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a b s t r a c t

In the papers Minčić (1973) [15], Minčić (1977) [16], several Ricci type identities are
obtained by using non-symmetric affine connection. Four kinds of covariant derivatives
appear in these identities.

In the present work, we consider equitorsion geodesic mappings f of two spaces GAN
and GRN , where GRN has a non-symmetric metric tensor, i.e. we study the case when
GAN and GRN have the same torsion tensors at corresponding points. Such a mapping is
called an equitorsion mapping Minčić (1997) [12], Stanković et al. (2010) [14], Stanković
(in press) [13].

The existence of a mapping of such type implies the existence of a solution of the
fundamental equations. We find several forms of these fundamental equations. Among
these forms a particularly important form is system of partial differential equations of
Cauchy type.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A generalized Riemannian space GRN is a differentiable N-dimensional manifold, equipped with non-symmetric metric
tensor gij. Generalized Cristoffel’s symbols of the first kind of the space GRN are given by the formula

Γi.jk =
1
2
(gji,k − gjk,i + gik,j),

where, for example, gij,k = ∂gij/∂xk. Connection coefficients of the space GRN are the generalized Cristoffel’s symbols of the
second kind Γ i

jk = g ipΓp.jk, where (g ij) = (gij)−1 and ij denotes a symmetrization with division with respect to the indices i
and j. Generally we have Γ i

jk ≠ Γ i
kj. We suppose that g = det(g ij) ≠ 0, g = det(g ij) ≠ 0. A general affine connection space

GAN is a differentiable N-dimensional manifold, with non-symmetric connection coefficients Lijk.
Geodesicmappings and their generalizationswere investigated bymany authors, for example: Sinyukov [1], Mikeš [2–6],

Kiosak [5], Vanžurová [5,6], Berezovski [4], Hinterleitner [6], Hall and Lonie [7–9], Prvanović [10], Minčić [11–13], Stanković
[11–14] and many others.

Many authors asked if it makes sense to consider geodesic mappings between two spaces with non-symmetric
connectionswhereas the definition of geodesics includes only symmetric connections. In [11], Minčić and Stanković showed
that it is possible. This fact enables further consideration of geodesic mappings when the connection is non-symmetric
(see [11–13]).

Let us consider two N-dimensional manifolds GAN and GRN and differentiable mapping
f : GAN → GRN .

We can consider these manifolds in the common system of local coordinates with respect to this mapping (see Fig. 1.1).
Namely, if f : M ∈ GAN → M ∈ GRN and if (U, ϕ) is local chart around the point M , it will be ϕ(M) = x = (x1, . . . , xN)
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Fig. 1.1. Manifolds in the common system of local coordinates.

∈ EN (Euclidean N-space). In this case, we define for the coordinate mapping in the GRN themapping ϕ = ϕ ◦ f −1, and then

ϕ(M) = (ϕ ◦ f −1) (f (M)) = ϕ(M) = x = (x1, . . . , xN) ∈ EN , (1.1)
wherefore the pointsM and M = f (M) have the same local coordinates.

A geodesic mapping [3–5,11,12] of GAN onto GRN is a diffeomorphism f : GAN → GRN under which the geodesics of
the space GAN correspond to the geodesics of the space GRN . At the corresponding pointsM andM , we can put

Γ i
jk = Lijk + P i

jk, (i, j, k = 1, . . . ,N), (1.2)

where P i
jk is the deformation tensor of the connection Lijk of GAN according to the mapping f : GAN → GRN . The tensor P i

jk

is non-symmetric with respect to the indices j and k, because Lijk and Γ
i
jk are non-symmetric.

A necessary and sufficient condition for the mapping f to be geodesic [11] is that the deformation tensor P i
jk from (1.2)

has the form

P i
jk = δijψk + δikψj + ξ ijk, (1.3)

where

ψi =
1

N + 1
(Γ

α

iα − Lαiα), ξ ijk = P i
jk
∨

=
1
2
(P i

jk − P i
kj). (1.4)

We remark that in GRN the condition below holds true (see [11]):

Γ α
iα
∨

=
1
2
Γ α

[iα]
= 0, (1.5)

where ij denotes the symmetrization, ij
∨

-antisymmetrization, [i . . . j] denotes the antisymmetrization without division with

respect to the indices i, j, and also (i . . . j) denotes the symmetrization without division with respect to the indices i, j.
In GAN (GRN), one can define four kinds of covariant derivatives [15,16]. For example, for a tensor aij, we have

aij |
1
m = aij,m + Lipma

p
j − Lpjma

i
p, aij |

2
m = aij,m + Limpa

p
j − Lpmja

i
p,

aij |
3
m = aij,m + Lipma

p
j − Lpmja

i
p, aij |

4
m = aij,m + Limpa

p
j − Lpjma

i
p.

