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appear in these identities.

In the present work, we consider equitorsion geodesic mappings f of two spaces GAy
and GRy, where GRy has a non-symmetric metric tensor, i.e. we study the case when
GAy and GRy have the same torsion tensors at corresponding points. Such a mapping is
called an equitorsion mapping Minci¢ (1997) [12], Stankovi¢ et al. (2010) [14], Stankovi¢
(in press) [13].
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Generalized Riemannian space The existence of a mapping of such type implies the existence of a solution of the

Equitorsion geodesic mapping fundamental equations. We find several forms of these fundamental equations. Among
these forms a particularly important form is system of partial differential equations of
Cauchy type.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A generalized Riemannian space GRy is a differentiable N-dimensional manifold, equipped with non-symmetric metric
tensor g;;. Generalized Cristoffel’s symbols of the first kind of the space GRy are given by the formula

1
Lije = E(gji,k — &ik,i t Sik.j)s
where, for example, g x = 9g;;/ dx*. Connection coefficients of the space GRy are the generalized Cristoffel’s symbols of the
second kind I"JL =g ik \(vhere ‘(gﬂ) = (gg)‘l and ij denotes a symmetrization with division with respect to the indices i
and j. Generally we have I“J-;< #* Fk’j. We suppose that g = det(gy) # 0,8 = det(gg) # 0. A general affine connection space

GAy is a differentiable N-dimensional manifold, with non-symmetric connection coefficients L]’?k.

Geodesic mappings and their generalizations were investigated by many authors, for example: Sinyukov [1], MikeS [2-6],
Kiosak [5], Vanzurova [5,6], Berezovski [4], Hinterleitner [6], Hall and Lonie [7-9], Prvanovi¢ [10], Minc¢i¢ [ 11-13], Stankovié¢
[11-14] and many others.

Many authors asked if it makes sense to consider geodesic mappings between two spaces with non-symmetric
connections whereas the definition of geodesics includes only symmetric connections. In [11], Minc¢i¢ and Stankovi¢ showed
that it is possible. This fact enables further consideration of geodesic mappings when the connection is non-symmetric
(see [11-13]). -

Let us consider two N-dimensional manifolds GAy and GRy and differentiable mapping

f : GAN — Gﬁ[\]
We can consider these manifolds in the common system of local coordinates with respect to this mapping (see Fig. 1.1).
Namely, iff : M € GAy — M € GRy and if (U, ¢) is local chart around the point M, it will be (M) = x = (x', ..., x")
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Fig. 1.1. Manifolds in the common system of local coordinates.

€ EN (Euclidean N-space). In this case, we define for the coordinate mapping in the GRy the mapping@ = @ of ~!, and then

FM) = (pof ) (M) =M =x=(x',....,x") € EY, (1.1)
wherefore the points M and M = f (M) have the same local coordinates. -
A geodesic mapping [3-5,11,12] of GAy onto GRy is a diffeomorphism f : GAy — GRy under which the geodesics of
the space GAy correspond to the geodesics of the space GRy. At the corresponding points M and M, we can put
F]l:k ]k+ Jka (l»]akz 13"'7N)7 (12)
where P;k is the deformation tensor of the connection L]’:k of GAy according to the mapping f : GAy — GRy. The tensor P;k
is non-symmetric with respect to the indices j and k, because L}k and F;k are non-symmetric.

A necessary and sufficient condition for the mapping f to be geodesic [11] is that the deformation tensor P}k from (1.2)
has the form

Pl = 80 + 8,05 + &jes (13)
where
, . 1 . .
Vi = m(r L), Ejlk= jlic = E(lek_PILj)' (1.4)
We remark that in GRy the condition below holds true (see [11]):
1
Ty = 5 Ty = 0, (1.5)

where ij denotes the symmetrization, 1] antisymmetrization, [i. . .j] denotes the antisymmetrization without division with

respect to the indices i, j, and also (i. .. ]) denotes the symmetrization without division with respect to the indices i, j.
In GAy ((G]RN) one can define four kinds of covariant derivatives [15,16]. For example, for a tensor a]’-, we have

i i _ b i i _ b
ajlm m+ meaj ij P’ ajém m+ mea} Lmj P’
i i P g i i P
ajgm m+ L@ — Ly, ajlm o+ Lnp@ — L.

