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ReviewMechanisms of Synapse
Assembly and Disassembly

it has been observed to occur in the absence of the
presynaptic motoneurons, demonstrating that it is inde-
pendent of a motoneuron-derived signal (Yang et al.,
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1MRC Cell Biology Unit and Laboratory for

Molecular Cell Biology
2000, 2001; Lin et al., 2001; Arber et al., 2002). At presentUniversity College London
it is unclear how muscle prepattern is established,Gower Street
though it has been demonstrated that prepatterning isLondon WC1E 6BT
independent of Agrin and requires the function of theUnited Kingdom
muscle-specific kinase MuSK (see below) (Yang et al.,2 Department of Biochemistry and Biophysics
2001; Lin et al., 2001). Models for the establishmentUniversity of California, San Francisco
of muscle prepattern include a unique contribution ofSan Francisco, California 94143
founder myoblasts during the formation of the poly-
nucleate muscle cell or intercellular signaling from cells
at the muscle insertion site that could be used as infor-The mechanisms that govern synapse formation and
mation to pattern the muscle cell (Arber et al., 2002).elimination are fundamental to our understanding of
Although prepatterning prefigures the arrival of theneural development and plasticity. The wiring of neural
nerve, it remains to be determined whether prepat-circuitry requires that vast numbers of synapses be
terning is necessary for subsequent synapse formationformed in a relatively short time. The subsequent re-
since synapse formation does occur in vitro where pre-finement of neural circuitry involves the formation of
patterning is not observed (Sanes and Lichtman, 1999).additional synapses coincident with the disassembly

The next event in synapse formation at the mammalianof previously functional synapses. There is increasing
NMJ occurs upon the arrival of the motoneuron. Agrinevidence that activity-dependent plasticity also in-
is released from the presynaptic motoneuron and subse-volves the formation and disassembly of synapses.
quently induces the formation of the postsynaptic spe-While we are gaining insight into the mechanisms of
cialization (McMahan, 1990; Sanes and Lichtman, 2001).both synapse assembly and disassembly, we under-
Agrin is a secreted proteoglycan that was initially puri-stand very little about how these phenomena are re-
fied as an activity that induces enhanced clustering oflated to each other and how they might be coordinately
AChRs on myotubes in vitro (Nitkin et al., 1987; McMa-controlled to achieve the precise patterns of synaptic
han, 1990). Agrin deposited in the basal lamina inducesconnectivity in the nervous system. Here, we review
the further clustering and stabilization of prepatternedour current understanding of both synapse assembly
AChRs at the site of innervation. Although both muscleand disassembly in an effort to unravel the relationship
and nerve synthesize Agrin, the isoform expressed bybetween these fundamental developmental processes.
motoneurons (z-plus Agrin) is reported to be more than
1000-fold better at inducing AChR clustering comparedSynapse Formation at the Vertebrate NMJ:
to the isoform expressed by muscle (Burgess et al.,A Model of Reciprocal Induction
1999; Sanes and Lichtman, 2001). The activity of AgrinStudies at the vertebrate NMJ have guided our under-
requires the presence and activation of the muscle-spe-standing of synapse formation for several decades. The
cific kinase MuSK (Gautam et al., 1996; DeChiara et al.,model that has emerged is one of reciprocal induction
1996; Herbst et al., 2002). MuSK then acts through the(Figure 1). Prior to the arrival of the nerve, there is a
effector protein rapsyn to promote AChR clustering (re-rudimentary postsynaptic organization termed prepat-
viewed by Sanes and Lichtman, 1999). MuSK activation

terning. The arrival of the nerve then induces the differ-
also enhances the concentration of ErbB receptors,

entiation of the postsynaptic specialization. The induc-
which transduce signaling from neuregulin. Neuregulin

tion of the postsynaptic specialization is then necessary is a synaptic proteoglycan implicated in AChR synthesis
for the subsequent induction of the presynaptic terminal (Jo et al., 1995; Sandrock et al., 1997). Defining evidence
including the assembly of the presynaptic active zone in favor of the agrin hypothesis came from analysis of
and the alignment of this structure with the postsynaptic agrin, MuSK, and rapsyn knockout mice in which AChR
specialization. Key steps in this process are outlined clusters are absent or severely reduced (Gautam et al.,
here (for further review, see Sanes and Lichtman, 1999, 1995, 1996; DeChiara et al., 1996). There is, however,
2001; Burden, 2002). an important difference between the agrin and MuSK

The earliest event in synapse formation at the mam- knockout mice. In MuSK knockout animals, AChR clus-
malian NMJ is likely to be the molecular patterning of ters are absent at all stages. In the Agrin knockout,
the postsynaptic membrane prior to the arrival of the however, AChR clusters are initially prepatterned and
nerve. Acetylcholine receptors (AChR) and the synaptic subsequently disperse upon the arrival of the nerve that
proteoglycan neuregulin are observed to concentrate at lacks agrin (Yang et al., 2001; Lin et al., 2001). These
the central portion of the muscle fiber at a time that recent data suggest that a factor, perhaps nerve-derived
normally coincides with the arrival of the motoneurons. ACh, acts to disperse prepatterned clusters of AChRs
This process has been termed prepatterning because in the absence of the stabilizing influence of Agrin.

The phenotype of the agrin and MuSK knockout mice
also provided strong evidence that postsynaptic differ-*Correspondence: y.goda@ucl.ac.uk (Y.G.), gdavis@biochem.ucsf.

edu (G.W.D.) entiation is necessary for subsequent induction of pre-
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ing the induction of postsynaptic differentiation. One
likely scenario, therefore, is that key signaling molecules
that induce presynaptic differentiation are deposited in
the synaptic basal lamina by the muscle, following the
activation of MuSK.

Reciprocal Induction Model Applied
to CNS Synaptogenesis
The mechanism of central synapse formation is much
less well understood than the formation of the NMJ. The

Figure 1. Synaptic Induction at the Mammalian Neuromuscular problem is complicated by both the enormous heteroge-
Junction neity of the neuronal types and the differences in the
Left: Acetyl choline receptors (red) initially concentrate to the central timing of their development. Yet, in the emerging view,
portion of the muscle at a time that normally coincides with the

the reciprocal signaling model typified by the developingarrival of motoneurons. In the absence of the nerve, this concentra-
NMJ may be generalized to describe developing syn-tion of AChRs is still observed and, as a result, has been termed
apses in the CNS (Vaughn, 1989; Verderio et al., 1999b;muscle prepatterning.

Middle: The arrival of the nerve and the presynaptic release of Agrin Davis, 2000; Garner et al., 2002; Tao and Poo, 2001;
stimulates the initial events of postsynaptic differentiation including Craig and Lichtman, 2001). In essence, reciprocal signal-
the further clustering and stabilization of AChR via signaling through ing is necessitated by the asymmetric nature of the
MuSK and rapsyn.

synaptic junction. That is, a trigger of intercellular junc-Right: Subsequent inductive signaling, both anterograde and retro-
tion formation cannot simply induce a series of molecu-grade, is required for the transformation of the motile growth cone
lar events that are mirrored on either side of a symmetri-into a stable synaptic structure and for the development of pre- and

postsynaptic specialization such as the differentiation and align- cal junction. For an asymmetric junction to assemble,
ment of the presynaptic active zone with the molecularly specialized each compartment must respond differentially to the
muscle membrane folds. AChRs are concentrated at the crests of initial interaction. In a basic scenario, cell contact medi-
the muscle folds (red), and other synaptic proteins are concentrated

ated by heterophilic cell adhesion molecules could trig-at the base of the folds (blue).
ger the asymmetric signaling events. Indeed, evidence
favors a predominant role for cell adhesion-initiated sig-
naling in CNS synaptogenesis. Additional reciprocal in-synaptic development. In both Agrin and MuSK knock-
teractions between the presumptive pre- and postsyn-out mice, the motoneuron terminals fail to differentiate,
aptic cells that occur prior to and after the initial cellremaining highly dynamic and extending processes
contact may further shape the specificity of synapsealong the muscle surface (Gautam et al., 1996; DeChiara
assembly by favoring particular cell combinations.et al., 1996). Further evidence that postsynaptic differen-