Remark 1.1. Let GAN be an N-dimensional differentiable manifold, on which a non-symmetric affine connection Lijk is
introduced. Because of the non-symmetry of the connection Lijk, another connection can be defined byLijk = Likj.

Denote by |
θ

, |
θ

the covariant derivative of the kind θ, (θ = 1, 2, 3, 4) in GAN and GRN , respectively.

Whereas in a Riemannian space (the space of General Relativity Theory), the connection coefficients are expressed in
terms of the symmetric metric tensor gij, in Einstein’s work in Unified Field Theories (1950–1955), the relation between
these magnitudes is determined by the following equation:

g ij
+−

;m ≡ gij,m − Γ
p
imgpj − Γ

p
mjgip = 0,


gij,m =

∂gij
∂xm


. (1.6)

In the Eq. (1.6), the index i behaves in the sense of the first kind of derivative (|
1
), and the index j in the sense of the second

one (|
2
).
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Einstein in [17], 1950, for the covariant curvature tensor in his theory obtains a Bianchi-type identity:

R iklm
−+−+

;n + R ikmn
−+++

;l + R iknl
−+−−

;m = 0, (1.7)

where Riklm = gpiR
p
klm, and the indices behave in the sense as explained in the comment just below relation (1.6).

In the case of the space GAN (GRN), we have five independent curvature tensors [18,19] (in [18] R
5
is denoted by R̃

2
):

R
1

i
jmn = Lij[m,n] + Lpj[mL

i
pn],

R
2

i
jmn = Li

[mj,n] + Lp
[mjL

i
n]p,

R
3

i
jmn = Lijm,n − Linj,m + LpjmL

i
np − LpnjL

i
pm + LpnmL

i
[pj],

R
4

i
jmn = Lijm,n − Linj,m + LpjmL

i
np − LpnjL

i
pm + LpmnL

i
[pj],

R
5

i
jmn =

1
2
(Lij[m,n] + Li

[mj,n] + LpjmL
i
pn + LpmjL

i
np − LpjnL

i
mp − LpnjL

i
pm).

(1.8)

In a Riemannian space, the Eq. (1.3) is equivalent to Levi-Civita’s equation (see [1]):

g ij;k = 2ψkg ij + ψig jk + ψjg ik, (1.9)

where (; ) is the covariant derivative in the space RN , i.e. g ij;k = ∂g ij/∂xk − Γ
p
ikgpj − Γ

p
jkg ip, and Γ is the Levi-Civita’s

connection.

Theorem 1.1 ([11]). Generalized Riemannian space GRN admits nontrivial geodesic mappings onto generalized Riemannian
space GRN if and only if for the metric tensor of the space GRN is valid:

g ij |
1
k = g ij

∨

|

1
k + 2ψkg ij + ψigkj + ψjg ik + ξ

p
ikgpj + ξ

p
jkg ip, (1.10)

where (|
1
) and (|

1
) are covariant derivatives in the spaces GRN and GRN , respectively.

The condition (1.3) is equivalent to (1.10). It can easily be seen that for the second, third and fourth kind of covariant
derivatives equations similar to (1.10) can be derived.

2. Equitorsion geodesic mappings

A geodesic mapping f : GAN → GRN is an equitorsion geodesic mapping if the torsion tensors of the spaces GAN and
GRN are equal in the common local coordinates. Then from (1.2)–(1.4), we get

Γ h
ij
∨

− Lhij
∨

= ξ hij = 0, (2.1)

where ij
∨

denotes the antisymmetrization with respect to the indices i, j (see [12–14]).

Mikeš and Berezovski proved in [3–5] the following theorem:

Theorem 2.1. The manifold with affine connection AN admits geodesic mapping onto Riemannian manifold RN with the metric
tensor g ij if and only if the following set of differential equations of Cauchy type with covariant derivatives has a solution with
respect to the symmetric tensor: g ij, (det(g ij) ≠ 0), the covector ψi and the function µ.

