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1. INTRODUCTION 

For the single type branching process or Galton-Watson process several 
basic probabilistic phenomena have only recently been studied under natural 
hypotheses. For example Yaglom’s theorem [l, p. 181 asserting the existence 
of a limiting probability measure of 2, for processes Z, with mean less than 
one, conditioned on Z, # 0, is valid without additional hypotheses [2, 31. 
Here, in treating the processes with k types (K > 1) our goal is a similar 
discussion of basic phenomena, under their weakest possible and therefore 
natural conditions. While all the phenomena treated here are known (except 
possibly the local limit result in Theorem 5), we nevertheless decided to give 
a self contained treatment, accessible to a reader unfamiliar with the single 
type theory. 

Our treatment however is restricted entirely to the case p < 1, p being the 
largest (positive) eigenvalue of the expectation matrix M, (p = m = E[Z,] 
in the case k = 1). The reason is the existence of a complete theory by Kesten 
and Stigum [4-61 for the case p > 1. 

For the specialist we give the following literature references concerning 
known results and methods used in this paper (The theorems referred to 
below are listed in Section 3.) In Theorem 1 only the statement of uniformity 
in (3.3) is new, while (3.1) and (3.2) are proved in Harris [l]. Equation (3.3) 
without uniformity, and under excessive moment assumptions, is due to 
Jifina [7] for p < 1, and to Mullikin [8], when p = 1. Similar remarks apply 
to Theorem 2 which is an immediate consequence of Theorem 1. Theorem 3 
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was proved by Jifina [7] under the hypothesis that second moments exist, 
but the independence of the limiting measure on the initial state of the 
process is not made clear in [7], nor was it pointed out in [l]. Theorem 4 was 
recently proved by Heathcote et al. [2] in the case of a single particle (k = 1). 
Theorem 5 seems to be a new, but very simple observation. It can be used 
to give a complete description of the entrance boundary (invariant measures) 
for processes with p < 1, satisfying the condition (3.10) of Theorem 4. 
Finally, in Theorem 6 both the formalism (see Eq. (4.35) in the proof) and its 
corollaries (3.14) and (3.15) are due to Mullikin [8], who developed them 
under stronger hypotheses but in a far more general context. To obtain the 
full strength of Theorem 6 it seems necessary to use the uniformity assertion 
in (3.3). The result (3.13) of Theorem 6 is the obvious k-dimensional analogue 
of Theorem I in [9]. In fact, straightforward imitation of the methods in [9], 
with careful use of (3.3) will yield the extension of several other results in 
[9] from k = 1 to an arbitrary number of types. 

2. DEFINITIONS AND NOTATION 

We call X the set of all k-tuples i = (ir , is ,..., &) whose elements are 
non-negative integers i, . The zero element is 0, and ear will denote the basis 
vector i with i, = 1, all other i, = 0. 

The k-dimensional cube of points s = (sr , ss ,..., s,), 0 < s, < 1, is denoted 
C. It has zero element 0, and unit element 1 = (1, l,..., 1). The obvious 
partial order on C is s < t, when s, < t, for all v and s < t when s, < t, 
for all v. A mappingfof C into C or of C into the reals will be called monotone 
(nondecreasing) if s < t implies f(s) <f(t), and f(t) 7 1 means that f is 
monotone and tends to 1 as t -+ 1 in C. Similarly if F(t) is a k by k matrix 
(quadratic form) for each t E C, then F(t) L 0 will mean that t < s implies 
F(t) -F(s) has non-negative elements (coefficients) and F(t) tends to the 0 
matrix (quadratic form) as t -+ 1 in C. Finally we shall use the notation si, 
when i E X, s E C, to denote the product J-JR, (s”)iy. 

For each integer OL, 1 < 01 < k, we assume given a probability measure 
p, on X, and in terms of these given measures one proceeds to define the 
branching process Z, , as a Markov chain with state space X. Its transition 
probabilities are given by 

P(0, 0) = 1. P(em , i) = p=(i), i E X, 

P(i,j) = ppl’ * p!J * -a- * pt”‘( j), j E X, (2-l) 

where pp’ is the n-fold convolution of pa with itself. Thus P(i, j) is an 
(4 + 4 + ... f &) fold convolution. The n-step transition probabilities 
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are now uniquely determined by the requirement that Z, be a Markov chain. 
For each initial position 2, = i E X, we therefore obtain a probability 
measure Pi[ ] on the sample space of the process. The corresponding 
expectation will be denoted EJ 1. Whenever A is of positive Pi-measure, 
we will write PJB 1 A] for PJA n B]/P,[A]. 