Reciprocal signaling that occurs before the cell con-tiation is necessary for the subsequent induction of the
tact requires a diffusible component, whereas after thepresynaptic nerve terminal comes from muscle trans-
cell contact it may involve diffusible messengers, trans-plantation studies in which MuSK knockout muscle are
synaptic adhesion-dependent signals, or both. Signal-transplanted into wild-type animals, circumventing the
ing during synapse assembly may also make use of aearly lethality due to paralysis of the MuSK and Agrin
third cell such as a glial cell that does not directly con-knockouts (Nguyen et al., 2000). Nerve terminals con-
tribute to the synaptic junction per se. We discuss belowtacting transplanted MuSK knockout muscle remain un-
the types of signaling mechanisms involved in the se-differentiated and are observed to remodel continuously
quential events of central synapse formation (Figure 2).over the course of several months. Thus, it appears that
We largely limit the discussion to excitatory synapsethe induction of the presynaptic nerve terminal proceeds
assembly due to space constraints. Comprehensive re-only after synapse formation is initiated in the postsyn-
views of inhibitory synapse formation have appearedaptic muscle cell.
elsewhere (Grantyn et al., 1995; Moss and Smart, 2001;The nature of the muscle-derived signal that is neces-
Meier, 2003).sary to induce presynaptic differentiation has not been

clearly defined (Sanes and Lichtman, 1999). However,
signaling via laminins in the synaptic basal lamina are Priming Synaptogenesis: Filopodia and Early

Axo-Dendritic Activitydemonstrated to be necessary for several aspects of
presynaptic development. Presynaptic differentiation is Filopodial Contacts

The dynamic interaction between filopodial extensionscompromised in the laminin �2 knockout (Noakes et al.,
1995). More subtle defects are observed in laminin �4 of growth cones or neuronal processes is a central fea-

ture of synaptogenesis. Filopodia have been suggestedknockouts. In these animals, synaptic differentiation is
grossly normal. However, the pre- and postsynaptic to play an inductive role in synapse formation (Fiala et al.,

1998; Jontes and Smith, 2000). Imaging of fluorescentlyspecializations are frequently misaligned (Patton et al.,
2001). Laminin �4 can be linked biochmically to presyn- labeled neurons reveals numerous active protrusions

from the dendrites in both developing hippocampal sliceaptic calcium channels, supporting the hypothesis that
this laminin isoform participates in the trans-synaptic cultures (Dailey and Smith, 1996; Ziv and Smith, 1996)

and the intact spinal cord in zebrafish embryos (Jontesalignment or organization of the synapse (Sunderland
et al., 2000). Thus, laminins and possibly other signaling et al., 2000). The number of such motile dendritic filo-

podia is inversely correlated with the appearance ofmolecules within the synaptic basal lamina are candi-
dates for inducing the presynaptic specialization follow- stable dendritic spines and synapses (Dunaevsky et al.,
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2003). Interestingly, NMJ formation in flies and mammals
also involves extensions of filopodial-like structures
called myopodia from the muscle cells. Myopodia clus-
ter at the site of motor neuron contact and interact with
presynaptic filopodia, and these observations have sug-
gested that myopodia play a part in guiding synapse
assembly (Ritzenthaler et al., 2000; Misgeld et al., 2002).

An increase in dendritic filopodial outgrowths does
not always promote synapse formation, however. For
instance, dendritic filopodia formation is enhanced by
perturbing the signaling to the actin cytoskeleton by
overexpressing either the constitutively active form of
the small GTPase Rac, a guanine nucleotide exchange
factor for Rac called PIX, or a dominant-negative form
of the G protein-coupled receptor kinase interacting pro-
tein (GIT)1, which interacts with PIX (Zhang et al., 2003).
Despite the increase in motile filopodia, synapse forma-
tion is decreased under these conditions. Although the
specific mechanisms by which Rac signaling regulates
synapse formation require further investigation, this
study illustrates that the production of filopodial out-
growth can be uncoupled from the promotion of syn-
apse formation.

Recent studies demonstrate that axons can also mod-
ulate synapse formation by regulating their filopodial
motility. In cultured hippocampal neurons, for example,
motility of filopodia originating from mossy fiber axons
decreases with development, and the filopodia that re-
main in contact with postsynaptic targets become stabi-
lized (Tashiro et al., 2003). This inverse correlation be-
tween axonal filopodial motility and the developmental
time course of synapse formation is reminiscent of the
motile behavior of dendritic filopodia (Dunaevsky et al.,
1999). Whether axonal filopodia play an inductive part
in synapse formation, however, remains to be investi-
gated.Figure 2. A Model of Excitatory Central Synapse Formation
Early Synaptogenic Signaling Events(A) Early synaptogenic signaling events involving secreted factors

precede cell contact, and motile filopodia search for potential part- If cell-cell contact guided by filopodia plays a central
ners. Neurotransmitters are released from exocytic hot spots where part in inducing synapse formation, what signals pro-
small clusters of synaptic vesicles are found (blue circles). Transport mote filopodial formation and how is filopodial motility
packets that contain active zone elements traverse along the axon regulated to enhance the likelihood of synapse forma-
(yellow circle).

tion? Neurotransmitters are capable of playing such a(B) Cell adhesion molecules (red rectangles) stabilize select cell
role as an anterograde signal. In addition, several diffus-contact sites.
ible factors that may provide general synaptogenic sig-(C) Active zone elements (yellow) and synaptic vesicles accumulate

at the presynaptic terminal. Postsynaptic terminal assembly follows nals have been identified. These include secreted signal-
presynaptic assembly by recruiting neurotransmitter receptors ing proteins such as Wnts, neurotrophins, and CNS
(double ellipses) and postsynaptic scaffolds (green triangle). agrin.
(D) In the assembled synapse, the presynaptic terminal has docked, Growing axons have exocytic “hot spots” that are
and reserve pool of synaptic vesicles and the postsynaptic terminal

capable of neurotransmitter release (Sun and Poo, 1987;show neurotransmitter receptors embedded with the scaffold pro-
Kraszewski et al., 1995). Presynaptic electrical activity,teins. See text for details.
by enhancing exocytic glutamate release, stimulates
dendritic filopodial motility at the time of synaptogenesis

1999; Jontes et al., 2000). These observations have led (Dailey and Smith, 1996; Lendvai et al., 2000; Wong et
to the proposal that dendritic filopodia initiate synapse al., 2000). Moreover, like dendritic filopodia, the motility
formation by reaching out to the axons, with the subse- of axonal filopodia is also enhanced by glutamate or
quent stabilization of a subset of the resulting contacts electrical stimulation, an effect that is mediated by kai-
(Ziv and Smith, 1996; Fiala et al., 1998; Jontes and Smith, nate (Tashiro et al., 2003) or AMPA (�-amino-3-hydroxy-
2000). This model implies that the action of the dendrite 5-methyl-4-isoxazolepropionic acid)-type glutamate re-
is deterministic for synapse assembly. Compatible with ceptors (De Paola et al., 2003). Coordinate enhancement
such a proposal, conditions that are thought to culmi- of the dendritic and axonal filopodial motility by localized
nate in new synapse formation by postsynaptic trig- release of glutamate from the exocytic hot spots would
gering of long-term synaptic plasticity induce active filo- thus increase the chances of axo-dendritic contact.
podial formation from dendrite shafts (Maletic-Savatic Confined release of glutamate from axons may also

serve to restrict excitatory synapse formation to regionset al., 1999; Engert and Bonhoeffer, 1999; Harris et al.,
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that have high presynaptic activity and are able to re- cells induces the remodeling of mossy fiber axon growth
spond to released glutamate. Glutamate release, how- cones via retrograde activation of Frizzled receptors,
ever, has also been reported to decrease filopodial mo- and the remodeled growth cones accumulate clusters
tility. AMPA or kainate receptor activation blocks of synapsin I, a synaptic vesicle-associated protein (Hall
movements of both dendritic spines (Fischer et al., 2000) et al., 2000). The synaptogenic function of Wnt-7a is
and axonal growth cone filopodia in cultured hippocam- supported by the observation that synapse formation
pal neurons (Chang and De Camilli, 2001). Kainate re- in the cerebellum is delayed in Wnt-7a-deficient mice,
ceptor activation has also been shown to stabilize the though synaptogenesis ultimately proceeds normally in
motility of mossy fiber filopodia in mature hippocampal these mice. Similarly, Wnt-3 secreted by motor neuron
slice cultures, opposite to the effect observed in young dendrites in the spinal cord retrogradely promotes the
cultures (Tashiro et al., 2003). Whereas the neurotrans- terminal arborization of sensory neuron axons in the
mitter-dependent reduction of filopodial motility may cord (Krylova et al., 2002). Interestingly, Wnt-3 affects
function to stabilize and promote the maturation of syn- a subpopulation of spinal sensory neurons that are re-
aptic contacts (Tashiro et al., 2003), one could also en- sponsive to NT-3 but not to NGF. Thus, differential acti-
visage a situation in which stabilization of one partner vation of Wnt signaling may contribute to the specificity
might increase the chances of an encounter with a motile of synaptic connectivity. That a role for Wnt signaling
partner. The overall pattern of synaptic connectivity may in synapse formation may be conserved has been sug-
therefore be controlled by altering the neurotransmitter- gested by a recent demonstration that Wingless (Wg,
dependent regulation of filopodial motility as develop-

the Drosophila Wnt homolog) functions during synapse
ment proceeds.