(a) g ij;k = 2ψkg ij + ψig jk + ψjg ik;

(b) Nψi;j = Nψiψj + µg ij − gβγ g iαR
α
βγ j − Rij −

2
N + 1

Rααij;

(c) (N − 1)µ;i = 2(N − 1)ψαgβγ Rαβγ i + ψαgαβ

5Rβi +

6
N + 1

Rγγ βi − Riβ


+ gαβ


Rγαβi;γ − Rαi;β −

2
N + 1

Rγγαi


,

(2.2)

where (;) denotes covariant derivative with respect to the connection of AN , (g ij) is the matrix inverse to (g ij), Rh
ijk, Rij are

respectively Riemannian and Ricci tensors of the manifold AN , and Rαj = gβγ Rαβγ j, R
α
ij.
β

= gβγ Rαijγ , R
α
i;.
β

= gβγ Rαi;γ and
Rα.;i

β
= gβγ Rαγ ;i.
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We give some generalizations of this theorem in the case of manifolds with a non-symmetric metric tensor. From (1.10)
and (2.1), we have

g ij |
1
k = 2ψkg ij + ψigkj + ψjg ik = g ij |

2
k. (2.3)

Further, we obtain

g ij |
1
ks − g ij |

1
sk = 2g ij ψ

1
[ks] + gk(i ψ

1
j)s − g s(i ψ

1
j)k, (2.4)

where ψ
1

jk = ψj |
1
k − ψjψk. Using the appropriate Ricci identity [15], from (2.4), one gets

g ij |
1
ks − g ij |

1
sk = −g iα R

1

α
jks − g jα R

1

α
iks − Lp

[ks]g ij |
1
p,

i.e.

− g iα R
1

α
jks − g jα R

1

α
iks − Lp

[ks](2ψpg ij + ψigpj + ψjg ip) = 2g ij ψ
1

[ks] + gk(i ψ
1

j)s − g s(i ψ
1

j)k. (2.5)

Transvecting the last equation by g ij, we get

ψ
1

{ks} = −
1

N + 1
R
1

α
αks, (2.6)

where ψ
1

{ks} = ψ
1

[ks] + ψpL
p
[ks]. Replacing (2.6) in (2.5), we obtain

− g(iα R
1

α
j)ks +

2
N + 1

g ij R
1

α
αks − Lp

[ks]ψ(igpj) = gk(i ψ
1

j)s − g s(i ψ
1

j)k. (2.7)

Transvecting this equation by g jk, we get

− g jkg iα R
1

α
jks + R

1
is +

2
N + 1

R
1

α
αis − Lp

[ps]ψi − g jkg ipL
p
[ks]ψj = N ψ

1
is − g jkg si ψ

1
jk. (2.8)

Using (1.5) and (2.1), we get

Nψi |
1
j = Nψiψj + µ

1
g ij − gβγ g iα R

1

α
βγ j + R

1
ij +

2
N + 1

R
1

α
αij − ψβLi.[βj], (2.9)

where µ
1

= g jk ψ
1

jk and ψ j
= g ijψi. Because of g ikg ij = δkj , one obtains

g
ij
|

1
k = −2ψkg ij

− δikψ
j
− δ

j
kψ

i
= g

ij
|

2
k. (2.10)

From (2.9), we obtain

Nψi |
1
jk − Nψi |

1
kj = Nψi |

1
kψj + Nψiψj |

1
k + µ

1
|

1
kg ij + µ

1
g ij |

1
k − g

βγ

|

1
k g iα R

1

α
βγ j − gβγ g iα |

1
k R

1

α
βγ j

− gβγ g iα R
1

α
βγ j |

1
k + R

1
ij |
1
k +

2
N + 1

R
1

α
αij |

1
k − ψ

β

|

1
kLi.[βj] − ψβLi.[βj] |

1
k

−Nψi |
1
jψk − Nψiψk |

1
j − µ

1
|

1
jg ik − µ

1
g ik |

1
j + g

βγ

|

1
j g iα R

1

α
βγ k + gβγ g iα |

1
j R
1

α
βγ k

+ gβγ g iα R
1

α
βγ k |

1
j − R

1
ik |

1
j −

2
N + 1

R
1

α
αik |

1
j + ψ

β

|

1
jLi.[βk] + ψβLi.[βk] |

1
j. (2.11)

Taking into account (2.3), (2.9), (2.10), contracting with g ij in (2.11) and using the corresponding Ricci identity [15], we get
that the left side of the Eq. (2.11) is

L = −Ng ijψp R
1

p
ijk − Ng ijLp

[jk]ψi |
1
p

and the right side is

D = (N − 2)gβγ R
1

α
βγ kψα + 4g ij R

1
ikψj +

6
N + 1

g ij R
1

α
αikψj + (N − 3)gαβLγ

[βk]ψαψγ

+ (N − 1) µ
1

|

1
k − ψγ R

1

α
αγ k + gβγ R

1

α
βγ k |

1
α − g ij R

1
ik |

1
j −

2
N + 1

g ij R
1

α
αik |

1
j + gαβLγ

[βk] |

1
γψα + gαβLγ

[βk]ψα |

1
γ . (2.12)
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From L = D , we get