Remark 1.1. Let GAy be an N-dimensional differentiable manifold, on which a non-symmetric affine connection L}k is
introduced. Because of the non-symmetry of the connection ij, another connection can be defined by Lj‘:k = L;'q-.
Denote by |, | the covariant derivative of the kind 6, (8 = 1, 2, 3, 4) in GAy and GRy, respectively.
0 6
Whereas in a Riemannian space (the space of General Relativity Theory), the connection coefficients are expressed in
terms of the symmetric metric tensor gy, in Einstein’s work in Unified Field Theories (1950-1955), the relation between
these magnitudes is determined by the following equation:

gii
gijim = 8ijm — Fiigpj - Frzjgit’ =0, (gqum = 3Xrlrj1> : (16)
il

In the Eq. (1.6), the index i behaves in the sense of the first kind of derivative (|), and the index j in the sense of the second
1

one (|).
2
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Einstein in [17], 1950, for the covariant curvature tensor in his theory obtains a Bianchi-type identity:
R ikim :n + R ikmn ;1 + R iknt ;m = 0, (1.7)
—+—+ —+++ —+—
where Riyjm = gp,-R’,f,m, and the indices behave in the sense as explained in the comment just below relation (1.6).
In the case of the space GAy (GRy), we have five independent curvature tensors [18,19] (in [18] R is denoted by IZQ):
5

I]?;mn = L}[m,n] + LﬁmL;m]’

R i = Liming + DLt

13211:mn = L;m.n - L:y:,m + L}ijjw - Lﬁjl‘;m + LﬁmL{ij, (18)
I}jl:mn = L]’:m.n — L;jﬁm + Lme;p - Lﬁjl‘;m + Llr)nnL'tpj],

Jl'mn = E(L}[m,n] + L,[mj,n] + Lme;Jn + LfnjL;p - LJPHL;ﬂp - ngL;m)'

v

In a Riemannian space, the Eq. (1.3) is equivalent to Levi-Civita’s equation (see [1]):
8ijik = 28 + Vigjk + ¥igu, (1.9)

where (; ) is the covariant derivative in the space Ry, i.. gy = 98,/ 9x" — I}p8y — I}i8p and I is the Levi-Civita's
connection.

Theorem 1.1 ([11]). Generalized Riemannian space GRy admits nontrivial geodesic mappings onto generalized Riemannian
space GRy if and only if for the metric tensor of the space GRy is valid:

Zijk =1k + 208 + Vi + Vil + EREy + ERGip, (1.10)
1 V1

where (|) and (]) are covariant derivatives in the spaces GRy and GRy, respectively.
1 1
The condition (1.3) is equivalent to (1.10). It can easily be seen that for the second, third and fourth kind of covariant
derivatives equations similar to (1.10) can be derived.
2. Equitorsion geodesic mappings

_ A geodesic mapping f : GAy — GRy is an equitorsion geodesic mapping if the torsion tensors of the spaces GAy and
GRy are equal in the common local coordinates. Then from (1.2)-(1.4), we get

=h _ gh h
I — L =& =0, (2.1)
\% A\
where ij denotes the antisymmetrization with respect to the indices i, j (see [12-14]).

A\
Mikes$ and Berezovski proved in [3-5] the following theorem:

Theorem 2.1. The manifold with affine connection Ay admits geodesic mapping onto Riemannian manifold Ry with the metric
tensor g;; if and only if the following set of differential equations of Cauchy type with covariant derivatives has a solution with
respect to the symmetric tensor: g, (det(g;;) # 0), the covector v; and the function w.

@) ik = 2Yng; + Vi + Vg

— —By— o 2 o
(b) Ny = NV + 18y — 8 By — Ry — R

P . 6 2.2
© (N = Dpi = 2(N — DY 7RG, + a8 <5Rﬂ.- Ll R,ﬂ) (22)

2
+gaﬁ <R3;5j;y - Rai:ﬂ - N + 1RJ}:D,,‘) B

where (;) denotes covariant derivative with respect to the connection of Ay, (g"f) is the matrix inverse to (gj), ng, R; are
respectively Riemannian and Ricci tensors of the manifold Ay, and R = gP7R§ , REFP = gP7RY R P = gﬁVR;’fy and

5 P Byy’
R =&"Ry.;
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We give some generalizations of this theorem in the case of manifolds with a non-symmetric metric tensor. From (1.10)

and (2.1), we have

g [k = = 29n8y + Vigy + Vigu j [ k-

Further, we obtain
Zij ks — 8ij| sk = 28 lff ks) + Eka I1#1‘)5 — &y llpj)k’
bl il i kd s

where V¥ j = ;| — Y. Using the appropriate Ricci identity [15], from (2.4), one gets
1 1

_ _ b -
Zij ks — Sijisk = —8Zia R ]ks g;a iks — Liksi&ii 1 p>
1 1 1

- 711113}7@ - gjg}fﬁgg — L) QB + iy + ViByp) = Zggllﬂ lks] +§m1{/j)s _gsial{fj)lo

