A Hall-type theorem for triplet set systems based on medians in trees

Andreas Dress ${ }^{\text {a }}$, Mike Steel ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, 200031 Shanghai, China
${ }^{\mathrm{b}}$ Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand

ARTICLE INFO

Article history:

Received 26 June 2009
Accepted 1 July 2009

Keywords:

Trees
Median vertices
Systems of distinct representatives
Patchworks

Abstract

Given a collection \mathscr{C} of subsets of a finite set X, let $\bigcup \mathscr{C}=\cup_{S \in \mathscr{C}} S$. Philip Hall's celebrated theorem [P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30] concerning 'systems of distinct representatives' tells us that for any collection \mathscr{C} of subsets of X there exists an injective (i.e. one-to-one) function $f: \mathscr{C} \rightarrow X$ with $f(S) \in S$ for all $S \in \mathscr{C}$ if and and only if \mathscr{C} satisfies the property that for all non-empty subsets \mathscr{C}^{\prime} of \mathscr{C}, we have $\left|\bigcup \mathscr{C}^{\prime}\right| \geq|\mathscr{C}|$. Here, we show that if the condition $\left|\bigcup \mathscr{C}^{\prime}\right| \geq\left|\mathscr{C}^{\prime}\right|$ is replaced by the stronger condition $\left|\bigcup \mathscr{C}^{\prime}\right| \geq\left|\mathscr{C}^{\prime}\right|+2$, then we obtain a characterization of this condition for a collection of 3-element subsets of X in terms of the existence of an injective function from \mathscr{C} to the vertices of a tree whose vertex set includes X and which satisfies a certain median condition. We then describe an extension of this result to collections of arbitrary-cardinality subsets of X.

© 2009 Elsevier Ltd. All rights reserved.

1. First result

Given a tree $T=(V, E)$ and a subset S of V of size 3 , say $S=\{x, y, z\}$, consider the path in T connecting x, y, the path connecting x, z and the path connecting y, z. There is a unique vertex that is shared by these three paths, the median vertex of S in T, denoted $\operatorname{med}_{T}(S)$. Our first result provides an analogue of Hall's theorem [3] described in the abstract.
Theorem 1.1. Let X be a finite set, and suppose that $\mathscr{C} \subseteq\binom{x}{3}$, and $\bigcup \mathscr{C}=X$. The following are equivalent:
(1) There exists a tree $T=(V, E)$ with $X \subseteq V$ for which the function $S \mapsto \operatorname{med}_{T}(S)$ from \mathscr{C} to V is injective.
(2) There exists a tree $T=(V, E)$ with X as its set of leaves, and all its other vertices of degree 3, for which the function $S \mapsto \operatorname{med}_{T}(S)$ from \mathscr{C} to the set of interior vertices of T is injective.
(3) \mathscr{C} satisfies the following property. For all non-empty subsets \mathscr{C}^{\prime} of \mathscr{C}, we have:

$$
\begin{equation*}
\left|\bigcup \mathscr{C}^{\prime}\right| \geq\left|\mathscr{C}^{\prime}\right|+2 \tag{1}
\end{equation*}
$$

In order to establish Theorem 1.1, we first require a lemma.
Recall from [1] that a collection \mathcal{P} of subsets of a set M forms a patchwork if it satisfies the following property:

$$
A, B \in \mathcal{P} \text { and } A \cap B \neq \emptyset \Longrightarrow A \cap B, \quad A \cup B \in \mathcal{P}
$$

Lemma 1.2. Let X be a finite set, and suppose that $\mathscr{C} \subseteq\binom{x}{3}$, and $\bigcup \mathscr{C}=X$. If \mathscr{C} satisfies the condition described in Part (3) of Theorem 1.1 then the collection \mathscr{P} of non-empty subsets \mathscr{C}^{\prime} of \mathscr{C} that satisfy $\left|\bigcup \mathscr{C}^{\prime}\right|=\left|\mathscr{C}^{\prime}\right|+2$ forms a patchwork.

