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Generalised CP transformations are the only known framework which allows to predict Majorana 
phases in a flavour model purely from symmetry. For the first time generalised CP transformations are 
investigated for an infinite series of finite groups, �(6n2) = (Zn × Zn) � S3. In direct models the mixing 
angles and Dirac CP phase are solely predicted from symmetry. The �(6n2) flavour symmetry provides 
many examples of viable predictions for mixing angles. For all groups the mixing matrix has a trimaximal 
middle column and the Dirac CP phase is 0 or π . The Majorana phases are predicted from residual flavour 
and CP symmetries where α21 can take several discrete values for each n and the Majorana phase α31
is a multiple of π . We discuss constraints on the groups and CP transformations from measurements of 
the neutrino mixing angles and from neutrinoless double-beta decay and find that predictions for mixing 
angles and all phases are accessible to experiments in the near future.
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1. Introduction

The question of the origin of neutrino masses and mixing parameters is of fundamental importance. One approach is so-called direct 
models of neutrino masses [1] where a discrete non-Abelian family symmetry group is broken to a Z2 × Z2 group in the Neutrino sector, 
and a Z3 subgroup in the charged lepton sector. In such a model the lepton mixing angles and the lepton Dirac CP phase are completely 
fixed by symmetry.

Recently such direct models have been analysed with the help of the group database GAP [2,3]. The only flavour groups that can 
produce viable mixing parameters in a direct model belong to the group series �(6n2) or are subgroups of such groups. The group theory 
of �(6n2) groups has been analysed in [4]. The consequences for neutrino mixing from a �(6n2) flavour symmetry in direct models have 
been studied in detail in [5] for arbitrary even n. Some examples of �(6n2) groups or subgroups have previously been studied in [6–14].

In the Standard Model, violation of CP occurs in the flavour sector. Promoting CP to a symmetry at high energies which is then 
broken allows to impose further constraints on mass matrices of charged leptons and Majorana neutrinos. In this case the interplay 
between CP and flavour symmetries has to be carefully discussed [15–29]. For direct models, especially with a flavour group from �(6n2), 
CP symmetries have not been studied in detail yet.

In this paper we examine a class of generalised CP (gCP) transformations consistent with �(6n2) groups for arbitrary n. We start by 
defining flavour and generalised CP transformations and stating their effect on mass matrices. In the following section we review and 
develop the general theory of gCP transformations in the presence of flavour symmetries in a general context. Afterwards we specialise 
on direct models with �(6n2) as a flavour group, where we compute the lepton mixing matrix including Majorana phases for arbitrary 
even n for all possible breaking patterns of the flavour group and of gCP. Here we also analyse the constraints from measurements of the 
mixing angles and from neutrinoless double-beta-decay on these models. In the last section we conclude.
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2. Generalised CP transformations, flavour symmetries, automorphisms and the character table

In this section we review the interplay between flavour symmetries and CP symmetries which has especially been discussed in [15,18,
20,22,25] and use general arguments to show that for a class of groups G , of which G = �(6n2) is an example, physical CP transformations 
correspond to Xr ∈ eiαG with α a real number.

2.1. Generalised CP transformations and flavour symmetries

Consider a theory where generations of fermions are assigned to multiplets of representations r of a flavour group G and that is 
invariant under transformations of the multiplets ϕr under the group G

ϕr �→ ρr(g)ϕr (1)

where ρr(g) is the representation matrix for g ∈ G in the representation r.
Further consider the group G being broken to a Klein subgroup Gν � Z2 × Z2 subgroup in the neutrino sector and an abelian subgroup 

Ge � Zm with m > 2 in the charged lepton sector. If these subgroups remain unbroken at all energies, in the low-energy-limit constraints 
on the mass matrices of charged leptons and neutrinos are imposed. Left-handed doublets transform under the same representation r. The 
charged lepton mass matrix Me has to fulfill

ρr(g)†Me(Me)†
ρr(g) = Me(Me)†

(2)

with ρr(g) being the representation matrix of g ∈ Ge in the representation r. The Majorana neutrino mass matrix is constrained by

ρr(g)T Mνρr(g) = Mν (3)

with g ∈ Gν .
Define generalised CP (gCP) by

ϕr �→ Xr
(
ϕ∗

r

(
xP ))

(4)

where r is the representation of G according to which ϕr transforms.1 Xr is a unitary matrix. We need to find all matrices Xr that are 
“allowed” in coexistence with a flavour group G . The aforesaid will be made a more precise statement in the following section, where the 
conditions for the existence of gCP transformations as well as their properties will be discussed.