Transvecting the last equation by g’l, we get
1
= ———— Roks
11P {ks) N1 Raks

where ¥ () = ¥ (ks + pr‘[’kS]. Replacing (2.6) in (2.5), we obtain
1 1

2
_ _ P — = .
- g@’fgks + N+ 1gQ1$gl<s — Ly Vg = gm‘{/J)s gLa‘{fJ)k-
Transvecting this equation by g%, we get

— 88 Rjis + Ris + 7 Rits — LV = B8yl ¥y = N V= g, Vi

Using (1.5) and (2.1), we get

Nlﬁilj:N\”iwj"‘“gu g glaRﬁy]+RU+ lﬂ Ll[ﬁ]]’

N+11 °”f

ik—

where M gk 1/f i and ¥/ = gl1y;. Because of g% 8 = (Sj, one obtains

_ij e . . . . _ij
Bl = 208l — 8 — 8§y =g
1 2

From (2.9), we obtain

_ _ _By_ —By—
NI/filjk_NI/filkj = Nlﬁilkl//j-i'Nlﬁﬂﬁj]\k+P1‘1\kg,l+ﬁ‘gg|k—gﬁgglfﬁyj —gﬁlgwklfﬁw
1 1 1

2
_ B pa . B I S § S
g glglfﬂyjlk—i_llzulk—i_N_i_]Ifaijlk wlkl‘l-[lgﬂ 14 Lt.[ﬂﬂlk

_ _ _By_— « —By—
_Nwilﬂ//k_Nl//il//kP _I’fljgi_l’ll“giu—*_gvgillfﬂyk ‘f‘gﬂlgg“lfﬂy
1 1 1

2
Brs o R
+g*gigf$ﬂyk|j 1131li Nrik alk\j+w|] iipig + ¥° Lt[ﬂkm

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

Taking into account (2.3), (2.9), (2.10), contracting with g” in (2.11) and using the corresponding Ricci identity [15], we get

that the left side of the Eq. (2.11) is
L= _Ng 1//p Nijk Ng&L’Eﬂqulp

and the right side is

= (N = 287 RjVa + 48" Rl + =& Ria¥i + (N = 8Ly v vy

N+1
2

+<N—1)¢1k—w§zyk+§ﬂlz§%ym—Eﬁzle.-klj —— gl Ra,,<|]+g Lﬁk],ywﬁg L paValy- (212)
1

N+1
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From £ = D, we get

_ . 6
(N =D K= 20N = D& RE,Ve — 48" Rl — 8 Rauts — (N = DLy Vet

N+1
V7 Ry~ 8 Ry o+ 8 R+ 8 kau g5 Ve
1 1
(N+1) 2
- g"ﬁL(M Ny, —898ap R W tRay + 57 1 1]€Zw (2.13)
In GAy, (see [20]), the following is valid:
S R]mn = R]mn + Rmn] + Rn]m G (L[/mj n + Ll[jjm]l‘;m)’ (214)

jmn 1

and finally, replacing in (2.13), we get

6
" — By il Y
-1 1 lk 2(N = 1g™ pR”‘ﬁ" Vo8 (5112’6" N+1 Ifyﬁ" 11“5)

2 —a 70(
-g ( Zﬂmy Rak|p = m’fiaklﬂ) —2(N = DLy Vatry — Llyﬂkw%
(N+1) o 2
— N |~ e Ry + Rey + T Ry ) + VeB © Ll (2.15)

So, the next theorem is proved.
Theorem 2.2. If the manifold with general affine connection GAy admits equitorsion geodesic mapping onto generalized

Riemannian manifold GRy with the metric tensor gjj, then the following set of differential equations with covariant derivatives
of the first kind of Cauchy type has a solution with respect to the symmetric tensor g;;, the covector s; and the function j4:
= 1

(@) &ij |k = 2V8;j + Vigy + Vi
il i K

2
(b)Nlﬁi\Ij=N1ﬁi1ﬁj+/1‘gu g glaRﬁyj+}$1]+N+] i — 85 gy; Ligi Vs
6
— - _ — gt P gf - RV _
(C) (N 1)‘:“ 2(N ])g wplfaﬂk Ilfozg <511Qﬂk+ N+1I$yﬂk Ifkﬂ) (216)
-  Rerp— —— R, —2(N — DL Yatr, — B 0 W
g’ aﬁkw ReklB TN S vekls & LigVathy — 8= (gl | Ve

CINFD, o 2
N &— ﬂLer] _gﬂgﬂ sqy +R°‘V + YT N+11 pay +¢“g G L[qﬂ] pk*

Following this procedure, the next theorems can be proved.