[^0]Proof. Suppose $\mathscr{C}_{1}, \mathscr{C}_{2} \subseteq \mathscr{C}$, and that $\mathscr{C}_{1} \cap \mathscr{C}_{2} \neq \emptyset$. Consider

$$
K:=\left|\bigcup\left(\mathscr{C}_{1} \cap \mathscr{C}_{2}\right)\right|+\left|\bigcup\left(\mathscr{C}_{1} \cup \mathscr{C}_{2}\right)\right|
$$

By (1), we have:

$$
\begin{equation*}
K \geq\left(\left|\mathscr{C}_{1} \cap \mathscr{C}_{2}\right|+2\right)+\left(\left|\mathscr{C}_{1} \cup \mathscr{C}_{2}\right|+2\right)=\left|\mathscr{C}_{1}\right|+\left|\mathscr{C}_{2}\right|+4 \tag{2}
\end{equation*}
$$

and we also have:

$$
\begin{equation*}
K \leq\left|\left(\bigcup \mathscr{C}_{1}\right) \cap\left(\bigcup \mathscr{C}_{2}\right)\right|+\left|\left(\bigcup \mathscr{C}_{1}\right) \cup\left(\bigcup \mathscr{C}_{2}\right)\right|=\left|\bigcup \mathscr{C}_{1}\right|+\left|\bigcup \mathscr{C}_{2}\right| \tag{3}
\end{equation*}
$$

Notice that the right-hand term in (2) and (3) are equal, since $\left|\bigcup \mathscr{C}_{i}\right|=\left|\mathscr{C}_{i}\right|+2$ as $\mathscr{C}_{i} \in \mathcal{P}$ for $i=1,2$, and thus the inequality in (2) is an equality. Therefore $\left|\bigcup\left(\mathscr{C}_{1} \cap \mathscr{C}_{2}\right)\right|=\left|\mathscr{C}_{1} \cap \mathscr{C}_{2}\right|+2$ and $\left|\bigcup\left(\mathscr{C}_{1} \cup \mathscr{C}_{2}\right)\right|=\left|\mathscr{C}_{1} \cup \mathscr{C}_{2}\right|+2$, as required.
Proof of Theorem 1.1. The implication $(2) \Rightarrow(1)$ is trivial. For the reverse implication suppose that T satisfies the property described in (2). First delete from T any vertices and edges that are not on a path between two vertices in X. Next attach to every interior (non-leaf) vertex $v \in X$ a new edge for which the adjacent new leaf is assigned the label x, and henceforth do not regard v as an element of X. Next replace each maximal path of degree 2 vertices by a single edge. Finally, replace each vertex v of degree $d>3$ by an arbitrary tree that has d leaves that we identify with the neighboring vertices of v and whose remaining vertices have degree 3 . These four processes result in a tree T^{\prime} that has X as its set of leaves, and which has all its remaining vertices of degree 3 (i.e. a 'binary phylogenetic X-tree' [2]) and for which the median vertices of the elements of \mathscr{C} remain distinct. Thus (1) and (2) are equivalent.

Next we show that $(2) \Rightarrow(3)$. Suppose T satisfies the condition (2) and that \mathscr{C}^{\prime} is a non-empty subset of \mathscr{C}. Consider the minimal subtree of T that connects the leaves in $\bigcup \mathscr{C}^{\prime}$. This tree has at least $\left|\mathscr{C}^{\prime}\right|$ interior vertices that are of degree 3 . However, by a simple counting argument, any tree that has k interior vertices of degree 3 must have at least $k+2$ leaves, and so (1) holds.