If the theory at the low-energy end is invariant under residual gCP transformations with matrices Xe
r for charged leptons and Xν

r for 
neutrinos then the mass matrices will be constrained by

Xe†
r Me(Me)†

Xe
r = (

Me)∗(
Me)T

(5)

for charged leptons and by

XνT
r Mν Xν

r = (
Mν

)∗
(6)

for Majorana neutrinos.
If Xν

r ∈ Gν (Xe
r ∈ Ge), no new constraints on the neutrino (charged lepton) mass matrix follow but it being real. With g, h ∈ (Z2 × Z2)

from ρr(g)Xrρr(h) only the same constraints as for Xr follow for the mass matrix. This means only Xr that are not in (Z2 × Z2) allow for 
a mass matrix that is not real and at the same time impose new constraints on it.

2.2. The consistency equation

We would like to know which transformations of the type

ϕr �→ Xrϕ
∗
r

(
xP )

(7)

can be applied to the theory without destroying the invariance under G , i.e. which matrices Xr can appear in Eq. (7) that preserve symme-
try under G? Consider performing a gCP transformation followed by a flavour transformation followed by the inverse gCP transformation. 
From invariance of the theory under G follows that the matrix Xr is allowed in a gCP transformation if for every g ∈ G there is a g′ ∈ G
such that

Xrρ
∗
r (g)X†

r = ρr
(

g′). (8)

Eq. (8) is called the consistency equation and an Xr that fulfills it is called consistent with G .
If r is a faithful representation, which is equivalent to saying that ρr is injective, one can define a bijective mapping u X : G → G

between the elements of the group:

u X (g) := ρ−1
r

(
Xrρ

∗
r (g)X†

r
)
. (9)

(One can drop the index r on u Xr because for all faithful irreps the mapping generated by Eq. (9) will be the same.) For faithful represen-
tations r, u X (g) is an automorphism of the group G .

1 Other authors consider transformations of the type ϕr �→ ϕ∗
r′ where r, r′ can be different. In [15] has been shown that only gCP transformations where r = r′ actually 

make observables (e.g. particle decays) conserve CP.
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2.3. Inner and outer automorphisms

Group automorphisms come in two kinds: Inner and outer automorphisms. Inner automorphisms Inn(G) are such automorphisms 
u : G → G where for all g ∈ G one single group element hu exists such that

u(g) = h−1
u ghu . (10)

All inner automorphisms are given by Inn(G) = G/Z(G), where Z(G) is the center of G , i.e. all elements of G that commute with every 
other group element. Outer automorphisms Out(G) are all automorphisms that are not inner.

An inner automorphism will map each element into its original conjugacy class. An outer automorphism however is not inner which 
means that there is at least one g′ ∈ G for which with all h ∈ G u(g) �= h−1 g′h (compare with the definition of inner automorphisms 
before Eq. (10)), i.e. there is at least one g′ ∈ G which is not mapped back into its original conjugacy class. Also if g is in the class Ck and 
it is mapped onto u(g) which is in the class Cl , every element in Ck is mapped on an element in Cl by u.

This proves also that an automorphism that maps each element back into its original conjugacy class is inner, as well that an automor-
phism that maps elements from at least two conjugacy classes on each other is outer.2

We will now return to the automorphism u X (9) that is induced by the consistency equation (8). If ρr(g) is real and Xr ∈ G then u X

will be an inner automorphism. This is also true if Xr ∈ eiαG .
If, on the other hand, u is an outer automorphism it follows that a matrix Xr that could mediate u á la Eq. (9) is not in eiαG (if it 

exists).
One could ask now if there can be a matrix X̃r that is not in eiαG for that u X̃ only connects elements within the same conjugacy class, 

i.e. that generates an inner automorphism? As for an inner automorphism u there always is a single hu ∈ G such that the automorphism 
is given by u(g) = h−1

u ghu it follows that

X̃rρ
∗
r (gk) X̃†

r = ρr(hu)ρr(gk)ρr
(
h−1

u

)
. (16)