development at the Drosophila NMJ (Packard et al.,Members of the neurotrophin family of secreted
2002). Wg is normally secreted from presynaptic gluta-growth factors, including nerve growth factor (NGF), brain-
matergic boutons of motor neurons. When Wg is defec-derived neurotrophic factor (BDNF), neurotrophin-3
tive, both pre- and postsynaptic differentiation is abnor-(NT-3), and neurotrophin-4/5 (NT-4/5), promote synapse
mal. Whether Wg coordinates synapse assembly byformation, in addition to their originally identified role
acting on both the pre- and postsynaptic receptors oras neuronal survival and differentiation factors (Bon-
whether it first activates the muscle receptor, which inhoeffer, 1996). BDNF, for example, has been reported
turn retrogradely triggers the formation of the presynap-to promote dendrite and axon arborization and increase
tic specializations, remains to be determined.synapse number (McAllister et al., 1999; Alsina et al.,

GSK3-� is a kinase that operates in the Wnt signaling2001), facilitating the development and maturation of
pathway. It is inhibited when Wnt activates a Frizzledexcitatory and inhibitory synaptic circuits in cultured
receptor. In contrast to the findings that Wnts promoteneurons (Vicario-Abejon et al., 1998; Bolton et al., 2000;
synapse formation, GSK3-� has been reported to posi-Marty et al., 2000) and inhibitory synapses in the cerebel-
tively regulate axon arborization and synapse formationlum (Seil and Drake-Baumann, 2000). Neurotrophins
in zebrafish retinal ganglion cells (Tokuoka et al., 2002).also have roles in synaptogenesis in the peripheral ner-
Wnt signaling may thus regulate synaptogenesis eithervous system. BDNF-coated beads were shown to trigger
positively or negatively in different cell types. Such dif-localized neurotransmitter secretion where they contact

developing spinal cord axons (Zhang and Poo, 2002). ferences are not surprising given that the signal trans-
The enhanced neurotransmitter release accompanied duction cascade downstream of Wnt is highly complex
a persistent intracellular Ca2� elevation and required (Moon et al., 2002). As with neurotrophin/Trk receptor
presynaptic protein translation, both of which were spa- combinations, temporal and spatial regulation of Wnts
tially restricted to the site of contact with the BDNF bead. and Frizzled receptor expression may provide a versatile
In another recent study, the ability of NT3 to supplant mechanism for controlling synapse formation between
the activity of BDNF for sensory system development, cell combinations.
including synaptogenesis, was examined in mice by re- Isoforms of agrin, a key synaptogenic molecule at
placing the coding region of the BDNF gene with the the NMJ, are also present in the brain. As agrin mRNA
coding region of NT3 (Agerman et al., 2003). Mutant expression is upregulated during the time of active syn-
mice showed a pronounced difference in the ability of aptogenesis and in response to neuronal activity, it has
NT3 to promote synaptogenesis in different sensory ar- been suggested that agrin may also regulate synapse
eas. BDNF was required for proper innervation and syn-

formation in the brain (Cohen et al., 1997; O’Connor et
aptogenesis in the vestibular system, whereas NT3 was

al., 1995). Consistently, suppression of agrin expressionsufficient to promote vestibular ganglion neuron sur-
in cultured hippocampal neurons severely inhibits syn-vival. Furthermore, NT3 was unable to replace the ac-
apse formation (Ferreira, 1999; Böse et al., 2000). Lacktions of BDNF in the gustatory system, possibly due to
of agrin, however, does not completely block synapto-a temporally regulated expression of the BDNF receptor
genesis in these studies and, furthermore, synapse for-TrkB in taste neurons. While the mechanism may be
mation is normal in primary hippocampal and corticalindirect, these studies nonetheless demonstrate the im-
neurons cultured from agrin-deficient mice (Li et al.,portance of the spatial and temporal expression pattern
1999; Serpinskaya et al., 1999). Agrin, therefore, has aof neurotrophins and the distinct parts played by the
modulatory role and is apparently not essential for cen-particular neurotrophin receptors in guiding synapse
tral synapse formation. It remains to be tested, however,formation.
whether a recently identified candidate for an agrin re-Secreted Wnt proteins act in a wide range of develop-
ceptor that is enriched at CNS synapses is required formental processes, including synaptogenesis. In the cer-

ebellum, for example, Wnt-7a released from granule synapse formation (Hoover et al., 2003).
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Specification of Synaptic Adhesion tion into differential responses on opposite sides of the
cell contact.As discussed above, the initial contacts between axonal

A potential synaptogenic cell surface interaction thatand dendritic outgrowths can be steered by the comple-
satisfies the necessary asymmetry of pre- and postsyn-mentarity of secreted synaptogenic molecules and their
aptic differentiation is provided by the heterophilic adhe-receptors, and some aspects of the specificity of syn-
sion interaction between �-neurexins and neuroliginsapse formation could be determined by temporal and
(Missler and Sudhof, 1998; Rao et al., 2000). Neuroliginsspatial restriction of these factors. Cell adhesion mole-
were the first cell surface molecule in which ectopiccules can also have such a role by triggering the assem-
expression in nonneuronal cells was reported to inducebly of synaptic specializations (Sanes and Yamagata,
presynaptic assembly in contacting axons in vitro1999; Brose, 1999; Tao and Poo, 2001; Südhof, 2001;
(Scheiffele et al., 2000). The synaptogenic activity ofCraig and Lichtman, 2001; Benson et al., 2001; Garner
neuroligins was blocked by overexpression of exoge-et al., 2002; Jin, 2002). The molecular diversity of some of
nous �-neurexins, suggesting that �-neurexins on thethe synaptic adhesion molecules satisfies the requisite
axonal plasma membrane mediate the presynaptic dif-specificity of synaptic connections in various regions of
ferentiation. In a follow-up investigation, Scheiffele andthe brain, and the trans-synaptic link could be used for
colleagues confirmed that �-neurexins are enriched atreciprocally coordinating the differentiation and align-
presynaptic terminals (Dean et al., 2003). Furthermore,ment of pre- and postsynaptic terminals. Several cell
they showed that postsynaptic multimers of neuroliginsadhesion molecules have been implicated in synapto-
(at least tetramers) are required to cluster neurexins ingenesis. These include members of the immunoglobulin
the presynaptic membrane, which in turn recruit synap-(Ig) superfamily such as N-CAM/Fasciclin II, L1, side-
tic vesicles via their cytoplasmic domains. This study iskicks, and nectin (Schachner, 1997; Davis et al., 1997;
crucially important in several respects. First, it demon-Yamagata et al., 2002; Takai and Nakanishi, 2003), Ca2�-
strates the significance of the lateral clustering of synap-dependent homophilic cell adhesion proteins such as
tic adhesion proteins for nucleating the presynaptic as-N-cadherins (Shapiro and Colman, 1999; Lee et al., 2001,
sembly process. That is, a critical density of neurexin2003) and protocadherins (Frank and Kemler, 2002), the
cytoplasmic domains must be reached for organizingheterophilic cell adhesion proteins such as neurexins
the presynaptic molecular scaffold, which is likely medi-and neuroligins (Missler and Sudhof, 1998; Rao et al.,
ated by proteins such as CASK and syntenin that bind2000), and proteoglycans such as syndecans (Yama-
directly to the cytoplasmic domain of neurexins. Sec-guchi, 2002). Here, we highlight some of the recent find-
ond, it underscores the sequential cooperative interac-ings on the role of cell adhesion molecules in contact
tions between the pre- and postsynaptic sides requiredrecognition and synapse assembly.
to assemble the synapse. Signals that activate the oligo-SynCAM is the latest addition to the brain-specific Ig
merization of neuroligins to initiate the assembly pro-superfamily enriched at the synaptic junctions (Biederer
cess remain to be identified. A recent study showed thatet al., 2002). The gene encoding the human SynCAM
presynaptic �-neurexins, neurexin isoforms that do notsequence was originally described as a candidate for a
bind neuroligin, play a role in calcium-triggered exo-tumor suppressor gene called IGSF4 (Gomyo et al.,
cytosis (Missler et al., 2003). Deletion of �-neurexins in1999), also known as TSLC1 (see for example, Masuda
mice resulted in impaired neurotransmitter release dueet al., 2002). Biederer et al. (2002) identified SynCAM
to a reduction in presynaptic Ca2�-channel activity.through a search for vertebrate proteins with extracellu-
However, �-neurexins do not appear to be essential forlar Ig domains and an intracellular PDZ-interaction motif,
synaptogenesis since ultrastructurally normal synapsesfeatures that are expected of a potential synapse adhe-
form in the mutant mice.sion protein. SynCAM mediates homophilic binding via

