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a b s t r a c t

Given a collection C of subsets of a finite set X , let
⋃

C = ∪S∈C S. Philip Hall’s celebrated
theorem [P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26–30]
concerning ‘systems of distinct representatives’ tells us that for any collectionC of subsets
of X there exists an injective (i.e. one-to-one) function f : C → X with f (S) ∈ S for all
S ∈ C if and and only if C satisfies the property that for all non-empty subsets C ′ of C ,
we have |

⋃
C ′| ≥ |C |. Here, we show that if the condition |

⋃
C ′| ≥ |C ′| is replaced

by the stronger condition |
⋃

C ′| ≥ |C ′| + 2, then we obtain a characterization of this
condition for a collection of 3-element subsets of X in terms of the existence of an injective
function from C to the vertices of a tree whose vertex set includes X and which satisfies
a certain median condition. We then describe an extension of this result to collections of
arbitrary-cardinality subsets of X .

© 2009 Elsevier Ltd. All rights reserved.

1. First result

Given a tree T = (V , E) and a subset S of V of size 3, say S = {x, y, z}, consider the path in T connecting x, y, the path
connecting x, z and the path connecting y, z. There is a unique vertex that is shared by these three paths, themedian vertex
of S in T , denoted medT (S). Our first result provides an analogue of Hall’s theorem [3] described in the abstract.

Theorem 1.1. Let X be a finite set, and suppose that C ⊆

(
X
3

)
, and

⋃
C = X. The following are equivalent:

(1) There exists a tree T = (V , E) with X ⊆ V for which the function S 7→ medT (S) from C to V is injective.
(2) There exists a tree T = (V , E) with X as its set of leaves, and all its other vertices of degree 3, for which the function
S 7→ medT (S) from C to the set of interior vertices of T is injective.

(3) C satisfies the following property. For all non-empty subsets C ′ of C , we have:∣∣∣⋃ C ′
∣∣∣ ≥ |C ′| + 2. (1)

In order to establish Theorem 1.1, we first require a lemma.
Recall from [1] that a collection P of subsets of a setM forms a patchwork if it satisfies the following property:

A, B ∈ P and A ∩ B 6= ∅ H⇒ A ∩ B, A ∪ B ∈ P .

Lemma 1.2. Let X be a finite set, and suppose that C ⊆

(
X
3

)
, and

⋃
C = X. If C satisfies the condition described in Part (3) of

Theorem 1.1 then the collection P of non-empty subsets C ′ of C that satisfy |
⋃

C ′| = |C ′| + 2 forms a patchwork.
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Proof. Suppose C1, C2 ⊆ C , and that C1 ∩ C2 6= ∅. Consider

K :=
∣∣∣⋃(C1 ∩ C2)

∣∣∣+ ∣∣∣⋃(C1 ∪ C2)

∣∣∣ .
By (1), we have:

K ≥ (|C1 ∩ C2| + 2)+ (|C1 ∪ C2| + 2) = |C1| + |C2| + 4, (2)

and we also have:

K ≤
∣∣∣(⋃ C1

)
∩

(⋃
C2

)∣∣∣+ ∣∣∣(⋃ C1

)
∪

(⋃
C2

)∣∣∣ = ∣∣∣⋃ C1

∣∣∣+ ∣∣∣⋃ C2

∣∣∣ . (3)

Notice that the right-hand term in (2) and (3) are equal, since |
⋃

Ci| = |Ci| + 2 as Ci ∈ P for i = 1, 2, and thus the
inequality in (2) is an equality. Therefore |

⋃
(C1 ∩ C2)| = |C1 ∩ C2| + 2 and |

⋃
(C1 ∪ C2)| = |C1 ∪ C2| + 2, as required. �

Proof of Theorem 1.1. The implication (2)⇒ (1) is trivial. For the reverse implication suppose that T satisfies the property
described in (2). First delete from T any vertices and edges that are not on a path between two vertices in X . Next attach to
every interior (non-leaf) vertex v ∈ X a new edge for which the adjacent new leaf is assigned the label x, and henceforth do
not regard v as an element of X . Next replace each maximal path of degree 2 vertices by a single edge. Finally, replace each
vertex v of degree d > 3 by an arbitrary tree that has d leaves that we identify with the neighboring vertices of v and whose
remaining vertices have degree 3. These four processes result in a tree T ′ that has X as its set of leaves, and which has all its
remaining vertices of degree 3 (i.e. a ‘binary phylogenetic X-tree’ [2]) and for which the median vertices of the elements of
C remain distinct. Thus (1) and (2) are equivalent.
Next we show that (2)⇒ (3). Suppose T satisfies the condition (2) and that C ′ is a non-empty subset of C . Consider

