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Abstract 

Ultrasonic imaging is often used to estimate blood flow velocity. Estimates are currently performed by Doppler-based techniques

but they suffer from some shortcomings. This article compares four vector velocity estimation methods complementary to 

Doppler. Each method has been applied to six sequences, simulated and experimental, with various flow parameters. Results are 

presented in several curves and show specificities of each method. 
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1. Introduction 

Blood velocity estimation is required in many clinical applications. Ultrasonic imaging is often used to reach this 

goal because of its ability to provide images in real-time. Currently, for clinical diagnosis, velocity estimates are 

performed by Doppler-based techniques. Results are displayed at a frame rate close to B-mode images acquisition 

rate. Several techniques using the Doppler effect have been proposed. Notably, Kasai [1] has developed a real-time 

autocorrelation estimator that evaluates the average phase shift related to the axial velocity. However, Doppler 

techniques suffer from a number of limitations: 

- low velocities are inadequately estimated 

- and the spatial resolution of the results is limited 

Moreover, only the axial component of the velocity is estimated. Consequently,  

- the flow orientation must be known to estimate the velocity modulus 

- and the angle between the flow and the probe into the imaging plane must be smaller than 60°. 

New methods have been proposed to overcome these shortcomings. Ferrara and Algazi [2] proposed a maximum 

likelihood estimator for velocity from a stochastic model of the signal from a point scatterer. It exploits the effect of 

the scatterer velocity on both the time delay and the shift in frequency. In order to estimate vector velocity instead of 

the only axial component, original approaches have been developed. The most known is the speckle tracking 

presented by Bohs et al. [3]. It is based on the maximization of a similarity measure between two blocks from two 

successive images. Basarab et al. proposed an evolution of this approach based on a bilinear deformable model. This 

model is then well adapted to blood flow evaluation since it estimates subpixelic displacements [4-5]. Jensen et al. 

[6] suggested using directional beamforming to estimate both magnitude and orientation of the flow. Other methods 

exploit the statistics of ultrasonic images [7-8]. They associate targets velocity to signal decorrelation. Recently, 

Marion et al. [9-10] presented a velocity estimator based on a bank of spatiotemporal oriented filters. Besides, 

Oddershede et al. [11] proposed two estimators based on the search of the plane in the 3D Fourier space where 

energy is essentially concentrated. 

In this article, we propose to compare four vector velocity estimation methods [3,5,8,9] applied to flow imaging. 

We are particularly interested in cases where Doppler techniques are inefficient. Thus, we will study cases with flow 

angles between 60° and 90° (longitudinal flow). This comparison is performed on experimental and simulated data. 

In section B.1, we recall the principles of the several methods. In section B.2, we give details about the data used. 

The results are presented in section C then discussed in section D. Finally, we conclude about advantages and 

drawbacks of each method. 

2. Methods and material 

2.1. Blood flow estimation methods  

The goal of this study is to provide quantitative results about performances of the estimates performed with 

different methods for various flow cases. The different methods compared in this paper are: 

- block matching (BM) [3] 

- bilinear deformable block matching (BDBM) [5] 

- speckle flow index (SFI) [8] 

- spatiotemporal filtering (STF) [9] 

These four methods are rapidly presented in the next four sections. 
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2.1.1. Block matching 

The method presented in [3] is a block-matching method. It is called speckle tracking in ultrasound imaging. The 

principle of the method is to find the better block in image 2 compared to a reference block defined in image 1. The 

better block is found by an algorithm that minimizes a similarity criterion. Several cost functions can be 

implemented, for examples: the sum of square distances (SSD), the normalized cross correlation (NCC) or the sum 

of absolute distances (SAD) which is used for this study. The factor of interpolation is set to 9. 