In addition to homophilic and heterophilic cell adhe-its three extracellular Ig domains; the cytoplasmic do-
sion systems between the pre- and postsynaptic cells,

main associates with CASK and syntenin, which are
synapse assembly can be modulated by adhesion medi-

PDZ-domain proteins that also interact with intracellular
ated by a third cell, as recently shown in C. elegans

domains of other synaptic cell surface proteins, neurex- (Shen and Bargmann, 2003). In the nematode, synapses
ins (see below) and syndecans. The synaptogenic po- are formed en passant, similar to most synapses found
tency of SynCAM was demonstrated by its ability to in the mammalian brain. In the HSNL neuron, which is
promote synapse formation when overexpressed in cul- part of the egg-laying circuit, the formation of stereotypi-
tured hippocampal neurons. Importantly, overexpres- cal pattern of synaptic vesicle clusters along the axon
sion of SynCAM in nonneuronal cells was sufficient to is not dependent on the target cells—the VM2 vulval
induce functional presynaptic assembly in contacting muscles and VC neurons—but rather on signals from the
axons of hippocampal neurons, which required the ex- vulval epithelial cells. Sheng and Bargmann identified
tracellular Ig domains of SynCAM. Furthermore, overex- SYG1, a transmembrane Ig superfamily protein, as the
pression of a soluble cytoplasmic fragment of SynCAM recipient axonal mediator that responds to cues from
compromised the presynaptic assembly in axons of the vulval epithelium. As expected for an organizer of
transfected neurons. These observations strongly impli- presynaptic assembly, GFP-tagged SYG1 protein ap-
cate SynCAM-mediated adhesion in instructing presyn- peared at presumptive synaptic terminals preceding the
aptic differentiation. Whether SynCAM also plays a role appearance of synaptic vesicle clusters. SYG-1, how-
in triggering postsynaptic differentiation is presently not ever, was not essential for presynaptic assembly per
clear. The ability of a homophilic adhesion protein to se, as ectopic synaptic vesicle clusters formed both in
induce asymmetric synapse formation implies that other syg-1 mutant worms and in the absence of the vulval

epithelium under conditions in which SYG-1 was dif-asymmetric cues translate the “symmetrical” associa-
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fusely present. The function of SYG-1 demonstrates the and Poo, 1987; Kraszewski et al., 1995; Zakharenko et
al., 1999). What is the function of such exocytic foci?multiple ways in which synapse adhesion molecules can
Spontaneous activity in the growing axons may driveinfluence synapse assembly. The vulval epithelial cell
the release of neurotransmitters in a confined area tosignal constrains the sites of future synapse assembly
provide trophic synaptogenic signals (see above). Alter-by directing SYG-1 cluster formation on the postsynap-
natively, the exocytic hot spots may represent the loca-tic cell to specific loci by acting as a “guidepost,” pre-
tion of future synapses. If the latter case is true, then thesumably via a mechanism involving cell contact. As
following issues require consideration. First, the axonalSYG-1 mutants are relatively normal—i.e., they are via-
exocytic machinery is different from the exocytic ma-ble, fertile, coordinated, and show no apparent defects
chinery used for synaptic neurotransmitter release inin egg laying despite slight abnormalities in the
nerve terminals, as demonstrated by the lack of sensitiv-branching of HSN axons—redundant signals may oper-
ity of the axonal machinery to tetanus toxin (Verderio etate to ensure the formation of functional circuits. The
al., 1999a). Moreover, the exocytic hot spots lack theguidepost signals from a third cell may be useful if the
hallmark features of presynaptic organization such as andevelopment of the pre- and postsynaptic cell becomes
active zone and clusters of docked and reserve synaptictemporally uncoupled (Shen and Bargmann, 2003): syn-
vesicle pools (Kraszewski et al., 1995). Conversion ofaptic vesicle clusters held at the correct location by the
the hot spots into functional presynaptic terminals,guidepost cell, for instance, might protect the prospec-
therefore, would necessitate, for instance, an alterationtive presynaptic element from responding to competing
in the components of the exocytic machinery and thecues. Alternatively, cues from the guidepost cell might
secondary recruitment of the presynaptic scaffold. Sec-act cooperatively with trans-synaptic signaling between
ond, if the site of future presynaptic specializations isthe pre- and the postsynaptic neuron, especially when
predetermined, what determines their location? Be-the synaptogenic trigger signals are weak. We next con-
cause the exocytic hot spots exist prior to postsynapticsider the part played by synapse precursors, such as
cell contact, either a third cell such as that describedsynaptic vesicle clusters, in assembling a synapse.
for the vulval epithelium in C. elegans (see above; Shen
and Bargmann, 2003) or signals from glia may guideAssembly of Pre- and Postsynaptic Specializations
the location of the prospective presynaptic terminals.Transport Packets of Synaptic Components
In addition, as yet unidentified axonal cytoskeletal orga-Synapse assembly can occur within 1 to 2 hr of initial
nization may provide the strut for marking the futureaxo-dendritic contact, and it proceeds at a surprisingly
location of presynaptic terminals.rapid pace (Friedman et al., 2000; Okabe et al., 2001;

On the dendrite side, the assembly of the postsynapticAntonova et al., 2001; Colicos et al., 2001). Such speed
specialization lags behind that of the presynaptic spe-of synapse assembly could be achieved by a rapid re-
cialization (Friedman et al., 2000; Okabe et al., 2001;cruitment of pre-assembled synaptic components to the
Ziv and Garner, 2001). The earliest event in organizingsites of cell contact, thereby obviating the need for build-
the postsynaptic specialization is the appearance ofing a synapse from scratch. Mobile cytoplasmic trans-
N-methyl-D-aspartate (NMDA) receptors and PSD95

port packets containing some synaptic vesicle proteins
clusters that can serve as a molecular scaffold opposite

and active zone components—including piccolo, bas-
the presynaptic specialization (McGee and Bredt, 2003).

soon, N-cadherin, and a Ca2� channel subunit—have
The accumulation of AMPA receptors follows the PSD95

been reported to traverse along the developing axon cluster formation (Friedman et al., 2000). The timing dif-
(Ahmari et al., 2000; Zhai et al., 2001). The transport ference of pre- and postsynaptic assembly is thought
packets insert into the synaptic plasma membrane to to depend on reciprocal signaling, which begins with the
deliver active zone components prior to the appearance retrograde activation of the axon by the motile dendritic
of synaptic vesicle proteins required for exocytosis filopodia, followed by an anterograde signal from the
(Friedman et al., 2000; Shapira et al., 2003). The active presumptive presynaptic loci that induce postsynaptic
zone components delivered by such transport packets differentiation. Accordingly, the motile filopodia that
have been proposed to provide a scaffold for recruiting trigger presynaptic assembly are devoid of PSD95
exocytically competent synaptic vesicles, possibly by (Okabe et al., 2001). Whether postsynaptic specializa-
either trapping preformed synaptic vesicle clusters tion makes use of prefabricated protein assemblies is
(Ahmari et al., 2000; Friedman et al., 2000) or de novo unclear. Live imaging of fluorescently tagged PSD95
formation of vesicle clusters at the site of active zone demonstrates that postsynaptic PSD95 clusters origi-
(Okabe et al., 2001). In considering this model, it is impor- nate from a diffuse cytoplasmic pool (Marrs et al., 2001;
tant to note that the cytoplasmic surface of an active Bresler et al., 2001). Moreover, postsynaptic AMPA re-
zone transport packet does not appear to recruit synap- ceptors can be recruited from the diffuse plasma mem-
tic vesicles while in transit. Rather, cues at the prospec- brane pool by lateral migration (Borgdorff and Choquet,
tive synaptic membrane—such as that triggered by 2002). Nevertheless, discrete dendritic transport pack-
the cell adhesion molecules upon dendritic filopodial ets of PSD95 (Prange and Murphy, 2001) and NMDA
contact or guidepost signals as discussed above for receptors (Washbourne et al., 2002) have been reported.
SYG-1—must act in conjunction with the delivery of the Furthermore, AMPA receptors are present in a cyto-
active zone components to make a presynaptic scaffold plasmic vesicular pool that participates in rapid modula-
fully effective. tion of synaptic AMPA receptor number by an exo-endo-