For a real matrix ρr(g) multiplying by X̃r from the right and by ρr(h−1
u ) from the left yields

ρr
(
h−1

u

)
X̃rρr(gk) = ρr(gk)ρ

(
h−1

u

)
X̃r . (17)

As gk can be every element of G , ρr(h−1
u ) X̃r commutes with every group element. One can now apply Schur’s Lemma3 to find that

X̃r = λρr(hu) (18)

where |λ| = 1 to keep X̃r unitary. As X̃r was supposed to not be in eiαG this is in contradiction to the assumptions. For real ρr(g) this 
proves that inner automorphisms correspond to X ∈ eiαG . For real representations, there is always a basis where this is the case, i.e. where 
ρr(g) is real for every g ∈ G .

If ρr(g) is complex one has to deal with complex conjugation: Assume there is a matrix wr such that by applying complex conjugation 
and this matrix on an element of G , the element is mapped into the class of its inverse, C(g−1):

ρr(g) �→ w†
rρr(g)∗wr ∈ C

(
g−1). (19)

This can be thought of as an automorphism mapping g �→ g−1 followed by an automorphism that maps g−1 onto another element in 
the same class. As in the second step every element is sent into the original class, this second mapping is an inner automorphism and 
therefore by definition a single group element h exists which inverts this step such that

2 An outer automorphism u also generates mappings between different representations of G . For two representations ρr and ρs define

usr = ρs ◦ u ◦ ρ−1
r (11)

with which follows

(usr ◦ ρr)(g) = ρs
(
u(g)

)
. (12)

The outer automorphism u acting inside the group thus interchanges columns of the character table while when acting between representations via usr interchanges 
rows of the character table. We call a symmetry of the character table

χ jk = trρ j(gk), gk ∈ Ck (13)

any transformation of the type

χ jk �→ Pijχkl Q kl (14)

with permutation matrices P and Q that leaves χ invariant, i.e.

Pijχkl Q kl = χi j (15)

and where only classes of the same size and element-order are interchanged, i.e. |Cl| = |C j | and ord gl = ord g j for gl ∈ Cl and g j ∈ C j . An outer automorphism will always 
generate a non-trivial symmetry of the character table, just as a symmetry of the character table always gives rise to an outer automorphism: Define the automorphism by 
the action on the conjugacy classes, a corresponding permutation of the representations is always given by any outer automorphism via usr .

3 To be precise one uses the second part of Schur’s Lemma which states that an operator that in some representation commutes with every group element is proportional 
to the identity.
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ρr(h)†(w†
rρr(g)∗wr

)
ρr(h) = g−1. (20)

For this reason we assume in the following that the matrix wr maps elements directly onto their inverses. Using this, the general mapping 
induced by the consistency equation is given by:

u X (g) = ρ−1
r

(
Xr wrρr

(
g−1)w†

r X†
r
)
. (21)

This mapping can be seen as an automorphism mapping g on g−1 followed by an automorphism given by Xr wr :

u X (g) = u X w
(

g−1). (22)

If both wr and Xr are contained in eiαG , u X will map g in the same conjugacy class as g−1. For �(6n2), wr = ρr(b) maps elements into 
the class of the inverse and is contained in the group. We will not consider wr /∈ G further.

Analogous to real irreps above one can now ask if there can be matrices X̃r that are not in eiαG but that with wr ∈ eiαG will map g
in the conjugacy class of g−1? This would be equivalent to u X̃ w being an inner automorphism which would mean that for each group 
element g ∈ G there is a single hu ∈ G such that

ρr(hu)ρr
(

g−1)ρr
(
h−1

u

) = Xr wrρr
(

g−1)w†
r X†

r . (23)

Again we can use Schur’s Lemma and find there is λ ∈ C \ {0} such that

Xr = λρr(hu)w†
r (24)

with |λ| = 1 to make Xr unitary. This contradicts Xr /∈ eiαG . We have proved now that if wr ∈ eiαG then if and only if X ∈ eiαG u X (g) will 
be in the conjugacy class of g−1. In [15] the authors show that only gCP transformations that map elements into the class of its inverse 
element make observables conserve CP. We have proved here that such transformations are given by Xr ∈ eiαG .4 In the following we will 
specialise G to be �(6n2).