2.1.2. Bilinear deformable block matching 

The method presented in [5] uses a parametrical motion model for controlling the local deformations. Thus, in 

contrast to classical BM method, this method employs a bilinear model with eight parameters instead of pure 

translations. With BDBM method, a collection of nodes is placed on top of the reference image. The bilinear 

parameters are estimated in rectangular regions of interest taken around each node. This is achieved using an 

iterative approach. Note that with this method the size of the ROIs is considered larger than the mesh step, which 

involves an overlapping between neighbouring regions of interest. This overlapping is taken into account when 

computing the dense displacement field. The factor of interpolation is set to 9. 

2.1.3. Speckle flow index 

The method presented in [8] is based on a spatiotemporal analysis of the changes of the speckle pattern. The 

amount of change in the morphology of the speckle along time is directly related to the second order statistics. The 

decorrelation law during time of the speckle in a fluid depends on the flow velocity, on the point spread function of 

the imaging system (PSF) and on the framerate. The principle of the SFI method consists in the estimation of the 

normalized local temporal variance of one pixel across the direction z directly from image sequences. It takes into 

account the specificity of the images (emitting frequency, spatial resolution, flow range, temporal sampling rate). 

2.1.4. Spatiotemporal filtering 

The method presented in [9] is based on a spatiotemporal approach. A sequence in translation leaves a trace of 

speckle in the 2D+t volume of data. Thus, motion is related to texture orientation in the spatiotemporal domain. 

Each pixel of the sequence has a different velocity and consequently the orientation is local. The authors estimate 

orientations locally by using a bank of 3D oriented filters then deduce dense fields of velocities. Note that this 

method performs estimates with a temporal neighbouring of around ten frames whereas block-matching methods use 

only two frames. 

2.2. Material

The four methods presented in the previous section have been applied to six flow sequences with different 

velocities and orientation. Four sequences were simulated by a system approach with a 3D set of moving scatterers. 

Two sequences were realized by injecting blood mimicking fluid in a wall-less calibrated flow phantom. The two 

following sections give details about these data. 

2.2.1. Simulated sequences 

Blood flow sequences have been simulated in order to compare the methods. The simulation was based on the 

system approach of Meunier & Bertrand [12]. In order to have a realistic simulation, a 3D set of scatterers have been 

generated then displaced following a paraboloid law. The diameter of the vessel was equal to 1mm. An out-of-plane 

angle equal to 5° was used for the simulation in order to be closer to real situations. The convolution was performed 

by using a numerical convolution algorithm after approximation of the scatterers to nodes of a sampled grid. RF 
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images were demodulated then log-compressed to create sequences of B-mode images at 30 frames per second.

Central frequency was set to 40MHz. Axial and lateral resolutions are respectively equal to 40µm and 80µm.

Let us define  the angle between the probe and the vessel into the imaging plane and v  the mean velocity. The

four simulated sequences are:

 S1 with and90 0.4 /v mm s
80 S2 with and 0.4 /v mm s
70 S3 with and 0.8 /v mm s
60 S4 with and 0.8 /v mm s

90

2.2.2. Experimental sequences

A phantom in gelatin was used to simulate biological tissues. Silica was added to the composition of the phantom

to replace scatterers. A blood vessel (diameter < 1mm) was constructed inside the phantom. Blood-mimicking fluid

(BMF) [13] was injected into the vessel using a motor-controlled pump (Pump 11, Harvard Apparatus). The mean

velocity was smaller than 1mm/s. The fluid consists of 5µm diameter nylon scattering particles (Orgasol, ELF, 

Atochem, Paris, France). It has been shown that the characteristics of BMF are close to those of human blood. 

An ultrasonic system (Vevo 660, Visualsonics, Toronto) operating at 40MHz was used to acquire sequences of 

300 B-mode images at 30 frames per second. Axial and lateral resolutions are respectively equal to 40µm and 80µm.

The two experimental sequences are: 

 S5 with and 0.5 /v mm s
80 S6 with and 0.53 /m sv m

3. Results

3.1. Performance criteria

Each of the four methods (BM, BDBM, SFI and STF) has been applied to the six sequences. Each method
provided for each sequence a dense field of velocities into a ROI. We selected 15 velocity profiles for a given
column along the time. Then, we computed means and standard deviations along the 15 temporal estimates. Thus,
each method provides for each sequence two vectors containing means and standard deviations corresponding to a 
velocity profile inside the vessel.