The remainder of the proof is devoted to establishing that (3) \Rightarrow (2). We use induction on $n:=|X|$. The result clearly holds for $n=3$, so suppose it holds whenever $|X|<n, n \geq 4$ and that X is a set of size n. For $x \in X$, let $n_{\mathscr{C}}(x)$ be the number of triples in \mathscr{C} that contain x. If there exists $x \in X$ with $n_{\mathscr{C}}(x)=1$, then select the unique triple in \mathscr{C} containing x, say $\{a, b, x\}$ and let $X^{\prime}=X-\{x\}, \mathscr{C}^{\prime}=\mathscr{C}-\{\{a, b, x\}\}$. Then $\bigcup \mathscr{C}^{\prime}=X^{\prime}$ and \mathscr{C}^{\prime} satisfies condition (1) and so, by induction, there is a tree T^{\prime} with leaf set X^{\prime} for which the median vertices of elements in \mathscr{C}^{\prime} are all distinct vertices of T^{\prime}. Let T be the tree obtained from T^{\prime} by subdividing one of the edges in the path in T^{\prime} connecting a and b, and making the newly-created vertex of degree 2 adjacent to x by a new edge. Then T satisfies the requirements of Theorem 1.1(2), and thereby establishes the induction step in this case.

Thus we may suppose that $n_{\mathscr{C}}(x)>1$ holds for all $x \in X$. In this case, we claim that there exists $x \in X$ with $n_{\mathscr{C}}(x)=2$. Let us count the set $\Omega:=\{(x, S): x \in S \in \mathscr{C}\}$ in two different ways. We have:

$$
\begin{equation*}
|\Omega|=\sum_{x \in X} n_{\mathscr{C}}(x) \geq 2 k+3(n-k) \tag{4}
\end{equation*}
$$

where $k=\left|\left\{x \in X: n_{\mathscr{C}}(x)=2\right\}\right|$.
On the other hand:

$$
\begin{equation*}
|\Omega|=3|\mathscr{C}| \leq 3(n-2) \tag{5}
\end{equation*}
$$

where the latter inequality follows from Inequality (1) applied to $\mathscr{C}^{\prime}=\mathscr{C}$. Combining (4) and (5) gives $2 k+3(n-k) \leq 3 n-6$, and so $k \geq 6$. Thus, since $k>0$, there exists $x \in X$ with $n_{\mathscr{C}}(x)=2$, as claimed.

For any such $x \in X$ with $n_{\mathscr{C}}(x)=2$, let $\{a, b, x\}$ and $\left\{a^{\prime}, b^{\prime}, x\right\}$ be the two elements of \mathscr{C} containing x. Without loss of generality there are two cases:
(i) $a=a^{\prime}, b \neq b^{\prime}$; or
(ii) $\{a, b\} \cap\left\{a^{\prime}, b^{\prime}\right\}=\emptyset$.

In case (i), let:

$$
X^{\prime}:=X-\{x\}, \quad \mathscr{C}^{\prime}:=\mathscr{C}-\left\{\{a, b, x\},\left\{a, b^{\prime}, x\right\}\right\}, \quad \mathscr{C}_{1}:=\mathscr{C}^{\prime} \cup\left\{\left\{a, b, b^{\prime}\right\}\right\} .
$$

Note that $\bigcup \mathscr{C}_{1}=X^{\prime}$. Suppose that \mathscr{C}_{1} fails to satisfy the condition described in Part (3) of Theorem 1.1. Then there is a subset of \mathscr{C}_{1} that violates Inequality (1) of the form $\mathscr{C}^{1} \cup\left\{\left\{a, b, b^{\prime}\right\}\right\}$ where $a, b, b^{\prime} \in \bigcup \mathscr{C}^{1}$ and $\mathscr{C}^{1} \subseteq \mathscr{C}^{\prime}$. But in that case $\mathscr{C}^{1} \cup\left\{\{a, b, x\},\left\{a, b^{\prime}, x\right\}\right\}$ would violate Inequality (1), which is impossible since Inequality (1) applies to this set, being a non-empty subset of \mathscr{C}. Thus, \mathscr{C}_{1} satisfies Part (3) of Theorem 1.1. Since $\bigcup \mathscr{C}_{1}=X^{\prime}$, which has one less element than X, the inductive hypothesis furnishes a tree T^{\prime} with leaf set X^{\prime} that satisfies the requirements of Theorem 1.1(2). Now consider the edge of T^{\prime} that is incident with leaf b^{\prime}. Subdivide this edge and make the newly-created midpoint vertex adjacent to a leaf labelled x. This gives a tree T that has X as its set of leaves, and with all its interior vertices of degree 3 ; moreover, the medians of the elements of \mathscr{C} are all distinct (note that the median of $\left\{x, a, b^{\prime}\right\}$ is the newly-created vertex adjacent to x,
while the median of $\{x, a, b\}$ corresponds to the median vertex of $\left\{a, b, b^{\prime}\right\}$ in T^{\prime} and therefore is a different vertex in T to any other median vertex of an element of \mathscr{C}).