(N − 1) µ
1

|

1
k = −2(N − 1)gβγ R

1

α
βγ kψα − 4g ij R

1
ikψj −

6
N + 1

g ij R
1

α
αikψj − (N − 3)gαβLγ

[βk]ψαψγ

+ψγ R
1

α
αγ k − gβγ R

1

α
βγ k |

1
α + g ij R

1
ik |

1
j +

2
N + 1

g ij R
1

α
αik |

1
j − gαβLγ

[βk] |

1
γψα

−
(N + 1)

N
gαβLγ

[βk]


Nψαψγ − g sqgαp R

1

p
sqγ + R

1
αγ +

2
N + 1

R
1

p
pαγ


. (2.13)

In GAN , (see [20]), the following is valid:

S
jmn

R
1

i
jmn = R

1

i
jmn + R

1

i
mnj + R

1

i
njm = S

jmn
(Li

[jm],n + Lp
[jm]

Lipn), (2.14)

and finally, replacing in (2.13), we get

(N − 1) µ
1

|

1
k = −2(N − 1)gαβψp R

1

p
αβk − ψαgαβ


5 R

1
βk +

6
N + 1

R
1

γ

γ βk − R
1
kβ


− gαβ


R
1

γ

αβk |

1
γ − R

1
αk |

1
β −

2
N + 1

R
1

γ

γαk |

1
β


− 2(N − 1)gαβLγ

[βk]ψαψγ − gαβLγ
[βk] |

1
γψα

−
(N + 1)

N
gαβLγ

[βk]


−g sqgαp R

1

p
sqγ + R

1
αγ +

2
N + 1

R
1

p
pαγ


+ ψαgαβ S

qβk
Lp
[qβ]

Lqpk. (2.15)

So, the next theorem is proved.

Theorem 2.2. If the manifold with general affine connection GAN admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRN with the metric tensor g ij, then the following set of differential equations with covariant derivatives
of the first kind of Cauchy type has a solution with respect to the symmetric tensor g ij, the covector ψi and the function µ

1
:

(a) g ij |
1
k = 2ψkg ij + ψigkj + ψjg ik;

(b) Nψi |
1
j = Nψiψj + µ

1
g ij − gβγ g iα R

1

α
βγ j + R

1
ij +

2
N + 1

R
1

α
αij − gαβgγ iL

γ

[βj]ψα;

(c) (N − 1) µ
1

|

1
k = −2(N − 1)gαβψp R

1

p
αβk − ψαgαβ


5 R

1
βk +

6
N + 1

R
1

γ

γ βk − R
1
kβ


− gαβ


R
1

γ

αβk |

1
γ − R

1
αk |

1
β −

2
N + 1

R
1

γ

γαk |

1
β


− 2(N − 1)gαβLγ

[βk]ψαψγ − gαβLγ
[βk] |

1
γψα

−
(N + 1)

N
gαβLγ

[βk]


−g sqgαp R

1

p
sqγ + R

1
αγ +

2
N + 1

R
1

p
pαγ


+ ψαgαβ S

qβk
Lp
[qβ]

Lqpk.

(2.16)

Following this procedure, the next theorems can be proved.

Theorem 2.3. If the manifold with general affine connection GAN admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRN with the metric tensor g ij, then the following set of differential equations with covariant derivatives
of the second kind of Cauchy type has a solution with respect to the symmetric tensor g ij, the covector ψi and the function:
µ
2

= g jk ψ
2

jk

(a) g ij |
2
k = 2ψkg ij + ψigkj + ψjg ik;

(b) Nψi |
2
j = Nψiψj + µ

2
g ij − gβγ g iα R

2

α
βγ j + R

2
ij +

2
N + 1

R
2

α
αij + gαβgγ iL

γ

[βj]ψα;

(c) (N − 1) µ
2

|

2
k = −2(N − 1)gαβψp R

2

p
αβk − ψαgαβ


5 R

2
βk +

6
N + 1

R
2

γ

γ βk − R
2
kβ


− gαβ


R
2

γ

αβk |

2
γ − R

2
αk |

2
β −

2
N + 1

R
2

γ

γαk |

2
β


+ 2(N − 1)gαβLγ

[βk]ψαψγ + gαβLγ
[βk] |

2
γψα

+
(N + 1)

N
gαβLγ

[βk]


−g sqgαp R

2

p
sqγ + R

2
αγ +

2
N + 1

R
2

p
pαγ


+ ψαgαβ S

qβk
Lp
[βq]L

q
kp.

