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Abstract--A large class of ocean-atmosphere models exists in which the ocean state is coupled 
to the model of the atmosphere only through the anomalies of the ocean state. The sea surface 
temperatures are defined with respect to a mean reference state, i.e., they are the difference between 
the ocean state and a reference state. Due to coupled model drift, the choice of reference state is 
important and it can have a large impact on the variability in the model. The reference state can 
be calculated as an average throughout the coupled simulation and various methods of doing this 
(moving average, exponentially weighted moving average and accumulated mean) are compared in 
this note. The accumulated mean method appears to be the sole method of the three which gives both 
unbiased anomalies and a convergent reference state. It is recommended for use in anomaly-coupled 
models for improving variability and predictability. (~) 1998 Elsevier Science Ltd. All rights reserved. 

Keywords Climate, Variability, Predictability, Anomaly coupled models, Moving averages. 

1. M O T I V A T I O N  

A large class of ocean-atmosphere models exists in which the ocean state is coupled to the model 
of the a tmosphere only through the anomalies of the ocean state. The anomalies are defined with 
respect to a mean reference state, i.e., they are the difference between the ocean s tate  and the 

reference state. In general, the reasons for this are 

• to minimize the coupled model drift which can lead to poor predictabili ty [1], or 
• to accommodate  an atmosphere model based on a linearisation about  the mean state [2]. 
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In such nonlinear coupled models, the results can depend strongly on the choice of the reference 
state. This has been shown by Maclas and Stephenson [3] for a hybrid coupled model of the 
Pacific. There is no a priori reason that  the mean state for the coupled model must also be the 
reference state and, indeed, the two states differ in general. However, this gives rise to anomalies 
which do not vary about  zero but which are permanently either positively or negatively biased. 
Realistic variability and good predictability require that  one choose the reference state equal to 
the coupled model's mean state but  this leads to a question because the coupled model's mean 
is not known in advance. 

One can imagine an iterative method whereby a series of coupled model runs is performed, 
each run using the mean state of all the previous runs as its reference state. This seems a 
reasonable approach, though due to hysteresis, there is no proof tha t  this method will converge. 
The limiting case of this method wherein the length of each run goes to zero gives rise to the 
continuous ACcumulated MEan (ACME) adaptive method for which one accumulates the mean 
state throughout  the run and uses it as an evolving reference state. The ACME method was 
developed by Macfas and Stephenson [3] for use in an intermediate coupled model of the tropical 
Pacific; it was shown to give improved variability. The use of this method in predictability studies 
of anomaly-coupled models would be of great interest. It could help reduce the erroneous drift 
which can occur once the model is coupled. The aim of this short note is to present the method 
and to compare it with other possible methods. 

2. N O T A T I O N  

Consider the Sea Surface Temperature (SST) at some grid point on a certain day in year n of 
the coupled run (as an example) and denote this as Tn. The reference temperature  can be allowed 
to evolve throughout  the coupled run and is denoted by Tn. Hence, the SST anomaly in year n 
can be writ ten as An = T,~ - Tn and it is this anomaly which is passed to the atmosphere model 
for coupling. In order to quantify the convergence of the reference temperature,  it is also useful 
to introduce the definition of a convergence error, e,~, where ~n = Tn - Tn- l -  Note that  in all 
these definitions, there is no explicit mention of the calendar date. Thus, the methods presented 
below are valid no mat ter  what  the frequency of the coupling of atmosphere and ocean models, 
be it days, weeks, months, etc. 

It  is desirable to define the reference temperature  so that  the following properties are satisfied. 

1. U n b i a s e d  a n o m a l i e s .  After a sufficiently long time, the reference temperature  should 
represent the mean of the coupled model temperatures so that  the anomalies are unbiased 
and fluctuate about  zero. The long-time mean of the anomalies should be zero, E(A)  = 0. 

2. C o n v e r g e n c e .  After many years of a coupled run, the reference temperature  should 
converge uniformly to a climatological value independent of the year. Tha t  is to say, 

lim [[ en [[--* 0. (1) 
n - - * O O  

This implies tha t  the long-time variance of the convergence error equals zero, Vaz(~) = 
E(e  2) = 0, where the identity E(e) = 0 has been used. 

A method sufficient to guarantee these properties will be presented in the next section. 

3. D E F I N I N G  T H E  R E F E R E N C E  

In this section, various methods for defining an average reference temperature  throughout the 
coupled simulation will be described and their strengths and weaknesses discussed. 