The so called generating function of (Z,) is defined by 

f(s) =f&) = (fi,l(~)~fi.Z(~),~~~~fl,li(S)>~ 

fi.&) = -Q.[~Z1l = 1 P&I si, s E c. (2.2) 
iEX 

Since p. is a probability measure, f maps C into C. It follows from (2.1) 
together with a little computation based on the Markov property (cf. [l], 
p. 36), that the n-fold composition off, 

fn(4 = (fn.l(s),fn.z(s),...,fn,k(s)) =f fif c *.- ‘-if(S), n>, 1, 

satisfies 

fn&) = &?,P2”1~ n> 1, 1 <a<,<, s E c. (2.3) 

It is consistent with the above to define fo(s) = s, s E C. 
Throughout we shall assume the finiteness of the K by k matrix M, 

MC+3 = ~e,L&Jl = 1 P&l 4 7 1 < CL, /I < k. (2.4) 
iCX 

Furthermore it is assumed that there exists a positive integer IZ such that 
Mn > 0 (all elements positive). This is known [IO; Appendix 21 to entail 
the existence of a positive number p (the largest eigenvalue of M) such that 

(2.5) 

where u > 0, w > 0 (all components positive) are the unique nonnegative 
eigenvectors of M, corresponding to p. Thus 

Mu = pu, vM = pv, fl*‘u=l, u-1 =I, (2-6) 

the normalization in (2.6) being assumed for the sake of convenience. 

(Note: A product x * y when x, y are in euclidean space R, , will always 
denote the scalar product, and xMy the obvious bilinear form. It is not requir- 
ed that x and y lie in C; we may for instance have x E X, and y E C.) 

The above assumptions concerning M suffice when p < 1; In the case 
p = 1, however, we assume more. First of all we rule out the degenerate 
case described by 

f(t) = Mt, t E c. (2.7) 
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Since (2.7) implies that 1 =f(l) = Ml, we see that p = 1, so that (2.7) 
cannot occur when p < 1. In fact (2.7) describes the degenerate case when 
the total number of particles is independent of time. Then the study of Z, , 
with Z,, = e, , reduces to the study of an irreducible Markov chain with K 
states, whose transition matrix is M. 

Finally we assume, for the sole purpose of Theorem 6, with p = 1, that all 
the second moments of Z, are finite. Equivalently 

for all t E C, 0 < 01 < K. Here 6 is the Kronecker delta, and q[ ] is clearly 
a vector whose components are quadratic forms of order K. In terms of qi ] 
and the left eigenvector e, in (2.6) we shall find it useful to define the quadratic 
form Q[ I, by 

Q[tl = v . dtll t E c. (2.9) 

We shall be particularly interested in the value of Q at u (see Theorem 6). 
For the simple Galton-Watson process (K = 1) with p - 1, we have 
q[t] = t%?/2 where u2 is the variance of Z, when Z, = 1. Since M = p = 1, 
u=v=l, one has Q[u] = a2/2. 

3. PRINCIPAL RESULTS 

THEOREM 1. When p < 1 and when p = 1 andf(t) # Mt, 

fnw z 1 on c - il), for n > 0. 

1 -fn(O’O, as n-+ 00, uniformly on C. 

(3.1) 

(3.2) 

1 -fn(t) 
v - [l -fn(t)p as 

n--f co, uniformly on C - { 1). (3.3) 

THEOREM 2. When p < 1, there is a monotone nonincreasing real function 
y(t) on C, such that 

v - [I p-f.(t)l \ y(t) > 0, as n+ co, t E c, (3.4) 

l -fn(t) -+ y(t) 24, 
Pn 

as n-03, t E c, 

P~i[Z?I # 01 -y(O) (i * 4, as n-+co, (3.6) 

for each i E X. 
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THEOREM 3. When p < 1, the conditional probability measure 

PiK =A Pd& =i I -G f 01 = pirzn + ol - x(j), jEX-{O), as n-+co 

(3.7) 

for each i E X - (0). Here x is a probability measure on X - {0), which is 
independent of the initial point Z,, = i in X - (0). The mean vector 
m = (m, , ??lL (... m,) of x dej%ed by 

(3.8) 

isfinite if and only if the constant y  = y(O) in Theorem 2 is positive. In the latter 
case 

1 
m=-v. 

Y 
(3.9) 

THEOREM 4. If p < 1, then the constant y = y(O) in Theorems 2 and 3 is 
positive ;f and only if 

J%,[-%B log -&31 = C P,(i) $3 log ibi < a (3.10) 
isx-(0) 

for all 1 < a! < k and all 1 < /I ,< k. 

THEOREM 5. Suppose that p < 1 and that (3.10) holds (so that y > 0). 
Suppose also that j ---f co in the sense that j * u + + co, azd that TC + + co, 
in such a way that (j * u) pny + A > 0. Then 

lim PJZ, = i] = xA(i), iEX, (3.11) 

where xA is a probability measure on X. It has generating function 

zxxR(i) si = e+[l-Q(s)], g(s) = iE~(o)xo si, s E c, (3.12) 

where x is the limiting measure in Theorem 3. 

