
 Energy Procedia   61  ( 2014 )  1772 – 1775 

Available online at www.sciencedirect.com

ScienceDirect

1876-6102 © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Organizing Committee of ICAE2014
doi: 10.1016/j.egypro.2014.12.209 

The 6th International Conference on Applied Energy – ICAE2014 

Optimization of a phase adjuster in a thermo-acoustic stirling 
engine using response surface methodology 

P Yang, M Fang, Y.W Liu* 
Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong 

University, Xi’an , Shaanxi 710049, P R China 
 

Abstract 

In this study, we carried out the optimization of the structure of phase adjuster (PA) using response 
surface methodology (RSM). The influences of the PA position, its inner diameter and length on the 
resonance frequency, pressure amplitude and the onset temperature difference had been investigated. To 
improve the performance of the engine, the optimal parameters group was selected and also simulated by 
DeltaEC. The similar results verified the accuracy of the RSM. In addition, the performance of the 
thermo-acoustic Stirling engine without/with PA was compared. Results showed that optimized PA 
decreased the onset temperature difference and increased pressure amplitude. 
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1. Introduction 

The thermo-acoustic engine is a new type engine based on the interaction between the thermodynamic 
and acoustic phenomena. They shows great advantage and proposing prospect because of no moving parts, 
high reliability and environmental friendliness compared with the traditional heat engine. However, the 
efficiency of the thermo-acoustic engine is generally low, especially for the standing wave thermo-
acoustic engine. Although the traveling wave thermo-acoustic engine realizes the reversible cycle, the 
efficiency of heat-to-sound energy conversion is still low because of miscellaneous dissipations and some 
nonlinear effects. To improve the efficiency of thermo-acoustic conversion is crucial to extend 
commercial application of thermo-acoustic engines. 
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For this purpose, many strategies were proposed. Swift first presented the jet pump to suppress the 
sound direct current in the loop in a thermo-acoustic engine [1]. The working fluid would make an abrupt 
transition from large cross-sectional area to small one when flowing through the jet pump, which 
generated additional pressure drop to supress the sound direct current, thus improving the efficiency. 
Subsequently, Petculescu et.al investigated the nonlinear effect and minor loss of the jet pump and 
discussed the influence of different cone half-angles [2]. The jet pump acted as the rudiment of phase  
adjuster (PA). Recently, Sakamoto et.al introduced a PA in the Loop-Tube-Type thermo-acoustic system 
[3]. They found PA decreased the onset temperature difference and increased the acoutic intensity.  

Inspired by Swift and Sakamoto, we introduced a PA in the loop of a thermo-acoustic Stirling engine. 
Referring to the RMS introduced by Hariharan [4], we carried out the optimization of PA geometry. The 
major parameters of PA influencing the performance of the engine includes the position of PA, its inner 
diameter and length. Optimal parameters were also simulated by DeltaEC [5] and the performance with 
two different methods was compared. 

2. Mathematical modeling of the thermo-acoustic Stirling engine with a PA 
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Figure 1 (a) The schematic illustration of the thermo-acoustic Stirling engine with a PA and (b) its 
DeltaEC’s schematic view 

 A PA was introduced in the loop of thermo-acoustic Stirling engine to improve the heat-to-sound 
energy conversion efficiency. The Stirling engine with the PA is illustrated in Figure 1(a). PA narrows the 
cross-sectional area of the part of the loop tube presented by a grey round. DeltaEC was used to simulate 
the performance of the Stirling engine with PA. Figure 1(b) presents the DeltaEC’s model of the Stirling 
engine with PA. The shadow zone in Figure 1(a) and the part 2 in Figure 1(b) with sudden change of 
cross section both represent PA. The position of PA was measured by the distance away from the main 
ambient heat exchanger represented by the length of the tube 2 in Figure 1(b). 

Helium gas was used as the working gas and charge pressure was 3.0 MPa. Three factors of PA (the 
position of PA, inner diameter of PA and the length of PA) were used and coded by A, B and C varying 
between -1 and 1. The range of variables was carefully chosen to include all parameters spaces to obtain 
good fitting formulas. The selected range and variables are listed in Table 1. 