In case (ii), let:

$$
X^{\prime}:=X-\{x\}, \quad \mathscr{C}^{\prime}:=\mathscr{C}-\left\{\{a, b, x\},\left\{a^{\prime}, b^{\prime}, x\right\}\right\},
$$

and let:

$$
\mathscr{C}_{1}:=\mathscr{C}^{\prime} \cup\left\{\left\{a, a^{\prime}, b\right\}\right\}, \quad \mathscr{C}_{2}:=\mathscr{C}^{\prime} \cup\left\{\left\{a, a^{\prime}, b^{\prime}\right\}\right\} .
$$

Note that $\bigcup \mathscr{C}_{1}=\bigcup \mathscr{C}_{2}=X^{\prime}$. We will establish the following:
Claim: One or both of \mathscr{C}_{1} or \mathscr{C}_{2} satisfies the condition described in Part (3) of Theorem 1.1.
Suppose to the contrary that both sets fail the condition described in Theorem 1.1(3). Then there is a subset of \mathscr{C}_{1} that violates Inequality (1), and it must be of the form $\mathscr{C}^{1} \cup\left\{\left\{a, a^{\prime}, b\right\}\right\}$ where $\mathscr{C}^{1} \subseteq \mathscr{C}^{\prime}, a, a^{\prime}, b \in \bigcup \mathscr{C}^{1}$ and $b^{\prime} \notin \bigcup \mathscr{C}^{1}$ (the last claim is justified by the observation that if $b^{\prime} \in \bigcup \mathscr{C}$ then $\mathscr{C}^{1} \cup\left\{\{a, b, x\},\left\{a^{\prime}, b^{\prime}, x\right\}\right\}$ would violate the condition described in Part (3) of Theorem 1.1). Similarly a subset of \mathscr{C}_{2} that violates Inequality (1) is of the form $\mathscr{C}^{2} \cup\left\{\left\{a, a^{\prime}, b^{\prime}\right\}\right\}$ where $\mathscr{C}^{2} \subseteq \mathscr{C}^{\prime}$, $a, a^{\prime}, b^{\prime} \in \bigcup \mathscr{C}^{2}$ and $b \notin \bigcup \mathscr{C}^{2}$. Now, let \mathcal{P} be the subset of \mathscr{C} defined in the statement of Lemma 1.2. Then the sets

$$
\mathscr{C}_{1}:=\mathscr{C}^{1} \cup\left\{\{x, a, b\},\left\{x, a^{\prime}, b^{\prime}\right\}\right\} ; \quad \text { and } \quad \mathscr{C}_{2}:=\mathscr{C}^{2} \cup\left\{\{x, a, b\},\left\{x, a^{\prime}, b^{\prime}\right\}\right\}
$$