THEOREM 6. Suppose that p = 1, f(t) # Mt, and that the second moments 
of Z, are finite. Then 

- : ,v.[l~f~~t~l-v.~~-tl~-LQ~ul~O~ I 1 as n-+ co, (3.13) 
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uniformly for all t E C - {l}. In particular 

nP,[Z, # 0] + & , as n+co, (3.14) 

for each fixed i in X - {O}. Also, for every vector x in Rk , and each i in X - {O}. 

0 if ,$$kx, < 0 -.a. 

~f[-G < nx I -%I # 01 - 

I 

l/k % 
( )I 

(3.15) 
1 - exp o[tll min - , 

I$4k 0, 
x > 0. 

This limit measure has its support on the ray x = cv, c > 0. 

4. PROOFS AND DISCUSSION 

As in the case k = 1 (the Galton-Watson process) the elementary theory 
depends on little more than the expansion off(t) about t = 1. We give this 
expansion to first order now, and to second order later on, in the proof of 
Theorem 6. For fixed i in X, let 

p)(t) = t’ = fi t)J, $44 = PC1 - t)* t E c. 
1 

Then 

4(t) - 1 = 4(t) - #(O) = ( $ $(&) dt = 1: t - grad J1(5t) dt 

where 

[ ce(i, t) = is 1 - I 
1 0 (1 - &P 

1 - (tp d6 I ’ 
t E c, iEX. 

0 

(4.1) 

(4.2) 

(4.2) 

(4.3) 

We shall now replace t by 1 - t in (4.2), multiply (4.2) by pal(i), and then 
sum i over X. To simplify the notation we introduce first the matrix E(t), 
t E C, defined by 

-%3(t) = C PA4 q&, 1 - 9, t EC, 1 < 01, B <k. (4.4) 
iEX 
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Observe that (4.3) and (4.4) imply, for s, t E C, 

0 < E(t) < iv, t < s 3 E(t) >: E(s), 

E(t) --f 0 as t-+1 in C. (4.5) 

Now the result of summing (4.2) with respect to the measure p, is 

or in vector notation 

1 -f(t) = [M - E(t)] (1 - q, t E c. (4.6) 

The proof of Theorem 1 begins with the observation that it suffices to 
prove (3.1) when n = 1. (For fo(t) = t # 1 when t # 1, and if f%(t) = 1 
for n > 1 and t # 1 we may choose m > 1 as the smallest integer such that 
fm(t) = 1. But thenf,-r(t) # 1 andf[f,&t)] = 1 shows that (3.1) is false 
when II = 1.) Iff(t) = 1, t # 1, then by the monotonicity off, we may choose 
t’ E C, with some component ti < 1 and all other components one, so that 
also f (t’) = 1. But this implies (see 2.2) that p=(i) = 0 for all OL and all i with 
$ > 0. Hence (see 2.4) M, = 0 for all 01 which contradicts the hypothesis 
that iW > 0 for some n. Thus (3.1) holds. 

For the proof of (3.2) observe that 

0 d 1 -fn(t) < 1 -fn(O), fn(0) 7 Q E C, as ?z-+co. (4.7) 

Setting t = fn(0) in (4.6) and using the monotonicity of E in (4.5), 

1 - 4 = wf - -WI (1 - 4). (4.8) 

Forming the scalar product with the left eigenvector w 

v-(1 -q)==p*(l -q)-v.E(q)(l -4). 

Since p < 1, w > 0 and E(q) 3 0, it is clear that E(q) (1 - q) = 0. But then 
(4.8) reduces to 1 - q = M(1 - q), which shows that q = 1 in the case 
when p < 1. In the case when p = 1, the following reasoning will prove that 
q = 1. Suppose it is not so. Since 1 - q = M(1 - q), 1 - q must be a 
positive multiple of the right eigenvector u. Hence E(1 - CU) u = 0 for 
some c > 0. Since II > 0, also E(1 - CU) = 0, and 1 - cu < 1. In other 
words E(t) = 0 for some t < 1 in C. Inspection of (4.3) and (4.4) shows that 
this implies that E(t) = 0 on C. This in turn gives 1 -f(t) = M(1 - t) or 
f(t) - Mt = 1 - Ml. Setting t = 0 yields 1 - Ml =f(O) > 0. Multi- 
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plying this inequality by e, gives 0 = n * 1 - o * 1 = e, *f(O) > 0 so that 
f(0) = 0. Hence 1 = Ml, andf(t) = Mt, which means that we are in the 
degenerate case which was ruled out. 

We have shown that q = 1, and the inequality in (4.7) assures uniform 
convergence of 1 -fn(t) to 1 - 4 = 0. Therefore the proof of (3.2) is com- 
plete. 