3. gCP symmetries and �(6n2) groups

In this section we consider gCP transformations where X ∈ eiαG for G = �(6n2). First we derive the gCP transformations that are 
consistent with Gν = Z2 × Z2 and G2 = Z3. Afterwards we state the constrained mass matrices and the lepton mixing matrix. After this 
we discuss constraints from measurements of lepton mixing angles and from neutrinoless double-beta decay for arbitrary n.

If we want to break the flavour symmetry to Gν = Z2 × Z2 and Ge = Z3 subgroups, the residual flavour and residual gCP transformations 
are not independent, as they still have to fulfill the consistency equation. If e.g. in one sector ρr(g) and Xr are unbroken, then also 
Xrρr(g)∗ X†

r must be unbroken. Thus the allowed residual gCP transformations have to map elements from the Klein group in consideration 
into said Klein group.

The Klein subgroups of �(6n2) are given by [5]{
1, cn/2,dn/2, cn/2dn/2}, (25){
1, cn/2,abcγ ,abcγ +n/2}, (26){
1,dn/2,a2bdδ,a2bdδ+n/2}, (27){
1, cn/2dn/2,bcεdε,bcε−n/2dε−n/2}, (28)

where γ , δ, ε = 1, . . . , n/2. The group Eq. (25) will produce a mixing matrix with |V ij | = 1/
√

3, we will not consider it further. The bottom 
three Klein subgroups will generate the same mixing matrix, thus it is sufficient to only consider the mixing matrices generated by group 
Eq. (26). The allowed matrices Xr in the low-energy-limit have to be contained in eiαGϕ . A matrix Xr is allowed if for a Klein subgroup K
holds that for each g ∈ K also u(g) ∈ K . For said Klein subgroup K = {1, cn/2, abcγ , abcγ +n/2} one finds that the allowed matrices X ∈ eiαG
are given by the representation matrices for

Xr = ρr
(
eiαcxd2x+2γ

)
,ρr

(
eiαcxd2γ +2x+n/2),ρr

(
eiαabcxd2x),ρr

(
eiαabcxd2x+n/2) (29)

with α ∈R and x = 0, . . . , n − 1.
Without loss of generality, left-handed doublets (νL , eL)

T are assigned to the representation 31
2 (cf. [5]). Invariance of the mass matrix 

under the Klein subgroup in consideration plus invariance under one of the transformations from Eq. (29) constrains the Majorana neutrino 
mass matrix to

Mν =
⎛
⎝ |m22|e2iπ γ

n eiϕ1 |m21|eiϕ1 0
|m21|eiϕ1 |m22|e−2iπ γ

n eiϕ1 0
0 0 |m33|eiϕ3

⎞
⎠ (30)

where the values of ϕ1 and ϕ3 can be found in Table 1. In principle, several gCP transformations can remain unbroken. However, the 
phases ϕ1, ϕ3 are already fixed by one single unbroken transformation. Leaving a second gCP transformation unbroken with incompat-
ible constraints on the phase ϕi will force the corresponding mass parameters |m..| to be zero. The masses of neutrinos are |m33| and 
||m21| ± |m22||. Thus |m21| = 0 or |m22| = 0 will result in a pair of degenerate neutrino states. It is not possible to have |m33| = 0 without 
|m21| = 0 or |m22| = 0. Leaving a second gCP transformation unbroken is never physically viable. The neutrino mass matrix Eq. (30) will 

4 We would now be able to find all Xr /∈ eiα G by reading off all automorphisms from the symmetries of the character table that do not map the class of g on the class 
of g−1. (This would often contain the identity transformation on the character table.)
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Table 1
Values of ϕ1 and ϕ3 for gCP transformations consistent with the residual Klein symmetry.