As noted above, growing axons contain hot spots of cytic mechanism (Malinow and Malenka, 2002; Barry
synaptic vesicle clusters that are capable of undergoing and Ziff, 2002; Luscher and Frerking, 2001). Analogous

to the appearance of presynaptic vesicle clusters, post-depolarization-coupled neurotransmitter release (Sun
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synaptic assembly may involve both the delivery of pre- properties of membranes and is a major constituent of
fabricated transport packets and de novo clustering of lipid rafts, which are involved in organizing signaling
component proteins, including the lateral migration of complexes, membrane traffic, and the actin cytoskele-
plasma membrane proteins. When and how these differ- ton. Mechanisms by which cholesterol regulates syn-
ent mechanisms are employed might depend on both apse assembly, therefore, are likely to be complex
the particular synaptogenic inducers involved in differ- (Pfrieger, 2003). Several points are worth noting. Choles-
ent neurons and the particular developmental envi- terol levels have been shown to regulate the availability
ronment. of steady-state pool of secretory vesicles in PC12 cells
Organizers of Synaptic Specializations (Thiele et al., 2000), and lipid rafts are required for
In addition to the contact-dependent formation of pre- kinesin-dependent axonal transport (Klopfenstein et al.,
synaptic assemblies mediated by synapse adhesion 2002). Cholesterol deficiency may thus limit the availabil-
proteins (discussed above), several molecules that are ity of presynaptic vesicles for assembling the presynap-
capable of organizing the postsynaptic assemblies at tic specialization (Pfrieger, 2003). Cholesterol may also
excitatory CNS synapses have been identified. For ex- influence the formation of the postsynaptic specializa-
ample, EphB receptor tyrosine kinases bind to and clus- tion, as several postsynaptic components such as
ter NMDA receptors when activated by their ephrinB AMPA receptors (Suzuki et al., 2001), GRIP (Bruckner
ligand in cultured neurons (Dalva et al., 2000). In addi- et al., 1999), PSD95 (Perez and Bredt, 1998), and NMDA
tion, activated EphB receptors stimulate Src family tyro- receptors (Hering et al., 2003) are associated with lipid
sine kinases and promote the phosphorylation of NMDA rafts. In a recent study, Hering et al. (2003) reported that
receptors to increase the Ca2�-influx through the recep- interfering with metabolic synthesis of cholesterol and
tors (Takasu et al., 2002). NMDA receptor activation sphingolipids to deplete lipid rafts following synapse
plays a key role in activity-dependent formation of formation in culture results in destabilization of surface
synaptic connectivity pattern (Katz and Shatz, 1996; AMPA receptors, collapse of dendritic spines, and grad-
Lüscher et al., 2000). The ability of ephrinB-EphB inter- ual loss of synapses. Cholesterol levels, therefore, limit
actions to organize and modulate synaptic NMDA recep- the maximal number of synapses that a neuron can
tor activity suggests, therefore, that EphB receptors can form and maintain (Pfrieger, 2003; Hering et al., 2003).
directly coordinate synapse assembly and subsequent Cholesterol likely affects pre- and postsynaptic assem-
activity-dependent synapse maturation and/or modifi- blies independently, and it remains unclear to what ex-
cation (Takasu et al., 2002). EphrinB-EphB interaction tent its effect on synapse formation and maintenance
has also been implicated in dendritic spine morphogen- depends on its effect on trans-synaptic signaling.
esis via both synaptic syndecans (Ethell et al., 2001) and
modulation of small GTPases (Irie and Yamaguchi, 2002; General Considerations for CNS Synaptogenesis
Penzes et al., 2003). We have seen that CNS synapse formation involves mul-

Another protein that displays postsynaptic receptor tiple sequential interactions between the pre- and post-
clustering activity is Narp, a member of the pentraxin synaptic partners. Curiously, none of the identified, indi-
family whose expression is modulated by synaptic activ-

vidual molecular signals acting at the various steps of
ity (Tsui et al., 1996). Narp is a secreted protein that

excitatory synapse assembly are essential for synapse
triggers aggregation of AMPA receptors and increases

formation. This may be because CNS synapse formation
the number of excitatory synapses when overexpressed

uses multiple redundant mechanisms. Alternatively, itin cultured spinal neurons (O’Brien et al., 1999). Con-
might be because the components have largely beenversely, dominant-negative Narp suppresses the forma-
identified in cell culture systems, which offer many ad-tion of AMPA receptor clusters when expressed in ax-
vantages. Cultured neurons are highly accessible to mo-ons, and to a lesser extent when expressed in dendrites
lecular manipulations, and various imaging tools can(O’Brien et al., 2002). Alterations in AMPA receptor clus-
be used to observe the events of synapse assembly.ter formation by modulating Narp expression do not
Despite these advantages, there are inherent limitationsaccompany changes in the assembly of presynaptic
of an artificial growth environment. The three-dimen-components (O’Brien et al., 2002). This finding suggests
sional organization and normal intercellular signaling mi-that the formation of pre- and postsynaptic assemblies
lieu are lost, and neuronal process outgrowth is notcan occur independently, in accord with the presence
directionally constrained. Moreover, the temporal regu-of prefabricated pre- and posytsynaptic elements in
lation of the developmental program may be relaxed.neuronal processes (see above). Additional signals,
Any synaptogenic factors identified under the promiscu-therefore, must participate in modulating the overall syn-
ous conditions for synapse formation in culture may,apse number by Narp. The mechanism by which se-
therefore, have only a subtle role in vivo, where synapsecreted Narp is confined to the synaptic region is un-
assembly is likely to be more strictly regulated.known.

A striking feature of synaptogenesis studied in cultureIt has recently been shown that factors secreted by
is the ability of contact signaling to induce synapseglial cells can facilitate synapse assembly. Synaptogen-
assembly, as exemplified in the SynCAM and neurexin-esis is highly compromised in purified neurons grown
neuroligin studies. Additionally, the ease of formationin culture in the absence of glia (Pfrieger and Barres,
of autaptic connections between the axon and dendrites1997; Ullian et al., 2001). Characterization of glia-condi-
of the same neuron in culture (Segal and Furshpan, 1990;tioned media has identified cholesterol as one compo-
Bekkers and Stevens, 1991) and the formation of presyn-nent that enhances synapse assembly and maturation
aptic elements induced by axon contact with polylysine-in cultured neurons (Mauch et al., 2001). Cholesterol has

many biological functions. It influences the biophysical coated beads (Burry, 1986) emphasizes the promiscuity
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of contact-induced synaptogenesis in cell culture. Is system, autonomic ganglia, and cerebellum (Purves and
Lichtman, 1980; Sanes and Lichtman, 1999). More re-such contact-mediated signaling sufficient for synapse

formation in vivo? Apparently not at the vertebrate NMJ, cently, studies correlating anatomical synapse re-
arrangement with electrophysiological and ultrastruc-as MuSK knockout mice are unable to form synapses

even though motor neuron axons reach the target mus- tural analyses support the conclusion that synapse
elimination involves the disassembly of previously func-cles, implying that contact-induced signaling is insuffi-

cient. Nevertheless, promiscuity of synapse formation in tional synaptic connections at other vertebrate central
synapses as well as at synapses in the invertebratevitro must reflect the synaptogenic potential of neurons.