REMARK. Statement (3.2) implies that the map f : C -+ C has no fixed 
point, other than 1. Probabilistically the content of (3.2) is that 

(1 - fn(O>>u = Pe,[Zn # 01 * 0, n4 00, 

which of course implies 

piv-n # 013 0, n+ co, (4.9) 

for each i E X, since E’JZ, = 0] is a finite product of terms which tend to one. 
To complete the proof of Theorem 1 we require information concerning 

infinite products of positive matrices, which is worth presenting in some 
detail. We take a non-negative matrix P, such that Pn > 0 for some 11 >, 1, 
and suppose the largest eigenvalue of P to be one (this is no restriction as far 
as part (i) of Lemma 1 is concerned). The eigenvectors u > 0, er > 0 can be 
chosen to satisfy 

Pu = u, VP = v, v*u=l, u-1 =I. 

We suppose given a sequence of matrices Ak , 0 < A, < P, define 

B,=(P-A,J(P-A,&.*(P-A,)=fi(P-A,), n>, 1, 
1 

and finally consider a vector x, satisfying 

Bnx # 0 for all n >, 1. 

LEMMA 1. Under the above conditions concerning P, u, v, A,, B,, , and x, 
we have 

lim A, = 0, n+m then lim Bnx - z u; 
n- vB,x 

(ii) lim,,, B,,x exists always. It is non-xero if and only ;f the sum Cy Al; 
converges. 
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PROOF. Let lim Pn = R = u @ v. Thus R > 0 and we can find a null 
sequence 6, > 0 such that 

(1 - 8,) R < P” d (1 + 4z) R, n > 1. 

Using the hypothesis of part (i) that A, + 0, we may also choose a null 
sequence a,, 3 0 such that 

0 < A, < sR, n 3 1. 

Note further that since PR = RP = R we have for arbitrary nonnegative 
real numbers fil , & ,..., B, , 

Combining this identity with the two preceding inequalities, one obtains 

<(P-A,J(P-A,+,)...(P- 

d 1 + %nR, 

whenever n > m >, 1. Now we take w = Bnlnx and apply 

B,x=(P-A~)...(P-A,,-+~)w, 

and also to vB,x. Then (4.10) gives 

4l-,+1) < pm 
(4.10) 

(4.10) to 

Rw 

Observe, however, that RwlvRw = u, in view of the normalization v * u = 1, 
regardless of the point w. Hence if 11 11 is the supremum norm, 

(4.1 I) 

By letting first n tend to infinity, and then m, we see that (i) is true. 
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REMARK. In the proof of the last part of Theorem 1 we shall use the full 
strength of (4.11). The bound in (4.11) is independent of x, and it will also 
remain valid if the sequence A, were replaced by any sequence A; , satisfying 
0 < A; < A, < QR. 

Now we shall prove part (ii) of the lemma, at first under the additional 
hypothesis that lim A, = 0. We may then use (i), in the form 

B,x = (vB,x) (u + k(x)), (4.12) 

where 6,(x) -+ 0 as n -+ co. Let d, = oB,x, observing that 

A n+l = O(P - A,,,) B,x = A, - vA,+,B,,x = 41 - ‘~An+,(u + h(x))). 

Therefore 

A,, = fi (1 - 4(u + L,(x))) A, , 
k=2 

n > 2. (4.13) 

Since u > 0, (4.13) shows that A, decreases (for large enough rz) to a limit 
L > 0. Further L > 0 if and only if 

f W$& + 6k-,(x)) < a* 
k=2 

As u > 0, v > 0 and 6, + 0, this can occur if and only if C A, < co. But 
now (4.12) shows that B,x always has the limit Lu, which is non-zero if 
and Only if c Al, < co. 

Suppose finally that 0 < A, < P, and that lim Ak either fails to exist, or 
is nonzero. Then of course C A, = co, and we have to prove that B,,x -+ 0. 
We may choose a sequence of matrices AL such that 0 < A; < A, and in 
addition A; -+ 0, C A; = co. If Bh = n: (P - A;), then A; < A, gives 
BAcc > B,x > 0. But since (ii) has been proved for the sequence A; we have 
lim Bkx = 0 and hence lim B,x = 0. 

To complete the proof of Theorem 1 we write, using (4.6) 

where &(t) = E[J,-i(t)]. Now divide by p”, call M/p = P, and 
&(t)/p = A,(t). Finally let B,(t) = (P - A,) (P - A,-,) **. (P - A,). Then 

1 -fn(t) &a(t) (1 - t> 
7J * El -f P)l =vB,(t)(l -t)’ 

Then the hypotheses of Lemma 1 are all satisfied. (Note that one must use 
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(3.1) to verify that x = 1 - t has the property that B,(t) x # 0 for all n, 
when t # 1.) Thus part (i) of Lemma 1 gives 

lim ’ -fn(t) 
n+m 2, - [ 1 -f$)] = uy 

tEC-{l}. 