3.1. M o v i n g  A v e r a g e  ( M A )  

Perhaps the simplest method that  can be envisaged is a climatological moving average 1 over 
the previous few years of the coupled simulation. Mathematically this can be expressed as 

1Also commonly k n o w n  as  a r u n n i n g  m e a n .  
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m - 1  

k=O 

where m equals the number of years averaged over. It  can be seen from this that  the time-mean 
of the reference temperature  is equal to the time-mean of the temperature  and that  the anomalies 
are unbiased. The expression can be rewritten in an iterative form as 

Tn "~ Tn- I  -+" & (T n  -- Tn-m),  (3) 
m 

and hence, it can be shown that  Var(e) = Var(Tn - T n - m ) / m  which can be expressed as Vat(e) = 
2 Var(T)(1 - rm)/m where rm is the m-year lag autocorrelation coefficient of T and generally is 
less than unity. From this it can be seen that  the long-time variance of the error is in general not 
zero, and hence, tha t  the reference temperature  does not converge. As a consequence of the sharp 
edges on the moving-averages filter, the reference temperature oscillates in time. This effect is 
well known; even the moving average of a stochastic series can give rise to an oscillatory series, 
a phenomenon known as the Slutsky-Yule effect [4]. Such spurious oscillations on the reference 
temperature  are dangerous; they can give rise to artificial variability via nonlinearities in the 
coupled model. 

3.2. Exponent ia l ly  Weighted Moving Average ( E W M A )  

An alternative method proposed by Holt [5] and frequently used in econometric and financial 
predictions, is the Exponentially Weighted Moving Average defined as 

Tn --  ocTn-1 -{- (1 -- a)Tn, (4) 

where (~ is an arbi t rary constant. In econometric predictions, a typical value of the constant 
is c~ = 0.7 (see for example [6]) his method weights recent values more highly than previous 
values in contrast  to the previous moving average method. The time-mean of this equation is 
(1 - a ) E ( A )  = 0, and hence, the anomalies are guaranteed to be unbiased if c~ is not unity. One 
can also easily obtain the identity 

~ .  = (1 - ~ ) A . ,  (5)  

which relates the convergence errors to the anomalies. From this identity, it can be seen that  the 
errors can only converge to zero if a is unity or if the anomalies converge to zero. Since neither 
condition holds, it is evident tha t  this method also does not converge. An adaptive method 
whereby a is allowed to converge to unity in the long-time limit would alleviate this problem, 
but at the price of having biased anomalies. As an alternative, the following method will be 
shown to have an a which converges to unity giving a convergent reference temperature  as well 
as anomalies tha t  are unbiased. 

3.3. A c c u m u l a t e d  M e a n  ( A C M E )  

Consider a reference temperature  defined as the mean accumulated since m years before the 
start  of the coupled simulation 

T. = \l¢:oTk + mTc , (6) 

where it is assumed that  the temperature  is equal to the reference climatology Tc before the start  
of the simulation and that  To is the temperature  from the initial year of the coupled run. This 
can be recast as 

T ,  = a , T , - 1  + (I - a , ) T , ,  (7) 
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where a t ime evolving an  is defined as 

n+m 
a. = . (8) 

n + r a + l  

This value monotonically increases from m/(m + I) to unity throughout the simulation, and 

hence, represents an elaboration of the EWMA method. After numerical testing the choice of 

rn = 2 appears to be desirable giving an initial ~ = 2/3 which is close to c~ = 0.7. The identity 

of equation (5) still holds albeit with a time-varying c~. Because ~ converges to unity in the 

long time limit, this method is guaranteed to converge, providing only that the variance of the 

temperature anomalies remains finite. Furthermore, the reference temperature converges to the 

mean temperature in the long-time limit and hence the anomalies are unbiased. This ACME 

method appears desirable to use in defining a mean reference temperature for anomaly-coupled 

models. 

3.4. R e l a t e d  M e t h o d s  

In [7], a related method of using long-term annual means has been successfully applied in calcu- 
lating the flux correction in the spin-up phase of a fully coupled global climate model simulation. 

A double time integration was needed in order to damp out spurious oscillations coming from 

the first bias correction. 

4. C O N C L U D I N G  R E M A R K S  

Various methods have been presented for defining a reference state. All have the property that  
the mean of the reference state is the mean state. Hence, all the anomalies have zero mean and 
are, therefore, unbiased. Of the methods examined, only the ACME method has the property 
tha t  the reference s tate  converges to the mean state  in the long t ime limit. I t  is, therefore, 
preferable for use in climate models. The ACME method affords a way of smoothly  interpolating 
in t ime between the reference climatology and the mean state of the coupled model. The choice of 
m = 2 appears  to be reasonable and corresponds in the initial year to the typical EWMA model 
used in financial predictions. Using the ACME method to define the reference state obviates 
the difficult choice of reference s tate  and provides a natural  basic s tate  about  which to define 
anomalies in anomaly coupled climate models. The method gives unbiased anomalies, helps to 
improve variability and, in many  cases, will improve even short te rm predictions. I t  is currently 
being employed today  (see [8]), and has performed favorably. 
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