We define several performance criteria to quantify the accuracy of estimates with each of the methods. The first

one is the computation timeT. We define two criteria xE and y as the normalized mean error onE xv  and yv . Fig. 

1 represents the vector velocity components xv  and  within the frame of reference (x,y,z). The general

expression of the mean error is given in Eq. (1): 
yv

1

ˆ1 N
i

i mean

v vE
N v

i

ˆiv mean

 (1)

with the estimated velocity at depth i , the theoretical value according to the parabolic profile and v the

mean velocity of the flow.

iv
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Fig.1 Definition of the vector velocity components within the schematic frame of reference (x,y,z)

Two others measures are the normalized mean standard deviations xstd and ystd  on v  and  whose the

general expression is expressed in Eq. (2):
x yv

1

1 N
i

i mean

stdstd
N v

 (2)

istd  is the standard deviation calculated at depth .iwhere

We also calculate x andv y , the estimated mean velocities inside the vessel. Then the four last criteria are the
mean modulus

v
v , defined in Eq. (3):

15
2

1

1

15 ix y
i

v v 2

i
v  (3)

with the associated mean standard deviation vstd  and the mean orientation , defined in Eq. (4):
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with the associated mean standard deviation.

3.2. Quantitative results

The values of the performance criteria have been calculated for each method applied to each sequence. Note that 

the values of yE and ystd

modul  approximately equal (neglecting the slight out-of-plane angle equal to 5°) to the component xv . o

 for S1 and S5 are not in percent because normalization is impossible. Fig.2 displays four

velocity profiles estimated with each method for S1. In this case, the flow is longitudinal and consequently the

us is We als
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Fig.2 Velocity profiles estimated with each method for S1.

ig.3 displays the values of the normalized mean error 

constructed several curves. For each figure, the theoretical values are represented with black points, BM method

with plus, BDBM method with circles, SFI method with squares and STF method with diamonds. SFI performs only

the vector velocity modulus and so is not represented in each figure.

F xE for each method applied to each sequence.

Fig.4 displays the values of the normalized mean error yE for each method applied to each sequence.

xv for ea method applied to each sequence.Fig.5 displays the values of the mean velocity ch

yvFig.6 displays the values of the mean velocity  for each method applied to each sequence.

.

Fig.3 Normalized mean error xE  for each method applied Fig.4 Normalized mean error

to each sequence. 
yE  for each method applied 

to each sequence. 
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Fig.5  Mean velocity yvxv for each method applied

to each sequence. 

Fig.6  Mean velocity for each method applied to each 

sequence.

vFig.7 displays the values of the mean velocity modulus  for each method applied to each sequence.

Fig.8 displays the values of the mean orientation  for each method applied to each sequence.

Fig.7 Mean velocity modulus v for each method

applied to each sequence. 

Fig.8  Mean velocity orientation

x

 for each method

applied to each sequence. 

4. Discussion

We applied four velocity estimation methods on six sequences, experimental and simulated, with flow angles

within the imaging plane from 60° to 90°. SFI estimates the 3D modulus of the vector velocity whereas BM, BDBM

and STF estimate the two components of the velocity within the imaging plane. Thus, they do not give the same

information about the flow.

BM performs accurate estimates on v ; The mean error xE is less than 10% for each sequence with a mean

standard deviation xstd yless than 9%. However, estimation errors on v  are globally more important with higher

values of ystd . BM seems to be not sensitive to orientation. BDBM provides estimates with accuracy close to those

obtained with BM. xxE is less than 9% with std yvless than 12%. Like with BM, estimates on are less accurate

with BDBM. Moreover, like BM, BDBM is not sensitive to orientation. STF performs good estimates; except for

S4, xE is less than 9% with xstd
yv

less than 5%. In the same way, the mean error and the mean standard deviation on

 are higher. Contrary to BM and BDBM, STF seems to be sensitive to orientation.