But in fact the convergence is uniform, in view of the remark following the 
estimate (4.11). If we use this estimate when t = 0, then it gives the uniform 
convergence in (3.3), since (4.11) is uniform in x and since we know from 
(4.5) that 0 < A,(t) < A,(O), for all 12 > 1 and t E C - {I). This completes 
the proof of Theorem 1. 

Theorem 2 is almost immediate. If 

A n @) = v . [l -ml 
P” ’ 

t E c, 

then by (2.6) and (4.6) 

A 
n+1 

(q = w - [l -.Lw _ vqj&>l 1 -.fnw 
Pn P 

n+1 G 4(t)- (4.14) 

Hence d,(t) decreases to a limit y(t) which is monotone and nonnegative 
on C, since each A,, has these properties. That proves (3.4), and (3.5) is 
obtained by combining (3.3) and (3.4). 

The probabilistic statement (3.6) follows from (3.5) with t = 0. For 
i = 0, (3.6) is trivial, and for i # 0 

~i[.G # O] = 1 - P&z, = O] = 1 - fi [f,,“(O)]“” 
v=l 

= 1 - [ 1 - pn l -p$(o’]i. (4.15) 

To obtain (3.6) from (3.5) it therefore suffices to prove the following. 

LEMMA 2. Let x(n) be a sequence in C with lim x(n) = x, and suppose that 
c,, > 0 with lim E, = 0. Then 

pi $ {I - [I - cnx(n)]“} = i - x. 
n 

The proof is immediate from (4.1) and (4.2), and the application of the 
lemma with E, = pn, x(n) = p-%(1 -fn(0)), and x = y(O) u, completes the 
proof of Theorem 2. 
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The proof of Theorem 3 will be conducted by the method of generating 
functions. For a fixed i E X - (0}, the generating functions of the probability 

measures in (3.7) are 

C P,[Z, = j] si - Pi[Zn = 0] 

g,(i, s) = ‘EX 
1 - P&z, = O] 

(4.16) 

Suppose now that we are able to show that there exists a real function g on C, 
such that 

iz g&, $4 = g(s), l<ol<k, (4.17) 

for each basis vector e, of X. Then call fn(s) = 1 - a(n), fn(0) = 1 - b(n), 
observe that a(n) --f 0 and b(n) + 0 by (3.2) and that (a(n)),/(b(n)), tends to 
1 - g(s). For any such pair of sequences in C it is easy to see that 

lim l - Cl - a(n)l” = lim i ’ u(n> 
n-m3 1 - [l - b(n)]” 

-= 
i - b(n) 

1 _ g(s) 

Thus (4.17) will imply that the generating functions g,(i, s) in (4.16) all have 

the same limit, independent of i. 
To prove (4.17) we require another fact concerning the cube C. 

LEMMA 3. Take a and b in C, with a > b, b < 1, and let 

1 -a 
r= min 2. 

I<vik 1 -bb, 

Then, for all j E X - {0), (1 - aj)/( 1 - bj) > Y. 

PROOF. It clearly suffices to prove the lemma when 1 - a = ~(1 - b), or 
a = 1 - r(1 - b). Then the lemma reduces to the inequality 

1 -r 2 [(l -r) 1 + rb]i - rbj. 

In terms of the function q(t) = ti, 

d(l - +> 1 + 4 d (1 - 4 ~(1) + v(b), b E C, 

which is obvious since 0 < r < 1 and v  is concave. 
This lemma will now be used to construct a sequence e(n), n > 0, of basis 

vectors in X, with the property that the sequence 
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is monotone nonincreasing in n, and therefore tends to a limit. The choice of 
e(n) from among the set {e, , e2 ,... ek} will depend on s E C, but that is 
immaterial since we shall hold s fixed. The Markov property gives, for any 
pair x, y in X - (O}, and 12 > I 

&+dY, 4 - &d% 4 = jE&o) P,[Zl =i I -G,l # 01 k&L 4 - &I(? 4) 
(4.18) 

Hence g,+i(y, S) - g,(x, s) < 0 provided x is chosen in such a way that 
gn(j, S) < g,(x, S) for all j E X - (0). A ccording to the definition of g, in 
(4.16) this will be true if 

and by Lemma 3 that can be achieved by choosing x = e(n) = e, , where 
v = a minimizes the ratio [I -fn,(s)]/[l -fn.Y(0)]. Now we are free to 
choose e(n + l), and inductively one obtains a sequence e(n) chosen from 
the basis vectors of X, such that 

(4.19) 

To prove (4.17) it suffices to show that the limits 

lim x ’ [l -fn(‘)l 1 _ g(s) 
n+mx*[l -fn(o)]- ’ 

s E c, (4.20) 

exist for an arbitrary x E C - (0). (W e recover (4.17) by taking a unit vector 
for x.) 