Xr ϕ1 ϕ3

ρr(eiαcxd2x+2γ ) −α − 2π(γ + x)/n −α + 4π(γ + x)/n
ρr(eiαcxd2γ+2x+n/2) −α − π/2 − 2π(γ + x)/n −α + π + 4π(γ + x)/n
ρr(eiαabcxd2x) −α − 2πx/n −α + 4πx/n
ρr(eiαabcxd2x+n/2) −α − π/2 − 2πx/n −α + π + 4πx/n

be diagonalised by a unitary matrix Uν via U T
ν MνUν = M̃ν , where M̃ν is the diagonalised and positive neutrino mass matrix. A matrix Uν

such that the diagonalised mass matrix is real and positive is given by

U (+)
ν =

⎛
⎜⎜⎜⎝

− ei(− πγ
n − ϕ1

2 )√
2

ei(− πγ
n − ϕ1

2 )√
2

0

ei(
πγ

n − ϕ1
2 )√

2
ei(

πγ
n − ϕ1

2 )√
2

0

0 0 e− iϕ3
2

⎞
⎟⎟⎟⎠ (31)

for |m21| < |m22|, yielding M̃ν = diag(|m22| − |m21|, |m22| + |m21|, |m33|) and by

U (−)
ν =

⎛
⎜⎜⎜⎝

− ei(
−πγ

n − ϕ1
2 + π

2 )√
2

ei(− πγ
n − ϕ1

2 )√
2

0

ei(
πγ

n − ϕ1
2 + π

2 )√
2

ei(
πγ

n − ϕ1
2 )√

2
0

0 0 e− iϕ3
2

⎞
⎟⎟⎟⎠ (32)

for |m21| > |m22|, yielding M̃ν = diag(|m21| − |m22|, |m22| + |m21|, |m33|).
For charged leptons, the allowed gCP transformations with Xr ∈ eiαG have to be consistent with Ge = {1, a, a2} and are given by

Xr = c yd−y,ac yd−y,a2c yd−y,bc yd−y,abc yd−y,a2c yd−y (33)

where 3y = 0 mod n. Especially when 3 divides n there is a huge number of allowed X matrices. But, as the charged lepton mass matrix 
is already invariant under transformations with a and transformations with c yd−y force it to be zero (for 3y �= 0 mod n) or produce no 
new constraint (for 3y = 0 mod n), the only transformations that produce physical constraints are given by

Xr = ρr(1),ρr(b). (34)

For Xr = ρr(1) the mass matrix of charged leptons is restrained to

Ml1M†
l1 =

⎛
⎝me

3 me
1 me

2

me
2 me

3 me
1

me
1 me

2 me
3

⎞
⎠ (35)

with all parameters being real or for Xr = ρr(b) to

Mlb M†
lb =

⎛
⎝ me

3 me
1 (me

1)
∗

(me
1)

∗ me
3 me

1

me
1 (me

1)
∗ me

3

⎞
⎠ (36)

with me
1 complex and me

3 real. Both charged lepton mass matrices can be diagonalised via U †
e Ml M

†
l Ue = M̃2

l (where M̃l is the diagonalised 
charged lepton mass matrix) by (with ω = e2π i/3)

Ue = 1√
3

( 1 1 1
ω ω2 1
ω2 ω 1

)
. (37)

Above charged lepton mass matrices only differ by unphysical phases which can be absorbed into the charged lepton fields.
The physical mixing matrix5 will be U±

PMNS = U †
eU (±)

ν with unphysical phases removed and columns and rows put into a specific order, 
e.g. like in the PDG convention. Before interchanging columns and rows and removing unphysical phases, the mixing matrix will be

U±
PMNS =

⎛
⎜⎜⎜⎜⎜⎝

−[i]
√

2
3 e

1
6 i(π−3ϕ1) cos(π(

γ
n + 1

6 )) −
√

2
3 e

2iπ
3 − iϕ1

2 sin(π(
γ
n + 1

6 )) e
2iπ

3 − iϕ3
2√

3

[i]
√

2
3 e

5iπ
6 − iϕ1

2 cos(π(
γ
n − 1

6 )) −i
√

2
3 e− 1

6 i(3ϕ1+π) sin(π(
γ
n − 1

6 )) − e
iπ
3 − iϕ3

2√
3

[i]i
√

2
3 e− iϕ1

2 sin(
πγ

n )

√
2
3 e− iϕ1

2 cos(πγ
n ) e− iϕ3

2√
3

⎞
⎟⎟⎟⎟⎟⎠ , (38)

5 We adopt the conventions that Uν and Ue are active transformations and furthermore the left-right convention for the charged lepton mass matrix, i.e. the mass term 
is ēL MleR + h.c. This means that the fields transform as νL → UννL and eL → UeeL . As we extract the PMNS matrix from the term W ēν , the physical mixing matrix is 
UPMNS = U †

e Uν .



