 
Let r E (ro, 1) and write dv, = W,dX,. Because of (2.8) we have 

s <kdur([) = a-k, k > 0. 

Therefore V, is a probability measure on C, and the moments of V, agree with 
the moments of V. This implies (2.5) cf. (2.2), (2.3). 0 

As a final preliminary to the proofs we need a result on the dependence of fv 
on the measure V. Recall that a sequence of measures (z+), whose supports are 
in a fixed compact set K converges to a measure v on K in the weak-star to- 
pology if 

lim J 4dv, = J q5dv 
n+oo 

for every continuous function 4 on K. 

Lemma5. Letr>Oandletuandu,,,n=1,2,... be probability measures on the 
circle C, such that (v,,), converges to v in the weak-star sense. Then 

.fJz) 
,‘5 f, = 1, lzl > r, 

and the convergence is uniform on Izj z pfor every p > r. 

Proof. From (2.1) it is clear that f,( ) z converges to fy(z) for every IzI > r. To 
prove the uniform convergence, let p > r and note that the functions f, (z)/z are 
analytic on IzI > r, including 00, and that they are uniformly bounded for 
IzI > p. By Montel’s theorem, we find that (f, (z)/z)n is a normal family and so 
the pointwise convergence implies that f, (z)/z converges to fv(z)/z uniformly 
for (z( > p, This proves the lemma. •I 

3. NODES INSIDE THE UNIT DISK 

Proof of Theorem Z(a). Let ro, V, and W, be as in Lemma 4. We write f instead 
of fv. By Lemma 4 it has an analytic continuation to IzI > ro which we also de- 
note byf. 

Choose cy > 0 such that o < minlzl = 1 W(z). By (2.6) we can take r E (ro, 1) 
such that Wr(z) > a for every z on the circle C,. Then V, - OX, is a positive 
measure on C, with total mass 1 - Q. We introduce a sequence (em), of poly- 
nomials such that 
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l &, is a manic polynomial of degree m, 
l the zeros of Qm are on ]z( = r, and 
l the asymptotic zero distribution of the Q,,, is equal to (z+ - &I,.)/( 1 - CY). 

This last requirement means the following. With the polynomial & is asso- 
ciated its normalized zero distribution 

Pm :=k j$ %, 

where<,,... , cm are the zeros of Q,,, counted according to multiplicity. Then it is 
required that in weak-star sense 

f$mpL, = (24 -a&)/(1 -a). 

Then it also follows that 

(3.1) Jlm[(l - cx)pL, + crX,] = v,. 

Sincejim = Q,(z)“~ andfx,(z) = z we obtain from Lemma 5 

lim f(z) 
M-X z”Qm(z)(l -n)/m = ’ 

uniformly for ]z( 2 p for every p > r. [Recall thatfV, =f by Lemma 4.1 
Somewhat more generally, we can consider sequences (m,), and (cE~)~ such 

that 

mp E V lim mp = co, OLarpll, lim f+ = (Y. 
p-03 P-m 

Then it follows from (3.1) that in weak-star sense 

and again from Lemma 5 we get 

(3.2) lim f(z) = 1 
P-CC zaPQ,(Z)(l --a~~/~~ 

uniformly for Jz] 2 p for every p > r. 
We fix a number p E (r, 1)) and for p E N we take 

n = np = [P/4, mp = np -P, ap = plnp. 

Here [x] denotes the largest integer < x. Since 0 < (Y < 1, we have mp + cc and 
cxp -+ (Y. Hence (3.2) holds, i.e., 

(3.3) lim f(Z) 
P+‘zP/“Q~_,(~)“” = ’ 

uniformly for ]z] > p. Now we take the polynomial Pp of degree p such that 

(3.4) f(z)” = Pp(~)Q,-p(~) + O(z”-p-‘) (z + co). 
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This implies that Pp is the polynomial part off(z) “/Qn_,(z) and therefore Pp is 
determined uniquely by (3.4). We want to prove that for p large enough, Pp has 
all its zeros in the unit disk. From (3.4) we deduce the integral representation 

which is valid for every R > 1. By the residue theorem, we have for JzI 2 1, 

(3.5) P&) = f(z)” +i J f(C)" 4 . 
Qn-dz) 2~iIcI=p Qn-,C<) C-z 

Choose S > 0 such that (1 + @pa < 1 - 6. Then for p, and thus n = np, large 
enough we have 

(3.6) (1 + G)“pan & < (1 - S)” 

and also by (3.3) 

(3.7) sup 
f(z) 

1~1~~ zJ’lQ_,(z)“” 
-1 <s. 