To obtain (4.20) from (4.19) decompose 

x * I1 -h(s)1 = x * [1 -.t&)l 2, * [1 -h(0)1 v * 11 -Ads>1 
x - [1 -fn(O)l w * [1 -MN x * [I -.M91 44 * [1 -fn(s)l 

x 44 * I.1 - h(O)1 44 * I3 - hi41 = A 
-27 * [l -.M0)1 44 * [1 -.tml 

B c D E n n n 11 ?l* 

In view of (3.3) we have A, --+x . u and B, -+ (x . u)-l so that A,B, tends 
to one as n + co. The sequences C, and D, need not converge separately, 
but since e(n) can only assume K distinct values one may still conclude 
from (3.3) that the products C,D,, tend to one. Finally En converges to 
1 -g(s) by (4.19). Therefore we have now also proved (4.17), which was 
shown to imply that all the generating functions in (4.16) converge to g(s), 
independent of i E X - (0). 
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At this point the continuity theorem for generating functions (a simple 

compactness argument) will complete the proof of (3.7) in Theorem 3, if 
one can show that g(1) = 1, and that g is continuous at the point 1 of C. 
That g(1) = 1 is obvious from its definition as the limit in (4.19). From 

(4.20), (4.6), and (4.5) 

= [l -g(t)] ii “,’ f;l--$+;;; = p[l -g(t)]. (4.21) 
n 

By iteration 

uzw = 1 - Pn* n > 1. (4.22) 

Now g is monotone on C in view of (4.20) and if t(n) -+ 1 in C we can use 
(3.2) and (3.3) to extract a subsequence k(n) such that K(n) -+ co, 

fkdo) G t(n), ~0 that by (4.22) 

1 - Pktn) = gLf?dn,Kw < &(41 < 1. 
Thus g is continuous at 1 and (3.7) holds. 

The continuity theorem implies that g(s) = 1 x(j) si. Therefore the mean 

vector m, defined in (3.8) is the gradient of g evaluated at 1. I f  m is finite we 
therefore have [l - g(x)]/m * (1 - x) -+ 1 as x--t I in C. Since v  > 0 it 
follows that 

lim ’ -g[fn(O)l < co 
fl- V’ [l -fn(0)] * 

(4.23) 

Conversely, if (4.23) holds, then for arbitrary 01, 1 < a! < K 

$w = lj+y l - A1 - 4 < c lim l - 4X0)1 < o. 
a E rz- ZJ - 11 -f?l(O)l 

for some C > 0, since for each n, 01, 1 - Ee, >fn(0) for sufficiently small E. 

Since g is concave it follows that m = gradg(1) is finite if and only if (4.23) 
holds. But in view of (4.22) and (3.4), (4.23) is equivalent to 

!E v * [l Cfn(0)] = jr&) < cos (4.24) 

which proves that m exists if and only if y  > 0. 
Suppose finally that m exists. Differentiation of (4.21) gives 
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and setting t = 1, this reduces to m&f = pm. Hence m is a positive multiple 

of the left eigenvector V. Finally (4.23) and (4.24) permit the evaluation 

m = y-k, since 

1 -g(x) 
1 =!+?gradg(l)*(l -3~) 

The proof of Theorem 3 is therefore complete. 

We proceed to Theorem 4. According to Theorem 2 

p-nv . [I - fn(0)] L y(0) = y a 0, 

and using the notation P = p-lM, E, = E[f&O)], A, = p-lEk, this 

becomes by (4.6) 

v(P - A,) (P - A,-,) .*a (P - A,) 1 ‘x Y 2 0. 

Therefore part (ii) of Lemma 1 asserts that y  > 0 if and only if C A, < co, 
so that 

Y>O $E,<co, En = KL491. 
1 

We can be a little more explicit, however. When y  > 0, then p+[l -fn(0)] 
converges to yu > 0, and hence there exists a scalar 0, 0 < 0 < 1, such that 
1 -fn-r(0) > pW for sufficiently large n, or &-i(O) < (1 - ~“0) 1. In view 
of the monotonic&y of E(t) (see (4.5)) this gives E[fnJO)] > E[(l - ~“0) l] 
for sufficiently large rz, so that 

y>O =. ‘$E[(I -pn8) I] < co forsome 0 (0 < 1. (4.25) 

If  on the other hand y  = 0, then pmn[l - fn(0)] -+ 0, and by a similar reason- 
ing as above 

y = 0 a 5 E[(l - $9) l] = 00 for some 0 < 0 < 1. (4.26) 
1 

The next step is to evaluate explicitly E(O1) for 0 < 0 < 1, using the defini- 
tion of E in (4.3) and (4.4). For fixed i E X - {0}, let 

Ii1 =il +i2 + ... +ik. 
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Then if t = 81, 

d5 
I 

=is[l - j:(l -.$s,l+ldt] 

=t al- - 
1 

1 - (1 - eyir 

Iill9 I 

= f$ ‘zl [i - (1 - e)q 
Y 0 

Consulting (4.3) and (4.4) one has 

il J%Nl - P”e> 11 = ,,~{oIPc%d~ [1 - (1 - PVI. (4.27) 

We also require the following estimate. 