Theorem 2.3. If the manifold with general affine connection GAy admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRy with the metric tensor g;;, then the following set of differential equations with covariant derivatives
of the second kind of Cauchy type has a solution with respect to the symmetric tensor gy, the covector ; and the function:

=25V i
2

2

(@) &k = 2V8;j + Vigy + Vi
i i ki

_ gy 2
(b) Ny = NVivj+ 185 — 878w Ry + Ri+ N Koy +28 Pg il Ve

6
(C) (N - 1)l;£k = _2(N - 1)§ale§§ﬁk - Ilfozgaﬁ <5§ﬂk + m I;,}:ﬁk - §I<ﬂ) (2‘]7)

g ~Ruip s Rl ) 200 = DE2L oy, + 8200
aﬂk\y ak| B yak| g SV Vy T8 gk |y Ve
2 N+12 2 2

(N+1)_p
+ N g&—

2
L{ﬂk] ( g gaP sqy +R°‘V + 57 N+12 pay) + wo‘g G L[ﬂq] kp*
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Theorem 2.4. If the manifold with general affine connection GAy admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRy with the metric tensor g;, then the following set of differential equations with covariant derivatives of

the third kind of Cauchy type has a solution with respect to the symmetric tensor gj;, the covector ; and the function 4 = gy ik
2 3 3
(@) &ij 1« = 2V18; + Vigk + Vi
i i ki

(b)NWi£j=N¢iwj+/3Lgu g glaRﬁy]+RU+ Ra,]+g gyl [ﬁj]wa,

+12

6
(¢) (N — ])/’;3“( = —2(N - 1)g0‘/31//p Raﬁk WQEQ/S (5§ﬁk + ml;;ﬁk - I§k5> (2.18)

2 —u =
-g* aﬂkly ~Rakp — R a5 ) 20N = DL Yoty + 815, Vi
3 N + 12 3 3

N+ 5.y 2
N g L[ﬂk] —&8w sqy+R°‘V+N+1 pay + 8"’ 6L[ﬂq]Lkp

Theorem 2.5. If the manifold with general affine connection GAy admits equitorsion geodesic mapping onto generalized
Riemannian manifold GRy with the metric tensor g, then the following set of differential equations with covariant derivatives of

the fourth kind of Cauchy type has a solution with respect to the symmetric tensor gy, the covector y; and the function 4 = Ejﬁ Yk
L 4 4
(@) ik = 2Un&; + ¥igy + Vi
gl g ki
By 2
(b) wal,- =wawj+/igg—gﬁlgg1§ﬁw+1§u+ N1l Roij — &% gy,L[ﬁ,]wa,
(©(N=1Dx = =2(N—1g%y, R, — v.8? [5R +LRY —R
UL &V 1 %Pk o8 VPR N e (2.19)
- —R _ 2 R —2(N — DL, Vo, — 2L,
g’ aﬂkly ak‘llﬂ N_f_-l]yak‘\lﬂ Bk Ve ¥y -~ [Bk]\y o

(N + Dﬂtﬁ 4 e 2
— N & b | T8 8w Ry +Ray + T Ry + Ve’ S  Ltog Lok

Systems (2.16)-(2.19) have no more than one solution for the following initial condition at the point xq:

_ 0 0 0
gi(x0) =gi,  Vilxo) = ¥y, /g(xo) =K, 0=1234.

General solutions of Egs. (2.16)-(2.19) depend on a finite number of substantial parameters
(N+1) (N+2)
—

Finding all solutions of (2.16)-(2.19) requires considering their integrability conditions and differential extensions, which
form a set of algebraic equations with respect to the unknown functions g, ¥; and &4, 6 = 1, 2, 3, 4, with coefficient from
= 0

=Ty =

GAy. But this would certainly be a fairly difficult work to be done.
3. Conclusion

We consider equitorsion geodesic mappings [12-14] and give new generalizations of the mapping f : GAy — GRy.
In this way, we extend some recently obtained results from [3-6] where geodesic mappings were investigated of an affine
connected space onto a Riemannian space (in the symmetric case).

As corollaries, we get extensions of the corresponding results concerning geodesic mappings of an affine connected space
onto a Riemannian space from [3-6] using a non-symmetric metric tensor and the four kinds of covariant derivatives. We
also use the techniques developed in cited papers.

We emphasize the following results of the paper:

It is possible to extend the concept of a geodesic mapping of an affine connected space onto a Riemannian space, by
considering equitorsion geodesic mappings. In this way, equitorsion geodesic mappings are available for a wider class of
metrics. It is reasonable to expect that these facts will be a motivation in some further investigations of geodesic mappings,
and generally for all extensions from the (Ay) Ry into the (GAy) GRy spaces.
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In this paper, we got four systems of PDEs of Cauchy type in GAy. Perhaps in future work we can consider solutions of
these systems.
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