Hence, if 1st = p, 

I I 
f(C)" 

Qn_,(<) 5 @+')"P' 5 (l+s)"p"", 

so that for every /zI 2 1, 

(3.8) 
f (0” I& ,Jp m& L (1 +VP” &. 

From (3.7) it also follows that for Iz( 2 1, 

f(z)" (3.9) ~ 
I I 

Qnppcz) 2 c1 - ')". 

Using (3.5), (3.6) (3.8) and (3.9) we find forp large enough and jz] > 1, 

JPp(z)j 2 (1 - S)” - (1 + S)“pO” r” > 0. 
P 

This implies that for large p, the polynomial Pp has no zeros in (z( 2 1 and 
therefore all zeros are in the unit disk. Also Qn-p has its zeros in the unit disk 
(they are on the circle (z( = r). Therefore, by (3.4) and Lemma 3, there exists 
a Chebyshev-type quadrature formula for v of degree > p with n nodes in 
the unit disk. Thus for large p, we have ND(P) 5 n < p/a, so that 
lim SU~~_~ N&p)/p I l/o. This holds for every a < rni+l= 1 W(z) and (1.5) 
follows. 0 
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4. NODES ON THE UNIT CIRCLE 

For the proof of part (b) of Theorem 2 we follow closely the proof of part (a) 
as given in the previous section. However, we have to use an additional trick to 
make sure that the nodes are exactly on the circle and therefore we have to set 
up things just a little differently. This will cause the extra factor 2 that appears 
in the estimate (1.6). 

Proof of Theorem 2(h). We choose Q, r and the sequence (QJ, as in the proof 
of Theorem 2(a). We fix p E (r, 1) and for p E N we now take 

(4.1) n = np = 2[p/a], mP = n - 2p, oP = 2p/n. 

Clearly mp --f co and oP 4 (Y, so that (3.2) holds, that is, 

(4.2) lim f(z) = 1 
Pi03~2p~nQn_2p(~)“n 

uniformly for ]z] > p. 

Now we take the polynomial Pp such that 

(4.3) f(z)” = z~P~(z)Q~-~~(z) + C~(Z~-~-‘), (z + co). 

Then we have for (z] 1 1, cf. (3.5), 

(4.4) 
f(z)" 

Pp(z) = zpQn-2p(z) +i J f(C)" & 
2~2 IcI=p CPQn-2p(0 c-z’ 

Let 6 > 0 be such that (1 + S)p a/2 < 1 - S. Then it follows from (4.2) that we 
have for p large enough, 

and 

(46) 

Combining (4.4), (4.5) and (4.6) we find for p large enough, 

P ]P,(z)] 2 (1 - 8)” - (1 + l!?)npa”‘2 - 
1 -p’ ]z] > 1. 

By the choice of S it follows that ]PP(z)] > 0 for ]z( 2 1 andp large enough. Thus 
for large p, say p 2 PO, the polynomial Pp has all its zeros inside the open unit 
disk. 

Finally, we take p 2 po and we define the polynomial F,, of degree n = 

fip = 2[plol by 

(4.7) E(z) := z~P~(z)Q~-~~(z) + ~;(z)Q,*_,,W. 

Here the * denotes the reversed polynomial, that is, P,+(z) = zpPp( l/z) and 
similarly for Q;_ 2p(z). Because Pp and Qn _ zp have their zeros in the open unit 
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disk, the polynomial F,, has all its zeros on the unit circle and all these zeros are 
simple, see Schur [13, p. 2301. Furthermore by (4.3) and (4.7), 

(4.8) f(z)” = F,(z) + C’(z”-p), (z --+ 00). 