the minimal subtree of T that connects the leaves in
⋃

C ′. This tree has at least |C ′| interior vertices that are of degree 3.
However, by a simple counting argument, any tree that has k interior vertices of degree 3 must have at least k + 2 leaves,
and so (1) holds.
The remainder of the proof is devoted to establishing that (3)⇒ (2). We use induction on n := |X |. The result clearly

holds for n = 3, so suppose it holds whenever |X | < n, n ≥ 4 and that X is a set of size n. For x ∈ X , let nC (x) be the
number of triples in C that contain x. If there exists x ∈ X with nC (x) = 1, then select the unique triple in C containing x,
say {a, b, x} and let X ′ = X − {x}, C ′ = C − {{a, b, x}}. Then

⋃
C ′ = X ′ and C ′ satisfies condition (1) and so, by induction,

there is a tree T ′ with leaf set X ′ for which the median vertices of elements in C ′ are all distinct vertices of T ′. Let T be the
tree obtained from T ′ by subdividing one of the edges in the path in T ′ connecting a and b, and making the newly-created
vertex of degree 2 adjacent to x by a new edge. Then T satisfies the requirements of Theorem 1.1(2), and thereby establishes
the induction step in this case.
Thus we may suppose that nC (x) > 1 holds for all x ∈ X . In this case, we claim that there exists x ∈ X with nC (x) = 2.

Let us count the setΩ := {(x, S) : x ∈ S ∈ C } in two different ways. We have:

|Ω| =
∑
x∈X

nC (x) ≥ 2k+ 3(n− k), (4)

where k = |{x ∈ X : nC (x) = 2}|.
On the other hand:

|Ω| = 3|C | ≤ 3(n− 2), (5)

where the latter inequality follows from Inequality (1) applied toC ′ = C . Combining (4) and (5) gives 2k+3(n−k) ≤ 3n−6,
and so k ≥ 6. Thus, since k > 0, there exists x ∈ X with nC (x) = 2, as claimed.
For any such x ∈ X with nC (x) = 2, let {a, b, x} and {a′, b′, x} be the two elements of C containing x. Without loss of

generality there are two cases:

(i) a = a′, b 6= b′; or
(ii) {a, b} ∩ {a′, b′} = ∅.

In case (i), let:

X ′ := X − {x}, C ′ := C −
{
{a, b, x}, {a, b′, x}

}
, C1 := C ′ ∪

{
{a, b, b′}

}
.

Note that
⋃

C1 = X ′. Suppose that C1 fails to satisfy the condition described in Part (3) of Theorem 1.1. Then there is a
subset of C1 that violates Inequality (1) of the form C 1 ∪

{
{a, b, b′}

}
where a, b, b′ ∈

⋃
C 1 and C 1 ⊆ C ′. But in that case

C 1 ∪
{
{a, b, x}, {a, b′, x}

}
would violate Inequality (1), which is impossible since Inequality (1) applies to this set, being a

non-empty subset of C . Thus, C1 satisfies Part (3) of Theorem 1.1. Since
⋃

C1 = X ′, which has one less element than X ,
the inductive hypothesis furnishes a tree T ′ with leaf set X ′ that satisfies the requirements of Theorem 1.1(2). Now consider
the edge of T ′ that is incident with leaf b′. Subdivide this edge and make the newly-created midpoint vertex adjacent to a
leaf labelled x. This gives a tree T that has X as its set of leaves, and with all its interior vertices of degree 3; moreover, the
medians of the elements of C are all distinct (note that the median of {x, a, b′} is the newly-created vertex adjacent to x,
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while the median of {x, a, b} corresponds to the median vertex of {a, b, b′} in T ′ and therefore is a different vertex in T to
any other median vertex of an element of C ).
In case (ii), let:

X ′ := X − {x}, C ′ := C −
{
{a, b, x}, {a′, b′, x}

}
,

and let:

C1 := C ′ ∪ {{a, a′, b}}, C2 := C ′ ∪
{
{a, a′, b′}

}
.