Mean velocity components xv yv and  have been estimated with BM, BDBM and STF. Estimated mean 

velocities with BM and BDBM are very similar. They are globally underestimated but close to theoretical values.
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v
Estimates of mean velocity components are slightly better with STF except for S4. Note that the null velocity

component  is perfectly estimated with all the methods for S1 and not exactly for S5.y
As we could predict, estimated modulus with BM and BDBM are close and globally less than theoretical values.

Nevertheless, BDBM is slightly better than BM. Except for S4, STF gives estimates for modulus globally better than

those obtained with BM and BDBM. SFI estimates modulus with an accuracy slightly less interesting. However, SFI

gives us estimates for a ROI of 80*40 pixels in 6.7ms whereas other methods require a few tens of seconds,

respectively 17s, 39s and 40s with STF, BDBM and BM. These computation time have been estimated with Matlab 

7.2 on a core 2 duo processor (2.66GHz) with 3Gb of RAM. Moreover, estimates performed by SFI are related to

the 3D velocity modulus contrary to BM, BDBM and STF that performs the apparent vector velocity within the

imaging plane. Thus, when the out-of-plane angle becomes important (more than 30°), SFI is the only method

capable to estimate reliable velocities.

Orientation is better estimated with the region-based approaches, BM and BDBM, in comparison to the

spatiotemporal approach, STF. Indeed, STF often underestimates orientation. BM and BDBM estimate orientation

with a great accuracy, especially when it increases. 

To conclude about these observations, we can say that:

- SFI is well adapted to out-of-plane flow contrary to the three other methods

- SFI is the only real-time method to estimate velocity

- BM, BDBM and STF gives results with similar accuracy 

- STF is more sensitive to large orientation than BM and BDBM 

- STF is well adapted to low orientation whereas BM and BDBM are well adapted to large orientation

- BM and BDBM are more robust in terms of velocity range. By using the tangent function, STF is limited to

displacements less than 8 pixels/frame before saturating 

- Estimates with BM and BDBM are very similar in terms of errors and standard deviations. This can be 

explained by the sequences studied here. Displacements between two images are less than 3 pixels and

consequently the motion is quasi rigid. It has been verified thanks to complementary experiences that the increase

of the velocity, from 0.8mm/s to 2mm/s for example, give an advantage to BDBM that is more adapted to

complex motion.

5. Conclusion

In this paper, we compared four velocity estimation methods applied to flow imaging. We selected three kinds of

methods: two region-based approaches, block matching (BM) and bilinear deformable block matching (BDBM), 

one decorrelation-based approach, speckle flow index (SFI), and one spatiotemporal approach, spatiotemporal

filtering (STF). We applied theses methods on six flow sequences with orientation between the probe and the flow

within the imaging plane from 60° to 90°. Four sequences were simulated with a convolution-based method. The

model used a 3D set of moving scatterers to be as realistic as possible. Two experimental sequences were realized 

with a gelatine phantom and a blood-mimicking fluid.

We show that SFI is capable to estimate the 3D modulus of the flow velocity whereas STF, BM and BDBM

estimate the two components within the imaging plane. Consequently, SFI can provide velocity information even if

the out-of-plane angle of the flow is close to 90°. Furthermore, SFI is a real-time method contrary to other ones.

However, SFI is less accurate than BM, BDBM and STF that are more or less equivalent. Standard deviations are 

clearly superior with SFI and estimated moduli are less precise. We also show that estimates performed with BM 

and BDBM are very similar. This can be explained by the situations studied in this paper that presents low

displacements. Then, the motion is quasi rigid and so BM, which is less adapted to complex motion than BDBM, is

not penalized. An increase of the displacements would add shear components taken into account by BDBM. STF 

gives interesting results in comparison to region-based methods. Except for a sequence with the larger orientation,

criteria used in the paper show good performances with STF. It is particularly interesting because spatiotemporal

methods have not been explored a lot for flow evaluation.
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