S.F. King, T. Neder / Physics Letters B 736 (2014) 308–316 313
Table 2
Values of the Dirac CP phase after reordering for different values of γ /n in U±

PMNS. In each row, γ /n can take 
arbitrary values in the interval indicated. U ′ denotes the matrix after reordering.

γ /n U ′
13 U ′

23 δCP

1/2 . . . 1/2 + 1/6 U33 U13 π
U33 U23 0

1/2 + 1/6 . . . 1/2 + 2/6 U33 U13 0
U33 U23 π

1/2 + 2/6 . . . 1/2 + 3/6 U13 U23 π
U13 U33 0

where the additional factor of [i] only appears for U (−)
ν .

Rows of this matrix can be arbitrarily interchanged as there are no constraints on the ordering of the charged lepton masses in the 
diagonalised charged lepton mass matrix. As the ordering of the mixing matrix is nearly arbitrary at this point, we would like to fix it by 
requiring that the smallest entry of the matrix has to be the top-right entry, i.e. U13. The first and second column cannot be interchanged 
as the neutrino corresponding to the second column has to be heavier than the neutrino that corresponds to the first column. Reordering 
the rows and interchanging the second and third column, and removing an overall phase of [i]ie− iϕ1

2 as well as phases on the second and 
third row, which are absorbed into the charged lepton fields, as well as shifting γ → γ + n/2 which then takes values n/2, . . . , n to make 
the matrix look similar to the one given in [5] yields

U±
PMNS =

⎛
⎜⎜⎜⎜⎝

√
2
3 cos(πγ

n ) [i]ie 1
2 i(ϕ1−ϕ3)

√
3

[i]i
√

2
3 sin(

πγ
n )

−
√

2
3 sin(π(

γ
n + 1

6 )) [i]ie 1
2 i(ϕ1−ϕ3)

√
3

[i]i
√

2
3 cos(π(

γ
n + 1

6 ))√
2
3 sin(π( 1

6 − γ
n )) −[i]ie 1

2 i(ϕ1−ϕ3)

√
3

[i]i
√

2
3 cos(π( 1

6 − γ
n ))

⎞
⎟⎟⎟⎟⎠ . (39)

As this matrix is now in the PDG convention, the values of Majorana phases α21 and α31 as well as the Dirac CP phase δCP for this 
ordering of the mixing matrix can be read off the matrix. Recall that the PDG convention is UPMNS = R23U13 R12 P in terms of si j = sin(θi j), 
ci j = cos(θi j), the Dirac CP violating phase δCP is contained in U13 and further Majorana phases are contained in P = diag(1, ei

α21
2 , ei

α31
2 ). 

The ordering of the rows is still arbitrary and has to be adjusted for different values of γ /n. The new second and third row can still 
be interchanged, which will lead to different values of θ23 and the Dirac-CP phase, while the Majorana phases will be independent of 
the order of the rows. In Table 2 the values of the Dirac CP phase for different values of γ /n can be found. There, U ′

13 and U ′
23 denote 

the elements of the mixing matrix after reordering in terms of elements of Eq. (39). δCP will have the same value for U (+)
PMNS and U (−)

PMNS. 
The Majorana phase α21 is then given by

α
(+)
21 = ϕ1 − ϕ3 + π for U (+)

PMNS (40)

and

α
(−)
21 = ϕ1 − ϕ3 for U (−)

PMNS. (41)

With Table 1, but now including shifting γ → γ + n/2 follows that for U (+)
PMNS

α
(+)
21 = ϕ1 − ϕ3 + π = −6π(γ + x)

n
for X = cxd2x+2γ ,abcxd2x (42)

or

α
(+)
21 = ϕ1 − ϕ3 + π = −3π

2
− 6π(γ + x)

n
for X = cxd2x+2γ +n/2,abcxd2x+n/2 (43)

and for U (−)
PMNS

α
(−)
21 = ϕ1 − ϕ3 = −6π(γ + x)

n
+ π for X = cxd2x+2γ ,abcxd2x (44)

or

α
(−)
21 = ϕ1 − ϕ3 = −π

2
− 6π(γ + x)

n
for X = cxd2x+2γ +n/2,abcxd2x+n/2. (45)