Similar promiscuity can be shown in vivo, where axons central and peripheral nervous systems (Chen and Re-
gehr, 2000; Colman et al., 1997; Eaton et al., 2002; Leewill form presynaptic specializations where they contact

implanted polylysine-coated beads (Burry, 1986). More- et al., 2000; Streichert and Weeks, 1995).
over, errors in synapse formation can arise in vivo: for
example, axoglial synapses can form during early Synapse Disassembly versus Input Elimination
phases of synaptogenesis, although they are eliminated There are two phenomenological extremes that necessi-
in the course of development (Vaughn, 1989). A certain tate dismantling previously functional synapses. At one
degree of the readiness of synapse formation that is extreme is “input elimination,” in which a presynaptic
prevalent in culture is thus retained in vivo, and func- cell loses all synaptic contacts with a postsynaptic tar-
tional synapses are likely to arise from selective reten- get, functionally and anatomically uncoupling from the
tion and maturation of relevant cell contacts involving target (Sanes and Lichtman, 1999). Although synaptic
multiple cooperative signaling events. The ease of syn- contact to one target is abolished, synaptic contact to
apse formation may be critical during early stages of other targets persist (Keller-Peck et al., 2001). An input
development, when the synaptic connections are re- refers to the ensemble of synapses that couple a presyn-
modeled and tuned to meet the needs of the neural aptic neuron with a target cell. Input elimination, requir-
network in an activity-dependent process (see below). ing the rapid and complete disassembly of multiple indi-
By contrast, in the adult brain, inhibitory constraints on vidual synapses, has been studied extensively at the
synaptogenesis may limit the errors arising from facile vertebrate NMJ as well as at the cerebellar climbing
rearrangement of network connectivity. Remodeling of fiber synapse, but is also observed in many regions of
synaptic connections inherently requires the loss of par- the nervous system including the visual system, auditory
ticular synaptic contacts and retention of others in addi- system, and autonomic ganglia (Wiesel and Hubel, 1963;
tion to new synapse formation. We now turn to the dis- Shatz and Stryker, 1978; Jackson and Parks, 1982; Mari-
cussion of the mechanisms of synapse disassembly. ani and Changeux, 1980; Sretavan and Shatz, 1986;

Sanes and Lichtman, 1999; Hashimoto and Kano, 2003;
Purves and Lichtman, 1980).Dismantling the Synapse

Throughout the nervous system there is evidence that At the other extreme is “synapse disassembly,” which
refers to disassembly of an individual synapse, or a smallthe refinement and modulation of neural circuitry is

driven not only by synapse formation, but also by the number of synapses, without eliminating connectivity
between two cells. Here, we define a synapse as a singleregulated disassembly of previously functional synaptic

connections. For example, the pruning of initially exu- intercellular junction composed of a presynaptic active
zone and postsynaptic receptor array capable of trans-berant synaptic arbors is a common theme during the

early activity-dependent refinement of neural circuitry ducing presynaptically released neurotransmitter. Syn-
apse disassembly could, therefore, represent a mecha-(Katz and Shatz, 1996; Sanes and Lichtman, 1999). It

is also increasingly apparent that the mechanisms of nism for modulating the strength of connectivity between
two cells. Synapse disassembly has been observed cen-regulated synapse disassembly persist in the mature

nervous system, although the number of remodeling trally and peripherally in invertebrates (Murphey and
Lemere, 1984; Streichert and Weeks, 1995; Lee et al.,events declines with age (Gan et al., 2003). For example,

live, in vivo observation of synaptic connections over 2000; Eaton et al., 2002). However, synapse disassembly
without input elimination has been difficult to conclu-prolonged time periods demonstrate that synaptic

structures can be formed and eliminated, even in mature sively demonstrate in the vertebrate central nervous sys-
tem. Anatomical studies examining changes in axonalneural networks, implying an ongoing need for both syn-

apse formation and retraction, and an ongoing need for and dendritic arborizations in the visual system strongly
suggests that remodeling events, consistent with syn-mechanisms that balance these opposing forces (Walsh

and Lichtman, 2003; Grutzendler et al., 2002; Trachten- apse disassembly, can occur at the same time as the
more dramatic process of “input elimination” (Shatz andberg et al., 2002; Sin et al., 2002; De Paola et al., 2003;

Gan et al., 2003; Eaton and Davis, 2003). The prevalence Stryker, 1978; LeVay et al., 1980; Cline and Constantine-
Paton, 1990; Antonini and Stryker, 1993; Katz and Shatz,of synapse disassembly has led to speculation that it

could also serve as an important cellular substrate for 1996). Taking these anatomical observations to the level
of individual synapses, observed before and after a dis-learning and memory (Bailey and Kandel, 1993; Licht-

man and Colman, 2000). assembly event, is a very difficult task but one that is
being realized through recent advances in live imaging.An essential distinction, when considering synapse

elimination, is whether the eliminated synaptic structure Excitatory axo-dendritic synapses are often formed
at dendritic spines, and there is increasing evidencewas previously a functioning synapse. The elimination

of previously functional synaptic connections has been that developmental and activity-dependent changes in
synaptic strength are associated with the formation ofclearly demonstrated in the mammalian neuromuscular
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dendritic spines (Dailey and Smith, 1996; Engert and
Bonhoeffer, 1999; Harris and Woolsey, 1981; Maletic-
Savatic et al., 1999; Purves and Hadley, 1985; Purves
et al., 1986; Sin et al., 2002; Toni et al., 1999; Lendvai
et al., 2000; Grutzendler et al., 2002; Trachtenberg et al.,
2002). Similar observations have been made examining
changes to presynaptic axonal and synaptic arboriza-
tions (Antonini et al., 1998; O’Rourke and Fraser, 1990;
Darian-Smith and Gilbert, 1994; Lom and Cohen-Cory,
1999). What about synapse disassembly? Recent live
imaging studies of developing synapses emphasize the
prevalence of synapse remodeling and provide compel-
ling evidence that pre- and postsynaptic dynamics may
be associated with the elimination of individual, pre-
viously functional, synaptic connections. Xenopus tectal
dendrites are added and retracted over the course of
several days, ultimately reaching a state of dynamic
equilibrium, during which the rates of addition and re-
traction are nearly balanced (Sin et al., 2002). These
dynamics are modulated by visual activity, implicating
these dynamics in the activity-dependent refinement of
functional synaptic circuitry in this system (Sin et al.,
2002). In a separate study, two-photon imaging of spine
dynamics in the mammalian cortex has been correlated
with the formation and elimination of ultrastructurally
defined synapses (Figure 3; Trachtenberg et al., 2002).
Ultrastructural analysis is required to test whether a
spine retraction includes the elimination of a synapse
or whether the spine retraction simply translocates a
synapse from a spine head to the dendrite shaft. The
authors find that the number of spine retractions ob-
served at the light level in a section of dendrite is 2-fold
greater than the number of ultrastructurally observed
synapses on the same dendritic segment. Thus, a por-
tion of the spine retractions observed at the light level
must actually eliminate synapses, since all of the spine
retractions cannot be accounted for, ultrastructurally,
by a spine synapse being converted into a synapse on
the dendrite shaft. These data support the conclusion
that a portion of spine elimination events observed at
the light level represent the ultrastructural disassembly
of individual synapses (though it is not possible to assay
whether these were previously functional synapses).Figure 3. Input Elimination and Synapse Disassembly in the Central
Two additional studies provide further evidence for syn-and Peripheral Nervous Systems
apse disassembly, in these cases through the visualiza-Top: An example of input elimination at the mammalian NMJ. Three

views of the same NMJ imaged at P11, P12, and P13. One motoneu- tion of presynaptic terminals over time. Live imaging of
ron is labeled with CFP (blue) and the other with YFP (green). The individual presynaptic arbors within a mature hippocam-
CFP axon is gradually eliminated and the territory formerly occupied pal slice demonstrates the continual addition and elimi-
by this axon is taken over by the YFP axon. At P15 the CFP axon nation of varicosities that may represent functional ac-
will have been completely eliminated. Note that the YFP axon initially
occupies less territory than the CFP axon, and yet still wins the
competition. Scale bar equals 10 �m. See Walsh and Lichtman
(2003) for further detail.

cleft material, is disrupted at a synapse undergoing disassemblyMiddle: An example of synapse disassembly at the Drosophila larval
NMJ (from Eaton et al., 2002). The postsynaptic muscle membrane (right, feathered arrowheads). The characteristic T-bar structures

are indicated (arrowhead). Note the large vesicular structures pres-folds are labeled with anti-discs large (red) and the presynaptic
terminal is labeled with anti-synapsin (green). The formation of the ent at the disassembling synapse. Scale bar equals 250 nm. For

details see Eaton et al. (2002).muscle membrane folds requires the presence of presynaptic termi-
nal. Presynaptic retraction occurs more rapidly than the disassembly Bottom: A section of dendrite labeled with enhanced GFP and im-

aged repeatedly. Panels 1, 2, and 3 are images taken on days 6, 7,of the postsynaptic muscle membrane folds. The retraction is re-
vealed as an area devoid of synapsin where discs-large remains, and 8, respectively. The fourth panel is an image taken on day 32.