LEMMAS. If~baconstant,0<~<1,and0<p<1,onecan$nd 
positive constants 01~ , 0~~ , 0~ , a4 , depending only on 0 and p, such that 

m m-1 
0p2 log m + 01~ < C C [l - (1 - epy] < %rn log m + or,m 

n=1 p-1 
(4.28) 

for all integers m > 1. 

PROOF. We decompose the sum on n into two sums, from 1 to [B logp] 
and from [B logp] + 1 to co, with a judicious choice of B > 0. Between 1 
and [B logp] we have, since B > 0, log p < 0 

b 

a6 Q 1 - exp [- epl--B-q < 1. - (1 - epy < 1 = % 

and between [B logp] + 1 and co, 

qppn d 1 - (1 - epn)* G oreppn, 

where as , olg , (Y, , and o[s are positive constants depending on A, p, and B. 
Hence the double sum S, in (4.28) satisfies 
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It follows that 
m-1 

S, < q&h log m + a9 zl ~l+~~Ogp, 

and if B is chosen sufficiently large (so that 1 + B log p < 0) we have 
S,, < CY~WZ log 1~ + cqn. The lower estimate is handled in exactly the same 
way. 

To prove the first half of Theorem 4, suppose that y  > 0. Then, combining 
(4.25) (4.27), and the first half of (4.28), we have 

for a certain pair of positive constants LYE , aB. This implies that 
E, ].Z, * 1 log (2, . l)] < co for each 01, and hence also the expectations of 
thg individual components in (3.10). T o p rove the other half of Theorem 4, 

suppose that y  = 0. Then again, (4.26) (4.27) and the second half of (4.28) 
yield 

and it follows that for each 01, at least one of the expectations E,a[Zl,a log ZIJ 
must be infinite. 

NOTE. It is remarkable that condition (3.10) plays a crucial role also in 
the theory of branching processes with k types and p > 1. It was shown by 

Kesten and Stigum [4] that Z,/p” then always converges with probability one 
to a random variable W, and that W # 0 if and only if condition (3.10) holds. 

Theorem 5 is a simple but probabilistically significant corollary of Theo- 

rems 2, 3, and 4. It states that when y  > 0, then the number among the 
original j particles whose descendants are not extinct at time n, has approxi- 
mately a Poisson distribution if j -+ co and n + co in the way described in 
Theorem 5. This explains why the limiting distribution obtained is compound 
Poisson, with respect to the measure x, which governs the number of particles 
conditioned by the fact that no extinction occurred. 

For the formal proof we write 

1 -fn.,(O) = PRY%[l + o(l)l, l<ol<k, n--+ cc, (4.29) 

and by Theorem 3 

fn.&) - fn.m 
1 -.fn,m = k?(s) [l + o(l)19 1 <LX<k, n-+ co, (4.30) 

for each s E C. We may representf,,, in the form 

409!19/3-2 
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which in view of (4.29) and (4.30) yields 

MS) = 1 - PW - g(J)1 u + P-q), n-+00, s E c. (4.31) 

LEMMA 5. Ifx(n) E C andj(n) E X, so that x(n) ---f 0 andj(n) - x(n) + 6 > 0 
asn+co, then 

$i+z [1 - x(7z)]j(“) = e-a. 

This lemma (whose proof is evident) permits the desired conclusion. Just 
let j = j(n), fn(s) = 1 - x(n), and 6 = A[1 -g(s)]. Then (4.31) combined 
with the hypotheses of Theorem 5 shows that x(n) -+ 0 and j(n) * x(n) ---f 6. 
Hence 

lim [fn(s)]i = lim 1 Pj[Z, = i] si = e-A[l-g(s)l, 
ioX 

s E c. (4.32) 

The continuity of g on C, established in the proof of Theorem 3, together 
with the fact that g( 1) = 1, p ermits the conclusion that Pj[Z, = ;] converges 
to a probability measure xa on X, whose generating function is given by 
(4.32). That completes the proof of Theorem 5. 