The Majorana phase α31 is π for U (+) and 0 for U (−) . The Dirac CP phase is hence predicted to be 0 or π , and since the lepton mixing 
matrix has the tri-maximal form for the second column, referred to as TM2, this leads to the mixing sum rules θ23 = 45◦ ∓ θ13/

√
2 for 

δCP = 0, π , respectively, as previously noted in [5] (for a review of sum rules see [1]). Improved measurements of θ23 will constrain the 
freedom of interchanging the second and third row.

The key observable for Majorana phases is neutrino-less double beta decay (0νββ). The effective mass of neutrinoless double-beta 
decay is given by

|mee| =
∣∣∣∣2

m1 cos2
(

πγ
)

+ 1
m2eiα21 + 2

m3 sin2
(

πγ
)

ei(α31−2δ)

∣∣∣∣ (46)

3 n 3 3 n
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with

m1 = ml, m2 =
√

m2
l + �m2

21, m3 =
√

m2
l + �m2

31 (47)

for normal ordering and

m1 =
√

m2
l + �m2

31, m2 =
√

m2
l + �m2

21 + �m2
31, m3 = ml (48)

for inverted ordering, where ml is the mass of the lightest neutrino. This form of Eq. (46) corresponds to γ /n = 5/6, . . . , 1. Changing γ /n
by multiples of 1/6 would make it necessary to use different elements of Eq. (39) in Eq. (46), cf. Table 2. However, this would result 
in the same absolute values of the mixing matrix elements involved in Eq. (46) and would only change the Majorana phase α21 by 2π , 
while α31 and the Dirac CP do not depend on γ /n. Now define

ᾱ21 = α
(±)
21 + 6π

γ + x

n
, ᾱ31 = α31 − 2δ. (49)

Using Eqs. (42)–(45) the possible values ᾱ21 can take (modulo 2π ) are

ᾱ21 = 0,π/2 for U (+)
PMNS (50)

or

ᾱ21 = π,3π/2 for U (−)
PMNS (51)

while ᾱ31 = π can be 0 or π , thus there are 8 possible values for (ᾱ21, ᾱ31) that are given by

(ᾱ21, ᾱ31) = (0,0), (π/2,0), (π,0), (3π/2,0), (0,π), (π/2,π), (π,π), (3π/2,π). (52)

The by far most stringent constraint on γ /n comes from the measurement of θ13. The current 3 sigma range for θ13 from [30] yields 
values of γ /n in the range 0.9373 . . . 0.9540.

In order to understand predictions of �(6n2) groups for 0νββ decay on a general level, in Fig. 1 the effective mass |mee| of 0νββ is 
plotted against the mass of the lightest neutrino ml for all combinations of ᾱ21 and ᾱ31. In these plots, models defined by some values 
of γ /n and x/n correspond to single fine lines. γ /n takes 11 values, starting with the 3 sigma lower bound and increases in 10 equal 
steps until it reaches the 3 sigma upper bound. x/n takes values 0, 0.1, 0.2, . . . , 1.

�m2
21 and �m2

31 are not varied, as doing so only would almost unnoticeably broaden each single line. Instead we used the best fit 
value from [30]:

�m2
21 = 7.54 × 10−5 eV2, (53)

�m2
31 = 2.41 × 10−3 eV2. (54)

In Fig. 1, Magenta lines correspond to predictions assuming inverted hierarchy, red lines to normal hierarchy. Dashed blue and yellow 
lines indicate the currently allowed three sigma region for normal and inverted hierarchy, respectively. The three sigma ranges for mixing 
angles are taken from [30]. The upper bound |mee | < 0.140 eV is given from measurements by the EXO-200 experiment [31]. Planck data 
in combination with other CMB and BAO measurements [32] provides a limit on the sum of neutrino masses of m1 + m2 + m3 < 0.230 eV
from which the upper limit on the mass of the lightest neutrino can be derived.