(2.17)
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Theorem 2.4. If the manifold with general affine connection GAN admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRN with the metric tensor g ij, then the following set of differential equations with covariant derivatives of
the third kind of Cauchy type has a solution with respect to the symmetric tensor g ij, the covector ψi and the functionµ

3
= g jk ψ

3
jk

(a) g ij |
3
k = 2ψkg ij + ψigkj + ψjg ik;

(b) Nψi |
3
j = Nψiψj + µ

3
g ij − gβγ g iα R

2

α
βγ j + R

2
ij +

2
N + 1

R
2

α
αij + gαβgγ iL

γ

[βj]ψα;

(c) (N − 1) µ
3

|

3
k = −2(N − 1)gαβψp R

2

p
αβk − ψαgαβ


5 R

2
βk +

6
N + 1

R
2

γ

γ βk − R
2
kβ


− gαβ


R
2

γ

αβk |

3
γ − R

2
αk |

3
β −

2
N + 1

R
2

γ

γαk |

3
β


+ 2(N − 1)gαβLγ

[βk]ψαψγ + gαβLγ
[βk] |

3
γψα

+
(N + 1)

N
gαβLγ

[βk]


−g sqgαp R

2

p
sqγ + R

2
αγ +

2
N + 1

R
2

p
pαγ


+ ψαgαβ S

qβk
Lp
[βq]L

q
kp.

(2.18)

Theorem 2.5. If the manifold with general affine connection GAN admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRN with the metric tensor g ij, then the following set of differential equations with covariant derivatives of
the fourth kind of Cauchy type has a solutionwith respect to the symmetric tensor g ij, the covector ψi and the functionµ

4
= g jk ψ

4
jk

(a) g ij |
4
k = 2ψkg ij + ψigkj + ψjg ik;

(b) Nψi |
4
j = Nψiψj + µ

4
g ij − gβγ g iα R

1

α
βγ j + R

1
ij +

2
N + 1

R
1

α
αij − gαβgγ iL

γ

[βj]ψα;

(c) (N − 1) µ
4

|

4
k = −2(N − 1)gαβψp R

1

p
αβk − ψαgαβ


5 R

1
βk +

6
N + 1

R
1

γ

γ βk − R
1
kβ


− gαβ


R
1

γ

αβk |

4
γ − R

1
αk |

4
β −

2
N + 1

R
1

γ

γαk |

4
β


− 2(N − 1)gαβLγ

[βk]ψαψγ − gαβLγ
[βk] |

4
γψα

−
(N + 1)

N
gαβLγ

[βk]


−g sqgαp R

1

p
sqγ + R

1
αγ +

2
N + 1

R
1

p
pαγ


+ ψαgαβ S

qβk
Lp
[qβ]

Lqpk.

(2.19)

Systems (2.16)–(2.19) have no more than one solution for the following initial condition at the point x0:

g ij(x0) =

0
g ij, ψi(x0) =

0
ψ i, µ

θ
(x0) =

0
µ
θ
, θ = 1, 2, 3, 4.

General solutions of Eqs. (2.16)–(2.19) depend on a finite number of substantial parameters

r ≤ r0 ≡
(N + 1) (N + 2)

2
.

Finding all solutions of (2.16)–(2.19) requires considering their integrability conditions and differential extensions,which
form a set of algebraic equations with respect to the unknown functions g ij, ψi and µ

θ
, θ = 1, 2, 3, 4, with coefficient from

GAN . But this would certainly be a fairly difficult work to be done.

3. Conclusion

We consider equitorsion geodesic mappings [12–14] and give new generalizations of the mapping f : GAN → GRN .
In this way, we extend some recently obtained results from [3–6] where geodesic mappings were investigated of an affine
connected space onto a Riemannian space (in the symmetric case).

As corollaries, we get extensions of the corresponding results concerning geodesicmappings of an affine connected space
onto a Riemannian space from [3–6] using a non-symmetric metric tensor and the four kinds of covariant derivatives. We
also use the techniques developed in cited papers.

We emphasize the following results of the paper:
It is possible to extend the concept of a geodesic mapping of an affine connected space onto a Riemannian space, by

considering equitorsion geodesic mappings. In this way, equitorsion geodesic mappings are available for a wider class of
metrics. It is reasonable to expect that these facts will be a motivation in some further investigations of geodesic mappings,
and generally for all extensions from the (AN) RN into the (GAN) GRN spaces.
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In this paper, we got four systems of PDEs of Cauchy type in GAN . Perhaps in future work we can consider solutions of
these systems.
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