are both elements of \mathcal{P} and they have non-empty intersection, since they both contain $\{x, a, b\}$ (indeed, they also share $\left.\left\{x, a^{\prime}, b^{\prime}\right\}\right)$. Thus, Lemma 1.2 ensures that $\mathscr{C}_{1} \cap \mathscr{C}_{2}$ is also an element of \mathcal{P}. However $\mathscr{C}_{1} \cap \mathscr{C}_{2}$ is of the form $\mathscr{C}^{3} \cup$ $\left\{\{x, a, b\},\left\{x, a^{\prime}, b^{\prime}\right\}\right\}$ where $\mathscr{C}^{3} \subseteq \mathscr{C}^{\prime}$, and neither x, b, nor b^{\prime} is an element of $\bigcup \mathscr{C}^{3}$ because, by our choice of x, x only occurs in the two triples $\{x, a, b\}$ and $\left\{x, a^{\prime}, b^{\prime}\right\}$, and because $b^{\prime} \notin \bigcup \mathscr{C}^{1}$ and $b \notin \bigcup \mathscr{C}^{2}$. Since \mathscr{C}^{3} is a subset of $\mathscr{C}, \mathscr{C}^{3}$ satisfies Inequality (1), which implies that (1) must be a strict inequality for $\mathscr{C}_{1} \cap \mathscr{C}_{2}$, contradicting our assertion that $\mathscr{C}_{1} \cap \mathscr{C}_{2} \in \mathscr{P}$. This justifies our claim that either \mathscr{C}_{1} or \mathscr{C}_{2} satisfies part (3) of Theorem 1.1.

We may suppose then, without loss of generality, that \mathscr{C}_{1} satisfies part (3) of Theorem 1.1 . Since $\bigcup \mathscr{C}_{1}=X^{\prime}$, which has one less element than X, the inductive hypothesis furnishes a tree T^{\prime} with leaf set X^{\prime} that satisfies the requirements of Theorem 1.1(2). Now, consider the edge of T^{\prime} that is incident with leaf a^{\prime}. Subdivide this edge and make the newly-created midpoint vertex adjacent to a leaf labelled x by a new edge. This gives a tree T that has X as its set of leaves, and with all vertices of degree 3 ; moreover, regardless of where b^{\prime} attaches in T, the medians of the elements of \mathscr{C} are all distinct (note that the median of $\left\{x, a^{\prime}, b^{\prime}\right\}$ is the newly-created vertex adjacent to x, while the median of $\{x, a, b\}$ corresponds to the median vertex of $\left\{a, a^{\prime}, b\right\}$ in T^{\prime} and therefore is a different vertex in T from any other median vertex of an element of \mathscr{C}). This completes the proof.

2. An extension

For a subset Y of X of size at least 3 , and a tree $T=(V, E)$, with $X \subseteq V$, let

$$
\operatorname{med}_{T}(Y):=\left\{\operatorname{med}_{T}(S): S \subseteq Y,|S|=3\right\}
$$

Thus, $\operatorname{med}_{T}(Y)$ is a subset of the vertices of T. Moreover, if X is the set of leaves of T then $\operatorname{med}_{T}(Y)$ is a subset of the interior vertices of T.

Theorem 2.1. Let X be a finite set, and suppose that \mathscr{C} is a collection of subsets of X, each of size at least 3 , and with $\bigcup \mathscr{C}=X$. The following are equivalent:
(1) There exists a tree $T=(V, E)$ with X as its set of leaves, and all its other vertices of degree 3, for which $\left\{\operatorname{med}_{T}(Y): Y \in \mathscr{C}\right\}$ is a partition of the set of interior vertices of T.
(2) \mathscr{C} satisfies the following property. For all non-empty subsets \mathscr{C}^{\prime} of \mathscr{C}, we have:

$$
\begin{equation*}
\left|\bigcup \mathscr{C}^{\prime}\right|-2 \geq \sum_{Y \in \mathscr{C}^{\prime}}(|Y|-2) \tag{6}
\end{equation*}
$$