Note that
⋃

C1 =
⋃

C2 = X ′. We will establish the following:
Claim: One or both of C1 or C2 satisfies the condition described in Part (3) of Theorem 1.1.
Suppose to the contrary that both sets fail the condition described in Theorem1.1(3). Then there is a subset ofC1 that violates
Inequality (1), and it must be of the form C 1 ∪ {{a, a′, b}} where C 1 ⊆ C ′, a, a′, b ∈

⋃
C 1 and b′ 6∈

⋃
C 1 (the last claim

is justified by the observation that if b′ ∈
⋃

C 1 then C 1 ∪
{
{a, b, x}, {a′, b′, x}

}
would violate the condition described in

Part (3) of Theorem 1.1). Similarly a subset of C2 that violates Inequality (1) is of the form C 2 ∪
{
{a, a′, b′}

}
where C 2 ⊆ C ′,

a, a′, b′ ∈
⋃

C 2 and b 6∈
⋃

C 2. Now, let P be the subset of C defined in the statement of Lemma 1.2. Then the sets

C1 := C 1 ∪
{
{x, a, b}, {x, a′, b′}

}
; and C2 := C 2 ∪

{
{x, a, b}, {x, a′, b′}

}
are both elements of P and they have non-empty intersection, since they both contain {x, a, b} (indeed, they also share
{x, a′, b′}). Thus, Lemma 1.2 ensures that C1 ∩ C2 is also an element of P . However C1 ∩ C2 is of the form C 3 ∪{
{x, a, b}, {x, a′, b′}

}
where C 3 ⊆ C ′, and neither x, b, nor b′ is an element of

⋃
C 3 because, by our choice of x, x only

occurs in the two triples {x, a, b} and {x, a′, b′}, and because b′ 6∈
⋃

C 1 and b 6∈
⋃

C 2. Since C 3 is a subset of C , C 3 satisfies
Inequality (1), which implies that (1) must be a strict inequality for C1 ∩ C2, contradicting our assertion that C1 ∩ C2 ∈ P .
This justifies our claim that either C1 or C2 satisfies part (3) of Theorem 1.1.
We may suppose then, without loss of generality, that C1 satisfies part (3) of Theorem 1.1. Since

⋃
C1 = X ′, which

has one less element than X , the inductive hypothesis furnishes a tree T ′ with leaf set X ′ that satisfies the requirements of
Theorem 1.1(2). Now, consider the edge of T ′ that is incident with leaf a′. Subdivide this edge and make the newly-created
midpoint vertex adjacent to a leaf labelled x by a new edge. This gives a tree T that has X as its set of leaves, and with
all vertices of degree 3; moreover, regardless of where b′ attaches in T , the medians of the elements of C are all distinct
(note that the median of {x, a′, b′} is the newly-created vertex adjacent to x, while the median of {x, a, b} corresponds to the
median vertex of {a, a′, b} in T ′ and therefore is a different vertex in T from any other median vertex of an element of C ).
This completes the proof. �

2. An extension

For a subset Y of X of size at least 3, and a tree T = (V , E), with X ⊆ V , let

medT (Y ) := {medT (S) : S ⊆ Y , |S| = 3}.

Thus, medT (Y ) is a subset of the vertices of T . Moreover, if X is the set of leaves of T then medT (Y ) is a subset of the interior
vertices of T .

Theorem 2.1. Let X be a finite set, and suppose that C is a collection of subsets of X, each of size at least 3, and with
⋃

C = X.
The following are equivalent:
(1) There exists a tree T = (V , E) with X as its set of leaves, and all its other vertices of degree 3, for which {medT (Y ) : Y ∈ C }

is a partition of the set of interior vertices of T .
(2) C satisfies the following property. For all non-empty subsets C ′ of C , we have:∣∣∣⋃ C ′

∣∣∣− 2 ≥ ∑
Y∈C ′

(|Y | − 2), (6)

and this last inequality is an equality when C ′ = C .

Proof. We first show that (1)⇒ (2). Select a tree T satisfying the requirements of Part (1) of Theorem 2.1. For a non-empty
subset C ′ of C , the minimal subtree T ′ of T connecting the leaves in

⋃
C ′ has k := |

⋃
C ′| leaves, and k − 2 vertices that

are of degree 3. By the partitioning assumption, each element Y ∈ C ′ generates |Y | − 2 median vertices in T and these sets
of median vertices are pairwise disjoint for different choices of Y ∈ C ′. Moreover, distinct interior vertices of T correspond
to different degree 3 vertices in T ′, and so the number of degree 3 vertices in T ′ can be no smaller than the sum of |Y | − 2
over all Y ∈ C ′. This establishes Inequality (6). For the case where C ′ = C , note that T has

⋃
C = X as its leaf set and,

by the partitioning assumption, each of its |X | − 2 interior vertices occurs in one set medT (Y ) for some Y ∈ C , and so
|X | − 2 ≤

∑
Y∈C ′(|Y | − 2)which, combined with (6), provides the desired equality.