Table 1. Levels of variables in Box-Behnken Design (BBD) 

Variables 

(m) 

Ranges and levels 

-1 0 1 

A: Position of PA 0.02 0.42 0.82 

B: Inner diameter of PA 0.03 0.06 0.09 

C: Length of PA 0.02 0.07 0.12 
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3. Results and discussions 

The RSM is an empirical approach used for modeling and optimization of processes in which a 
response of interest is influenced by several variables. The RSM combines mathematical and statistical 
techniques, which is suitable to identify the correlation between various design parameters and responses 
and their coupled impacts. 

As Table 1 shown, the variables are designated as -1, 0 and 1, with being lowest, middle and largest. 
According to the arrangement of test point in BBD, the results were grouped into the matrix form with the 
factors and the responses. The experimental design matrix and corresponding results are presented in 
Table 2. 

Table 2. Design of experimental martix 

Run 

Factors Responses 

Position of PA 
(m) 

Inner diameter 
of PA 
(m) 

Length of PA 
(m) 

Resonant 
frequency 

(Hz) 

Pressure 
amplitude 

(KPa) 

Onset temperature 
difference 

(K) 
1 0.02 0.03 0.07 62.457 238.290 357 

2 0.82 0.03 0.07 61.463 227.530 442 

3 0.02 0.09 0.07 61.911 236.000 361 

4 0.82 0.09 0.07 61.871 235.660 363 

5 0.02 0.06 0.02 61.885 235.930 362 

6 0.82 0.06 0.02 61.829 235.430 365 

7 0.02 0.06 0.12 62.637 238.520 350 

8 0.82 0.06 0.12 62.268 235.180 369 

9 0.42 0.03 0.02 61.869 235.190 368.5 

10 0.42 0.09 0.02 61.783 235.560 363.5 

11 0.42 0.03 0.12 62.487 233.610 398 

12 0.42 0.09 0.12 62.014 236.160 360.5 

13 0.42 0.06 0.07 62.199 236.450 360 

14 0.42 0.06 0.07 62.199 236.450 360 

15 0.42 0.06 0.07 62.199 236.450 360 

 
In order to use the low grade energy and improve the heat-to-sound energy conversion efficiency, the 

onset temperature difference should be low and the pressure amplitude should be high. According to this 
principle, we optimize the PA geometry by the RSM. To verify the accuracy of the RSM, the optimal 
parameters group was obtained and simulated by DeltaEC. The comparison of results by the RSM and 
DeltaEC is shown in Table 3. 

Table 3. Comparison of the RSM and DeltaEC 

Optimal parameters (m) Responses RSM DeltaEC Without PA 

A:Position of PA=0.02 Resonant frequency (Hz) 62.64 62.78 61.74 

B:Inner diameter of PA=0.05 Pressure amplitude (KPa) 239.157 239.130 235.430 

C:Length of PA=0.12 Onset temperature difference (K) 350 349 364 
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By comparing the RSM with DeltaEC, we could conclude that the responses are similar under the 
condition of the optimal parameters group. The errors of the resonant frequency, pressure amplitude and 
onset temperature difference were 1.6%, 0.09%, and 0.3%, which indicated the validity of the RSM. The 
thermo-acoustic Stirling engine without PA was also simulated by DeltaEC and presented in the far right 
column of Table. Compared the results of the engine without/with PA, resonant frequency has a slight 
change. Pressure amplitude increases to 239.157KPa from 235.430KPa, and onset temperature difference 
decreases from 364K to 349K. This indicated that PA decreased the onset temperature difference and 
increased pressure amplitude. 

4. Conclusions 

To investigate the impact of PA on the performance of a thermo-acoustic engine, a successful 
mathematical model has been developed by RSM. The optimal parameters group of PA were selected and 
also simulated by DeltaEC. Compared the results of two methods, the accuracy of the RSM was verified. 
In addition, Performance of the thermo-acoustic Stirling engine without and with PA was compared. 
Results showed that PA decreased the onset temperature difference and increased pressure amplitude, 
which was helpful to use low-grade energy and improve the efficiency of thermo-acoustic conversion. 
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