and this last inequality is an equality when $\mathscr{C}^{\prime}=\mathscr{C}$.
Proof. We first show that $(1) \Rightarrow(2)$. Select a tree T satisfying the requirements of Part (1) of Theorem 2.1. For a non-empty subset \mathscr{C}^{\prime} of \mathscr{C}, the minimal subtree T^{\prime} of T connecting the leaves in $\bigcup \mathscr{C}^{\prime}$ has $k:=\left|\bigcup \mathscr{C}^{\prime}\right|$ leaves, and $k-2$ vertices that are of degree 3. By the partitioning assumption, each element $Y \in \mathscr{C}^{\prime}$ generates $|Y|-2$ median vertices in T and these sets of median vertices are pairwise disjoint for different choices of $Y \in \mathscr{C}^{\prime}$. Moreover, distinct interior vertices of T correspond to different degree 3 vertices in T^{\prime}, and so the number of degree 3 vertices in T^{\prime} can be no smaller than the sum of $|Y|-2$ over all $Y \in \mathscr{C}^{\prime}$. This establishes Inequality (6). For the case where $\mathscr{C}^{\prime}=\mathscr{C}$, note that T has $\bigcup \mathscr{C}=X$ as its leaf set and, by the partitioning assumption, each of its $|X|-2$ interior vertices occurs in one set $\operatorname{med}_{T}(Y)$ for some $Y \in \mathscr{C}$, and so $|X|-2 \leq \sum_{Y \in \mathscr{C}^{\prime}}(|Y|-2)$ which, combined with (6), provides the desired equality.

To show $(2) \Rightarrow(1)$, select for each set $Y \in \mathscr{C}$ a collection \mathscr{C}_{Y} of 3-element subsets of X of cardinality $|Y|-2$ for which $\bigcup C_{Y}=Y$ and which satisfies the condition that for every non-empty subset \mathscr{C}^{\prime} of \mathscr{C}_{Y}, we have $\bigcup \mathscr{C}^{\prime} \geq\left|\mathscr{C}^{\prime}\right|+2$; such a
selection is straightforward - for example, if $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ then we can take:

$$
\begin{equation*}
\mathscr{C}_{Y}=\left\{\left\{y_{1}, y_{2}, y_{3}\right\},\left\{y_{1}, y_{2}, y_{4}\right\}, \ldots,\left\{y_{1}, y_{2}, y_{m}\right\}\right\} . \tag{7}
\end{equation*}
$$

We first establish the following:
Claim: $\mathscr{C}_{*}:=\cup_{Y \in \mathscr{C}} \mathscr{C}_{Y}$ is a collection of 3-element subsets of X that satisfies Inequality (1) in Theorem 1.1.
To see this, suppose to the contrary that there exists a subset $\mathscr{C}^{\prime \prime}$ of \mathscr{C}_{*} for which Inequality (1) fails. Write $\mathscr{C}^{\prime \prime}=$ $S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ where $1 \leq k \leq|\mathscr{C}|$ and where S_{i} is a non-empty set of 3-element subsets of X that are selected from the same set (let us call it Y_{i}) from \mathscr{C} (note that the fact that $\left|Y_{1} \cup Y_{2}\right|-2 \geq\left|Y_{1}\right|-2+\left|Y_{2}\right|-2$ must hold for all Y_{1}, Y_{2} in \mathscr{C} implies that $\left|Y_{1}\right|+\left|Y_{2}\right|-\left|Y_{1} \cap Y_{2}\right|-2 \geq\left|Y_{1}\right|-2+\left|Y_{2}\right|-2$ and, hence, $2 \geq\left|Y_{1} \cap Y_{2}\right|$ must hold for all Y_{1}, Y_{2} in $\mathscr{C})$. By our assumption regarding the set of triples $\mathscr{C}^{\prime \prime}$ we have $\left|\bigcup \mathscr{C}^{\prime \prime}\right| \leq\left|\mathscr{C}^{\prime \prime}\right|+1$ and so, if we let $W_{i}:=\bigcup S_{i}$ we have $\bigcup \mathscr{C}^{\prime \prime}=\bigcup_{i=1}^{k} W_{i}$, and consequently:

$$
\begin{equation*}
\left|\bigcup_{i=1}^{k} W_{i}\right| \leq \sum_{i=1}^{k}\left|S_{i}\right|+1 \tag{8}
\end{equation*}
$$