Two large mushroom spines (yellow arrowheads) are observed toidentifying a site where the presynaptic terminal once resided and
has since retracted. Below are ultrastructural images of single syn- be stable with lifetimes of 32 days. A different spine (orange arrow-

head) is observed to be stable for 8 days, but is ultimately eliminatedapses that are representative of wild-type (left) and representative
of a synapse undergoing disassembly (right). The close apposition by day 32 of imaging (final panel, hollow orange arrowhead). Scale

bar equals 5 �m. For details see Trachtenberg et al., 2002.of pre- and postsynaptic membranes, and presence of synaptic
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tive zones (De Paola et al., 2003). A separate presynaptic ity-dependent programs (Eaton and Davis, 2003). How-
imaging study examined presynaptic vesicle-associ- ever, the data from the Drosophila CNS suggest that
ated proteins and correlates their abundance with the there may be added complexity. In this context, it is
imaging of vesicle recycling over prolonged time periods interesting to note that input elimination is prevalent
(Hopf et al., 2002). Although the case for the actual during early development in the vertebrate PNS and
disassembly of the synapse is less strong, these data CNS, while synapse disassembly persists throughout
define changes to a population of synapses that include life. Our current understanding of the phenomenology
functioning presynaptic active zones. and underlying mechanisms of synapse disassembly

An important question is whether input elimination is and input elimination are detailed in the following sec-
simply an extreme example of synapse disassembly, or tions.
whether these processes are fundamentally different in
some way. Several phenomenological observations Input Elimination at the Vertebrate NMJ
suggest that there will be similarities between these The mammalian NMJ is perhaps the most well-charac-
processes. For example, input elimination and synapse terized synapse in any organism. At birth, each muscle
disassembly share ultrastructural similarities when com- fiber is innervated by multiple motoneurons and all but
paring input elimination at the mammalian NMJ with one motoneuron input are gradually eliminated over the
synapse disassembly at the Drosophila NMJ. In both course of several weeks (Figure 3). The most compelling
systems, presynaptic withdrawal includes a decreased model for input elimination outlines an activity-depen-
caliber of the presynaptic element, detachment of the dent competition between initially equivalent inputs in
pre- and postsynaptic elements, and the presence of which one of the inputs emerges victorious. The involve-
prevalent large vesicular structures that may reflect a ment of activity was clearly demonstrated in several
common cellular program to dispose of membrane and experiments. For example, if activity is blocked, elimina-
protein derived from synapse disassembly (Figure 3; tion does not occur (Duxson, 1982; Thompson et al.,
Eaton et al., 2002; Bernstein and Lichtman, 1999). 1979; however, see Costanzo et al., 2000). The relative

There is also some evidence for mechanistically sepa- synaptic efficacy of two competing axons at a single
rable processes that result in the elimination of syn- NMJ also predicts the outcome of synaptic competition.
apses. In the Drosophila CNS, experiments have identi- This has been most recently, and elegantly, demon-
fied what appear to be two mechanistically separable strated by genetically reducing synaptic efficacy at one
phenomena that each result in the elimination of the of two axons innervating a target. This was achieved
synapses along a synaptic arbor. In one example, retrac- by conditional genetic manipulation of choline acetyl
tion occurs in a distal to proximal fashion along a presyn- transferase, the synthetic enzyme for ACh, in subsets of
aptic arborization. This retraction is initiated by hor- motoneurons (Buffelli et al., 2003). Several experiments
monal cues and involves TGF-� signaling as well as also indicate that this synaptic competition is mediated
the activation of intracellular signaling via RhoA and its through the muscle cell. In one experiment it was shown
effector dRock (Lee et al., 2000; Billuart et al., 2001). A that focal blockage of receptor activation within a small
separate phenomenon of axonal pruning has also been

region of the NMJ induced elimination at these sites,
observed in which an entire segment of a presynaptic

suggesting that local differences in receptor activation
arborization appears to be dismantled simultaneously.

can drive elimination (Balice-Gordon and Lichtman,
Importantly, this process of pruning is initiated prior to

1994). Additional evidence supports the view that post-the loss of synaptic antigens, indicating that this process
synaptic activity-dependent mechanisms function lo-may be initiated and proceed independent of synaptic
cally to drive the elimination of neighboring inputs. Forsignaling (Watts et al., 2003). Pruning requires ubiquitin-
example, if two motoneuron inputs are separated byproteosome signaling and protein degradation, and par-
enough distance on the muscle surface, both can beallels have been drawn, in this case, to Wallerian degen-
maintained (Kuffler et al., 1977). These and other obser-eration (Watts et al., 2003). It remains to be determined
vations have led to several theories of activity-depen-whether these phenomena, retraction and pruning,
dent competition leading to input elimination at the NMJ.serve unique purposes during metamorphosis in the
In the first model, presynaptic inputs compete for ac-Drosophila CNS. It also remains to be determined
cess to limiting amounts of muscle-derived trophic sig-whether these phenomena, which are under hormonal
nals. Less active inputs receive less trophic support andcontrol, are related to the activity-dependent mecha-
input elimination ensues (Sanes and Lichtman, 1999;nisms of synapse disassembly/input elimination that
however, Callaway et al., 1987). A second type of modeldominate the vertebrate central and peripheral nervous
invokes signaling mechanisms that actively drive thesystems. In this vein, it should be noted that a phenome-
process of elimination at less active inputs. These puta-non of axonal pruning, involving semaphorin-Plexin A3
tive signals have been termed “synaptotoxins” or “pun-signaling, has been observed in the vertebrate CNS,
ishment signaling” (Sanes and Lichtman, 1999). Sincealthough the relationship of this pruning to synapse
activity-dependent competition appears to be mediatedfunction and remodeling awaits further experimentation
through the muscle, this model also invokes the idea(Bagri et al., 2003).
that less active inputs are somehow more susceptibleUltimately, a detailed molecular understanding will be
to the “synaptotoxin” or that inputs with more activitynecessary to establish the commonality and differences
are somehow protected, or both (Sanes and Licht-between input elimination and synapse disassembly. It
man, 1999).seems logical that there will be a common cell biological

These models have provided an important frameworkmechanism responsible for dismantling the synapse that
can be co-opted by different developmental and activ- for considering the mechanisms of input elimination.
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However, recent experiments have provided new insight tic cell appears to mediate the elimination of presynaptic
inputs in the cerebellum, similar to what has been seeninto the complexity of competition-driven input elimina-

tion. The advent of GFP mice has allowed the time- at the NMJ.
lapse visualization of both the motorneuron terminal and
postsynaptic receptors (visualized using subblocking The Visual System
concentrations of �-bungarotoxin). It was demonstrated Anatomical and functional data provide clear evidence
that an input could initially begin the process of elimina- of input elimination during the activity-dependent refine-
tion and then subsequently reverse this process by ment of neural circuitry in the visual system (Sur et al.,
growing to become the single input that is maintained 1984; Sretavan and Shatz, 1986; Hamos et al., 1987;
(Walsh and Lichtman, 2003). This observation is impor- Cline and Constantine Paton, 1990; Katz and Shatz,
tant for several reasons. First, it demonstrates that the 1996). For example, following the occlusion of one eye
mechanisms underlying input elimination are reversible. in early development, most cells in the cortex will lose
This would suggest that input elimination is not a switch responsiveness to the occluded eye and respond only
but is a process that is continually driven until an entire to the open eye (Wiesel and Hubel, 1963). Anatomical
input is ultimately eliminated. These data are also impor- data demonstrate that the presynaptic arbors of the
tant because an ineffective input was observed to over- afferents derived from the occluded eye rapidly shrink
take a more effective input, indicating that there must in size, consistent with anatomical input elimination (An-
be mechanisms in addition to receptor activation that tonini and Stryker, 1993, 1996). More recently, a detailed
determine the outcome of competition-driven input electrophysiological analysis provides clear evidence
elimination. of functional input elimination at the retino-geniculate

synapse. It was shown electrophysiologically that genic-
ulate cells initially receive more than 20 functional retinalInput Elimination at the Cerebellar Climbing

Fiber Synapse inputs and all but 1–3 of these inputs are eliminated
in a 3 week period spanning eye opening (Chen andPurkinje cells (PCs) within the cerebellum receive dis-

tinct excitatory inputs from parallel fibers (PFs) and Regehr, 2000).
It is now clear that visual plasticity, and by extensionclimbing fibers (CFs). During early postnatal develop-

ment in the rodent brain, PCs are multiply innervated input elimination, is driven in part by activity-dependent
synaptic competition (Katz and Shatz, 1996). There areby presynaptic CFs, all but one of which are removed

over the course of a few weeks, leaving a single CF several details worth emphasizing. As at the NMJ, activ-
ity-dependent competition in the visual system appearsaxon to innervate each PC (Sotelo, 1975; Mason and