To show (2)⇒ (1), select for each set Y ∈ C a collection CY of 3-element subsets of X of cardinality |Y | − 2 for which⋃
CY = Y and which satisfies the condition that for every non-empty subset C ′ of CY , we have

⋃
C ′ ≥ |C ′| + 2; such a
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selection is straightforward — for example, if Y = {y1, . . . , ym} then we can take:

CY =
{
{y1, y2, y3}, {y1, y2, y4}, . . . , {y1, y2, ym}

}
. (7)

We first establish the following:
Claim: C∗ := ∪Y∈C CY is a collection of 3-element subsets of X that satisfies Inequality (1) in Theorem 1.1.
To see this, suppose to the contrary that there exists a subset C ′′ of C∗ for which Inequality (1) fails. Write C ′′ =

S1 ∪ S2 ∪ · · · ∪ Sk where 1 ≤ k ≤ |C | and where Si is a non-empty set of 3-element subsets of X that are selected from
the same set (let us call it Yi) from C (note that the fact that |Y1 ∪ Y2| − 2 ≥ |Y1| − 2 + |Y2| − 2 must hold for all Y1, Y2
in C implies that |Y1| + |Y2| − |Y1 ∩ Y2| − 2 ≥ |Y1| − 2 + |Y2| − 2 and, hence, 2 ≥ |Y1 ∩ Y2| must hold for all Y1, Y2 in
C ). By our assumption regarding the set of triples C ′′ we have |

⋃
C ′′| ≤ |C ′′| + 1 and so, if we let Wi :=

⋃
Si we have⋃

C ′′ =
⋃k
i=1Wi, and consequently:∣∣∣∣∣ k⋃

i=1

Wi

∣∣∣∣∣ ≤ k∑
i=1

|Si| + 1. (8)

For C ′ := {Y1, . . . , Yk} ⊆ C , we have:∣∣∣⋃ C ′
∣∣∣ ≥ k∑

i=1

(|Yi| − 2)+ 2 =
k∑
i=1

|Yi| − 2k+ 2. (9)

On the other hand:∣∣∣⋃ C ′
∣∣∣ ≤ ∣∣∣∣∣ k⋃

i=1

Wi

∣∣∣∣∣+ k∑
i=1

(|Yi −Wi|) =

∣∣∣∣∣ k⋃
i=1

Wi

∣∣∣∣∣+ k∑
i=1

(|Yi| − |Wi|),

sinceWi ⊆ Yi. By the condition imposed on the construction of CY , we have |Wi| ≥ |Si| + 2 for each i, and so substituting
this and (8) into the previous inequality gives:∣∣∣⋃ C ′

∣∣∣ ≤ k∑
i=1

|Si| + 1+
k∑
i=1

|Yi| −
k∑
i=1

(|Si| + 2) =
k∑
i=1

|Yi| − 2k+ 1,

which, compared with (9), gives 1 ≥ 2, a contradiction. This establishes that C∗ satisfies Inequality (1) in Theorem 1.1.
By Theorem 1.1 it now follows that there is a tree T = (V , E) with leaf set X for which the function S 7→ medT (S) is

injective from C∗ to the set of interior vertices of T . Now for Y ∈ C , we have:

medT (Y ) = {medT (S) : S ⊆ Y , |S| = 3} = {medT (S) : S ∈ CY }. (10)

The second equality in (10) requires some justification. Recalling our particular choice of CY from (7), and noting that the
medians of the triples in CY are distinct vertices of T , it follows that T |Y has the structure of a path connecting y1, y2 with
each of the remaining leaves y ∈ Y − {y1, y2} separated from this path by just one edge. Consequently, if a vertex v of T
is the median of three leaves in Y then it is also the median of a triple {y1, y2, y} for some y ∈ Y − {y1, y2}; that is, it is an
element of {medT (S) : S ∈ CY }.
Consequently, {medT (Y ) : Y ∈ C } are disjoint subsets of the set of interior vertices of T . Moreover, each interior

vertex of T is covered by {medT (Y ) : Y ∈ C } since the number of interior vertices is |X | − 2 and, by assumption,
|X | − 2 =

∑
Y∈C (|Y | − 2) = |C∗|. This establishes the implication (2)⇒ (1) and thereby completes the proof. �
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