From now on we consider only processes with p = l,f(t) # Mt, such that 
the vector of quadratic forms q[ ] in (2.8) is finite. Theorem 6 will be seen 
to depend on a second order Taylor expansion analogous to the first order 
expansion in (4.1) through (4.6). Take p)(t), #(t) as defined in (4.1) and let 

Then 

W - W) = W) - 1 = [-$ dtt)] 
c=o 

+ 1’ (1 - 5) $ d&) d5 
0 

= - tl tY;v + 1: (1 - I) $ i b,k(&) dE 
l-1 

=-&+I:(1 -8; i t,t,~,,(&)d5 
l-1 v-l p=l 

= - 2 t,i, + f i t”tp[i”iC1 - 8(Y, p) i”] 
u=k “=I &l=l 

1 fi (1 - &)ir 
x s o(17-l@J(1 -@,)(’ -E)df- (4.33) 
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We now replace t by 1 - t, and just as in the derivation of (4.3) through 
(4.6) one sums with respect to the probability measure p, . The error terms 
will now be represented by a quadratic form valued vector eS[t] (for each 
s E C, e,J ] is a vector whose components are quadratic forms). We define 

i 1 .l 

x I2 I--I 

fil [l - 5(1 - 41ir 

I . 0 [l - [(l - S,)] [l - E(1 - %)I (l - 5) d5, * (4.34) 

Then (4.33), (2.8), and (4.34) give 

1 -f(t) = M(1 - t) - q[l - t] + e,[l - t], t E c. (4.35) 

(This representation is due to Mullikin [8], who obtained and used it in the 
more general setting of processes with infinitely many types.) Inpesction of 
(4.34) shows that 

0 G 4 1 G 4[ I, t<s-e,>e,, s, t E c, 

lii~ e, = 0. (4.36) 

(As indicated in the introduction, e, > S e means that the coefficients of the 
corresponding quadratic forms satisfy these inequalities.) 

We shall actually use a simplified version of (4.35) and (4.36) obtained 
by taking the inner product with the left eigenvector w. If Q and E, are 
quadratic forms defined by 

Q[tl = v * s[tlt -%[tl = u * e,[tl, (4.37) 

then (4.35) implies 

w .f(t) - w . t = Q[l - t] - E,[l - t], t E c, (4.38) 

and (4.36) becomes 

0 <-f-G <Q, t <saE,>E,, 

Es\ 0 as Sf 1. 

Now set (imitating the method of [9]) 

(4.39) 
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Simple algebraic manipulation of (4.38) and (4.40) gives 

- a(s) v - (1 - s) [(Y(s) - c(s)] 
w = e(s)l - v . (1 - s) [a(s) - E(S)] ’ SEC--(l). (4.41) 

Further we know from (4.39) and (4.40) that E(S) < a(s), SO that 

- 2(s) v * (1 - s) < E(S) - a(s) v * (1 - s) [a(s) - c(s)] < 6(s) < E(S), 

s E c. (4.42) 

Setting s = jh(t) in the expression for S(s) in (4.40) and summing K from 0 to 

71 - 1, gives (note that jo(t) = t) 

Using (4.42) we estimate 

t E c - {1}, 

As K + co, 1 -j&) ---f 0 by Theorem 1, and [I -jk(t)]/v * [I - jk(t)] -+ U, 
uniformly on C - (I) by Theorem 1. Thus 

uniformly on C - {1}, and in view of (4.39) 

4, co) 
1 -.fk@) 

v . (* -jk(t)) 1 -to, iFzas k-r 03, (4.45) 

uniformly on C - (1). This implies that S[jk(t)] -+ 0 uniformly, and so does 
the CCsaro average on the left in (4.43). By (4.44) and (4.45) applied to (4.43) 

we therefore have 

lim 
1 

1 
1 

- 1 
-q-v*[l 1 = - 12 v*(l -j&)] SC4 n- 

uniformly on C - {1}, which is the principal assertion (3.13) of Theorem 6. 
For the proof of (3.14), observe that (3.13) with t = 0 states that 

%?v - [1 - fn(O)l - Qiw, as PI + co. (Note that this limit is finite since 
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Q[u] > 0. This follows from the assumption that f(t) # Mt which implies 
that at least one component of Q[U] in (2.8) must be positive. Otherwise the 
total number of particles would be a constant.) Applying (3.3) of Theorem 1, 
we see that 

pi 71P&[Z, # O] = pi n[l -fn,JO)] = -!!K- ) 
mu] 

1 <a<k. (4.46) 

This is not quite (3.14), but it was shown in (4.15) and Lemma 2 how to 
conclude from (4.46) that 

Finally we sketch the proof of (3.15). (See [8] for the details.) As in the proof 
of Theorem 4, one easily shows that the limit in (3.15) is independent of i, 

provided that it exists. If i = e, , 

@) = (&‘~), e-(h~n),*a., e-w~)), hERk. 

Then the Laplace-Stieltje’s transform of the probability measure of n-lZ, , 
under the condition that Z,, = i = ecr , and Z, # 0, is given by 

(4.47) 

with x = e, . Next a simple computation, based on (3.13), (3.14), and (3.3) 
shows that for each x > 0, x f 0, 

But p?(h) is the Laplace Stieltje’s transform of the limiting probability measure 
on the right in (3.15). The continuity theorem therefore completes the proof 
of (3.15). 
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