The main features of the results from Fig. 1 are as follows:

• For inverted hierarchy there is no particular structure visible. Additionally, the predicted values for |mee | are well within the reach of 
e.g. phase III of the GERDA experiment of |mexp

ee | ∼ 0.02 . . . 0.03 eV [33].
• For normal ordering, it follows from Fig. 1 that for the values of γ /n and x/n considered is always a lower limit on |mee| which means 

that these parameters are accessible to future experiments.
• Further for normal ordering, in the very low mlightest region, predicted values of |mee| are closer to the upper end of the blue three 

sigma range.
• With the current data, no combination of ᾱ21 and ᾱ31 is favoured. Only for values of |mee | � 0.0001 eV and mlightest � 0.01 . . . 0.001 eV

it would be possible to distinguish different values of ᾱ21 and ᾱ31.

The necessary precisions on |mee| and mlightest are unfortunately outside of the range of any projected experiments known to the 
authors. Nevertheless, the red curves corresponding to fixed values of γ /n and x/n are often close to the blue dashed three sigma range. 
With increasingly precise knowledge of the values of the mixing angles, especially θ13, the three sigma ranges will shrink, perhaps making 
it possible to draw conclusions about γ /n and x/n without an overly precise measurement of |mee| or of the mass of the lightest neutrino.

To recapitulate, the following assumptions went into producing these results: There are 3 left-handed doublets of leptons, which in 
turn transform as a triplet under a �(6n2) group. The neutrinos are Majorana fermions and �(6n2) is broken to a Z2 × Z2 subgroup in 
the neutrino sector and to Z3 in the charged lepton sector. The mixing angles are solely predicted from the aforementioned assumptions. 
There is a generalised CP symmetry which is consistent with �(6n2) which is broken to one element in each sector. From this gCP 
symmetry the Majorana phases are predicted.

If one of the mixing angles would be found to be incompatible with any of the predictions this would mean that either �(6n2) is 
not broken to Z2 × Z2 (or to Z2, as the predictions for the mixing angles would be the same) or that the flavour group is not �(6n2) or 
that one of the more fundamental assumptions is wrong. The neutrinos could still be Majorana fermions as �(6n2) could still be broken 
completely.
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Fig. 1. Effective mass of 0νββ decay. γ /n is varied between the lower and upper 3 sigma bound, x/n = 0,0.1,0.2, . . . ,1. For the definition of ᾱ21 and ᾱ31 cf. Eq. (49).
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4. Conclusions

In this paper we have examined the interplay of �(6n2) groups and generalised CP transformations (gCP) in a direct model for three 
generations of Dirac charged leptons and Majorana neutrinos. We find that gCP transformations that actually are physical CP transfor-
mations have Xr ∈ eiα�(6n2). Leaving a single gCP transformation unbroken will constrain the mixing matrix such that all phases, Dirac 
and Majorana are predicted and depend only on the �(6n2) group, the residual Z2 × Z2 group (parametrised by γ ) and the residual gCP 
transformation (parametrised by x) in the neutrino sector. Leaving two or more gCP transformations unbroken is not physically viable.

Comparing the predictions for the mixing angles with experimental data we find that the strongest constraint on γ /n is imposed by the 
relatively precise measurement of θ13. The smallest group where θ13 lies within three sigma of the central value has n = 14. Furthermore, 
since the Majorana CP violating phases are predicted, we have studied predictions for neutrinoless double-beta decay. We find that for 
inverted ordering, the predicted |mee| is within the reach of upcoming experiments like GERDA III. For normal ordering, measuring |mee|
down to 10−4 eV could exclude large regions of γ /n and x/n, depending on the value of δCP.

In conclusion, this paper represents the first time that an infinite series of finite groups has been examined for generalised CP trans-
formations that are consistent with it. We emphasise the important role of �(6n2) among the subgroups of SU(3) with triplet irreducible 
representations and hope that this study will help to shed some light on the mystery of neutrino mixing. If the Dirac CP phase is measured 
to differ from 0 or π , or the mixing angles deviate from the sum rules θ23 = 45◦ ∓ θ13/

√
2, respectively, then this would mean that in 

general a potential flavour group �(6n2) cannot be broken to Z2 × Z2, as in the case of the direct approach assumed here. However the 
semi-direct approach, in which a Z2 subgroup is preserved, would remain a possibility for theories based on �(6n2).
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