Then it follows from (4.8) and Lemma 3 that the zeros of F,, are the nodes of a 
Chebyshev-type quadrature formula for v of degree > p - 1. So for large p, we 

have Nc(p - 1) < II 5 2p/a, which implies 

lim sup Nc(p’ ~) 12. 
P-c= P Q 

This holds for every a < minlzl = I W(z), so that (1.6) follows. 0 

Remark E. Let v be a probability measure on the circle C and suppose the 
Chebyshev-type quadrature formula 

is exact for all polynomials $J of degree 5 p with nodes cj E C. Using 4(c) = ck 
and taking complex conjugates in (4.9), we obtain 

J (-kdv(<) = ; j$l <i-k, k = 1,. ,p. 

Note that this works because all nodes are on the unit circle. Thus it follows that 
(4.9) holds for every Laurent polynomial 4 of degree < p. 

Remark F. Theorem 2(b) also gives results on Chebyshev-type quadrature for 
trigonometric polynomials on [0,2~]. 

The context is the following. Let p be a probability measure on [0,27r]. The 
trigonometric degree of a Chebyshev-type quadrature formula 

is the maximal p such that equality holds for all trigonometric polynomials T 

of degree 5 p. We denote by N,&nI (p; p) the minimal number n such that a 
Chebyshev-type formula for p exists with n nodes in [0,2~] and trigonometric 
degree > p. 

By means of the mapping [ = eit we obtain from p a measure v on the unit 
circle. Using Remark E one can prove easily that the following relation holds 
for every p, 

(4.10) q&,(PW) = Nc(p;v). 

Then we have the following corollary to Theorem 2(b), which will be used in 
Section 6. 

Corollary 6. Let p be a probability measure on [0,27r] of the form dp( t ) = w( t )dt 
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where w is a positive 2r-periodic function on R and analytic in a neighborhood 

of R. Then 

(4.11) lim sup 
$&P; p) < max 1 

P-m P - ZE[0,24 7rw(t) 

Proof. The measure v on the unit circle corresponding to p is given by du = 
2xWdX where W(e”) = w(t). So (4.11) follows from (4.10) and Theorem 

2(b). •I 

5. WEIGHTS ON THE INTERVAL 

In this section we prove Theorem 1. Let v be a probability measure on the 
interval [-1, l] as in the statement of Theorem 1. We associate with v the func- 
tion 

W(z) := w((z + z-1)/2), z E c. 

Then WdX is a probability measure on the circle which is symmetric with re- 
spect to the real axis. The following lemma shows how to obtain a Chebyshev- 
type quadrature formula for v from a symmetric Chebyshev-type quadrature 
formula for WdX. 

Lemma 7. Let p, m E N and let cl, (2, . . . , <2,,, bepoints on the unit circle such that 

<22m+ i -j = G, j = 1, . . , m. Suppose that for every polynomial C#I of degree 5 p we 
have 

(5.1) J” 4(C) W(C)dX(O = &$ c%J. 

Then for every polynomial 4 of degree < p 

wheretj=Re<j,j=l,..., m. 

Proof. Let 4 be a polynomial of degree I p. It is easy to verify that 

Since 4((I + 5-‘)/2) is a Laurent polynomial of degree < p, we obtain from 
(5.1) and Remark E 
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Since [2,,,+ i -j = 6 we find t2 m+l -j = tj. Then (5.2) follows from (5.3) and 
(5.4). 0 

Proof of Theorem 1. Let W(z) := W((Z + z-‘)/2) and take rr > 0 such that 

cx < y$w(t) = mEi; W(z). 

Then WdX satisfies the conditions of Theorem 2 and so by part (b) we have 
No(p; WdX) 5 2p/a for every largep. Therefore for largep, there are n 5 2p/o 
and nodes (1, . . . , cn on the unit circle such that 

(5.5) J 4(OW(CW(O = i j$ 4(G) 

for every polynomial 4 of degree < p. 