For $\mathscr{C}^{\prime}:=\left\{Y_{1}, \ldots, Y_{k}\right\} \subseteq \mathscr{C}$, we have:

$$
\begin{equation*}
\left|\bigcup \mathscr{C}^{\prime}\right| \geq \sum_{i=1}^{k}\left(\left|Y_{i}\right|-2\right)+2=\sum_{i=1}^{k}\left|Y_{i}\right|-2 k+2 \tag{9}
\end{equation*}
$$

On the other hand:

$$
\left|\bigcup \mathscr{C}^{\prime}\right| \leq\left|\bigcup_{i=1}^{k} W_{i}\right|+\sum_{i=1}^{k}\left(\left|Y_{i}-W_{i}\right|\right)=\left|\bigcup_{i=1}^{k} W_{i}\right|+\sum_{i=1}^{k}\left(\left|Y_{i}\right|-\left|W_{i}\right|\right)
$$

since $W_{i} \subseteq Y_{i}$. By the condition imposed on the construction of \mathscr{C}_{Y}, we have $\left|W_{i}\right| \geq\left|S_{i}\right|+2$ for each i, and so substituting this and (8) into the previous inequality gives:

$$
\left|\bigcup \mathscr{C}^{\prime}\right| \leq \sum_{i=1}^{k}\left|S_{i}\right|+1+\sum_{i=1}^{k}\left|Y_{i}\right|-\sum_{i=1}^{k}\left(\left|S_{i}\right|+2\right)=\sum_{i=1}^{k}\left|Y_{i}\right|-2 k+1
$$

which, compared with (9), gives $1 \geq 2$, a contradiction. This establishes that C_{*} satisfies Inequality (1) in Theorem 1.1.
By Theorem 1.1 it now follows that there is a tree $T=(V, E)$ with leaf set X for which the function $S \mapsto \operatorname{med}_{T}(S)$ is injective from \mathscr{C}_{*} to the set of interior vertices of T. Now for $Y \in \mathscr{C}$, we have:

$$
\begin{equation*}
\operatorname{med}_{T}(Y)=\left\{\operatorname{med}_{T}(S): S \subseteq Y,|S|=3\right\}=\left\{\operatorname{med}_{T}(S): S \in C_{Y}\right\} \tag{10}
\end{equation*}
$$

The second equality in (10) requires some justification. Recalling our particular choice of C_{Y} from (7), and noting that the medians of the triples in C_{Y} are distinct vertices of T, it follows that $T \mid Y$ has the structure of a path connecting y_{1}, y_{2} with each of the remaining leaves $y \in Y-\left\{y_{1}, y_{2}\right\}$ separated from this path by just one edge. Consequently, if a vertex v of T is the median of three leaves in Y then it is also the median of a triple $\left\{y_{1}, y_{2}, y\right\}$ for some $y \in Y-\left\{y_{1}, y_{2}\right\}$; that is, it is an element of $\left\{\operatorname{med}_{T}(S): S \in C_{Y}\right\}$.

Consequently, $\left\{\operatorname{med}_{T}(Y): Y \in \mathscr{C}\right\}$ are disjoint subsets of the set of interior vertices of T. Moreover, each interior vertex of T is covered by $\left\{\operatorname{med}_{T}(Y): Y \in \mathscr{C}\right\}$ since the number of interior vertices is $|X|-2$ and, by assumption, $|X|-2=\sum_{Y \in \mathscr{C}}(|Y|-2)=\left|\mathscr{C}_{*}\right|$. This establishes the implication $(2) \Rightarrow(1)$ and thereby completes the proof.

Acknowledgement

We thank the New Zealand Marsden Fund for supporting this work.

References

[1] S. Böcker, A.W.M. Dress, Patchworks, Advances in Mathematics 157 (1) (2001) 1-21.
[2] C. Semple, M. Steel, Phylogenetics, Oxford University Press, 2003.
[3] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.

[^0]: * Corresponding author.

 E-mail addresses: andreas@picb.ac.cn (A. Dress), m.steel@math.canterbury.ac.nz (M. Steel).