By (4.1) we may assume n is even, say n = 2m. Since W is symmetric with 
respect to the real axis an inspection of the proof of Theorem 2(b) shows that 
we may assume that the nodes (;j are non-real and satisfy &+ 1 -j = rj, 
j= l,... , m. Indeed, in the proof of Theorem 2(b) we may assume that Qn _ 2p is 
chosen to be a real polynomial. Sincef (as defined in the proof of Theorem 2) 
has real coefficients in the Laurent expansion around 00, it follows from (4.3) 
and (4.7) that Pp and F,, are real polynomials as well. Moreover 

F,(l) = 2P#)Qn-2Jl) # 0, 

F,(-1) = 2(-1)pPp(-l)Qrz_2p(-1) # 0. 

Thus the zeros of F,, are non-real and they come in conjugate pairs. 
Using Lemma 7 and (5.5) we then find that for large p there is m 5 p/a such 

that 

w(t) 
_j, 4Ct) r$/m 

dt = ; j$l qb(ti) 

for every polynomial of degree 5 p, where fj = Re <j E [-1, 11, j = 1,. . . , m. 
Hence for large p, we have Nr (p) < P/(-Y and this implies 

Since cy < min,, 1 w(t) can be chosen arbitrarily the estimate (1.3) follows. q 

6. CHEBYSHEV-TYPE QUADRATURE ON ALGEBRAIC CURVES 

As a further application of Theorem 2 we address the problem of finding 
Chebyshev-type quadrature on certain algebraic curves in [w2. In this case we 
consider quadrature formulas of the form 

Here r is a smooth closed curve in lR2, ds denotes arc length on r, L is the 
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length of r and the nodes (xjlvj) are on r. The degree of (6.1) is the maximal 
number p such that equality holds for every polynomial 4 (in two variables) of 
total degree 5 p. We denote by N!)(p) the minimal number n such that there 
exists a Chebyshev-type quadrature formula of degree > p whose nodes lie on r. 

The superscript c2) IS used since we are dealing with polynomials in two 
variables. 

Theorem 8. Let r be the closed curve in R2 parametrized by 

t E [0,2n], where P and Q are real trigonometric polynomials. 
(P’(t), Q’(t)) # (0,O)for every t. Then 

(P(t)) Q(t))> 
We assume 

max(deg P, deg Q) 

mint, [0,2n](P’(t)2 + Q’(t12)“2 

Proof. Write 

w(t) := (P’(t)2 + Q’(t)2)1’2/L 

and dp(t) = w(t)dt, t E [0,24. Then p satisfies the hypotheses of Corollary 6 
and so 

(6.3) lim sup 
3:24(Pw) < max 1 

P-m P - fE [0,27T] ziqq. 

Choose o > 0 such that o < min,, [0,2+ w(t) and let D denote the maximum of 
deg P and deg Q. Because of (6.3) there is po such that for every p 2 PO, we have 

Now let p > PO. Then there exist a positive number n 5 (pD)/(rcu) and nodes 
tl, , t, E [0,24 such that 

for every trigonometric polynomial T of degree 5 PD. 
Let 4 be a polynomial of two variables of degree < p. Since 

; ,s d(x,y)ds = 7 4(P(tL Q(t)MtW 

and qS(P(t), Q(t)) is a trigonometric polynomial of degree 5 pD, we find by (6.4) 
that 

Hence NC2)(p) 5 n 5 (pD)/(~cu) for everyp 2 PO. This implies r 
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Since (Y < min w(t) can be chosen arbitrarily, we obtain (6.2). q 

Remark G. As an example, we take for r the ellipse with parametrization 
(aces t, b sin t) with a > b > 0, say. Then (6.2) gives 

where E(k) is the complete elliptic integral of second kind. This is essentially 
best possible since we have the following estimate from below which can be 
proved using (1.7): 

The finiteness of the lim sup in (6.5) was conjectured in [7, Remark 3.21. 
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