Gregory, 1984; Ito, 1984). The one-to-one relationship to be mediated through the postsynaptic cell (Katz and
Shatz, 1996). Again, however, the link between activitybetween CF and PC is then maintained throughout the

lifetime of the adult. and synapse disassembly is complex. For example, ana-
tomical changes associated with input elimination canWork on mutant mice over the last 25 years has sug-

gested that the failure to properly eliminate supernumer- be driven in opposing directions by changes in corre-
lated activity. Experiments combining visual deprivationary connections in the cerebellum has functional conse-

quences for the animal. Initial studies on the classic with the manipulation of postsynaptic activity demon-
strate that identical levels of presynaptic activity canmouse mutants weaver and staggerer found that these

mutants with obvious motor ataxia also had multiple lead to opposite directions of synaptic rearrangement
(afferent expansion versus retraction) depending uponCFs innervating single PCs in the adult brain (Sotelo,

1975; Crepel and Mariani, 1976; Crepel et al., 1980). whether or not activity in the postsynaptic cell is inhib-
ited (Hata and Stryker, 1994; Hata et al., 1999). AnotherRecent work on mutant mice deficient in PKC, mGluR1,

PLC, or G�q has also shown a correlation between loco- important point is that the process of input elimination
is reversible in the visual system, as it is at the NMJ,motor ataxia and the failure to properly eliminate CF

innervation on the PCs (Aiba et al., 1994; Conquet et al., and reversibility is driven by changes in activity (Antonini
et al., 1998). Since the balance of branch addition and1994; Chen et al., 1995; Kano et al., 1995, 1997; Kim et

al., 1997; Offermanns et al., 1997; Ichise et al., 2000). In retraction during development of visual neurons can be
influenced by visual activity (Cohen-Cory, 1999; Sin etaddition, mutants in mGluR1 are also deficient in Pur-

kinje cell LTD, providing a link between synapse elimina- al., 2002), it is interesting to speculate that induction
and reversibility of input elimination is achieved not onlytion, plasticity, and motor coordination (Ichise et al.,

2000). through the control of disassembly, but through the co-
ordinate control of several processes including synapseSince mGluR1 is expressed in other regions of the

brain, Ichise and colleagues performed PC-specific res- disassembly, synapse formation, and cellular growth.
The extent to which these processes are separablecue in mGluR1�/� mice to conclusively show that

mGluR1 is required in the postsynaptic PCs for normal awaits further experimentation. Taken together, these
data underscore the cellular complexity involved in mov-regression of multiple CF innervation (Ichise et al., 2000).

Therefore, it is likely that regulation of PLC and PKC via ing from activity to the molecular mechanisms that dis-
mantle a synapse.mGluR1 activation is occurring in the postsynaptic cell,

which then drives the removal of supernumerary presyn- There is some consensus regarding the underlying
molecular signaling that drives synaptic competition inaptic connections via the initiation of an unknown elimi-

nation program. Although it remains unclear what the the visual system. Neurotrophin signaling (Lein and
Shatz, 2000; Cohen-Cory, 2002; Huang and Reichardt,mechanisms are leading to the disassembly of synaptic

connections between the CFs and PCs, the postsynap- 2001; Berardi et al., 2000), NMDA receptor activation
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(Cline and Constantine Paton, 1990; Sin et al., 2002; Marques et al., 2002; McCabe et al., 2003). Although the
absence of this signal has not been directly linked toBerardi et al., 2000), calcium signaling via CamKII (Taha
synapse disassembly, mutations in the dynein/dynactinet al., 2002; Wu and Cline, 1998; Lisman et al., 2002), and
complex, which are necessary for the retrograde trans-CREB (Pham et al., 2001) appear necessary in various
port of TGF-� signaling in Drosophila central neuronsexperiments for this morphological and functional plas-
(Allan et al., 2003; McCabe et al., 2003), has been shownticity (Lisman et al., 2002; see also Huh et al., 2000).
to increase the rate and frequency of synapse disassem-However, the relationship of these signaling systems to
bly at the NMJ (Eaton et al., 2002).the cellular mechanisms of synapse disassembly/input

Input elimination and synapse disassembly have alsoelimination (discussed below) remains unclear. The
been observed in C. elegans. In this system, synapseemerging challenge is to connect the mechanisms that
disassembly is necessary for an unusual rewiring eventtransduce changes in correlated activity to the molecu-
during larval development. Six GABAergic motoneuronslar mechanisms that direct synapse disassembly/input
send processes to both dorsal and ventral muscles.elimination (see also Hensch et al., 1998, in this regard).
Initially, synapses are made only with the ventral mus-Experimentally teasing apart these interconnected sig-
cles. However, as development proceeds, this connec-naling systems may ultimately require simplified genetic
tivity is reversed. The motoneurons disassemble theirsystems such as Drosophila and C. elegans, where these
synapses at the ventral muscles and form new synapsesprocesses can be studied using forward genetics (Hal-
with the dorsal muscles. There is no change in the archi-lam and Jin, 1998; Eaton et al., 2002; Lee et al., 2000).
tecture of the motoneuron processes despite this re-
arrangement of synaptic connectivity (Hallam and Jin,Synapse Disassembly in Drosophila
1998; White et al., 1978). This synaptic rearrangementand C. elegans
has been observed at both the light and ultrastructuralThe Drosophila larval NMJ, unlike the vertebrate central
levels (Hallam and Jin, 1998; White et al., 1978). Littleand peripheral systems described above, is molecularly
is known about the time course of this event, though itspecified such that each muscle cell receives input from
can be modulated by mutations in the heterochronicidentified motorneurons and these inputs persist through-
gene lin-14 (Hallam and Jin, 1998).out development (Keshishian et al., 1996). Though the

number of innervating axons does not change during
Mechanisms of Synapse Disassemblylarval development, the size of the synapse increases
and Input Eliminationdramatically. Analysis of an identified synapse demon-
Although the molecular mechanisms that initiate syn-strates that it increases in size from �20 boutons, each
apse elimination are not known, we do have informationbouton containing a single active zone, to �100 bou-
regarding the sequence of events that occurs duringtons, with each bouton encompassing 7–12 active zones
elimination. At the vertebrate NMJ, different synaptic(Schuster et al., 1996). The elaboration of presynaptic
proteins are lost at different rates. The first moleculesmorphology and active zone insertion is tightly coupled
to disappear include postsynaptic AChRs, utrophin,to the growth of the postsynaptic muscle, indicating that
rapsyn, and phospho-tyrosine-modified AChR (Culicansynaptic development is specified by the coupling of
et al., 1998). It remains unclear whether the loss of any of

pre- and postsynaptic growth (Davis and Bezproz-
these markers could be a precipitating event, however,

vanny, 2001).
since AChRs can be maintained at some types of muscle

It has been recently shown that synaptic growth at fibers following nerve degeneration (Pun et al., 2003). A
this synapse also includes the rapid disassembly of syn- number of other molecules disappear at slower rates
apses within the neuromuscular junction (Figure 3; Eaton including dystrophin and syntrophin, while markers of
et al., 2002). Synapse disassembly was assayed using the extracellular basal lamina are removed at even
light level, ultrastructural, and electrophysiological assays. slower rates (Culican et al., 1998). It has been speculated
Importantly, synapse disassembly is generally restricted that the molecular constituents of different molecular
to individual branches or even individual synaptic bou- scaffolds may be eliminated with different time courses
tons within a single presynaptic arbor, suggesting that since AChR/rapsyn are located at the top of the junc-
these events themselves are locally defined and do not tional fold while dystrophin and syntrophin are located
result in the complete elimination of the motoneuron at the base of these folds (Froehner, 1991; Culican et
input (Eaton et al., 2002). Developmental analysis dem- al., 1998).
onstrates that synapse disassembly occurs throughout The majority of data support the conclusion that syn-
development and is most prevalent during the rapid apse elimination is specified postsynaptically. For ex-
phases of synaptic growth. These data suggest that ample, many experiments emphasize the importance of
growth at the Drosophila NMJ is a balance of bouton signaling from the postsynaptic cell. At both central and
addition and retraction and that elimination is develop- peripheral synapses, “input elimination” is driven by ac-
mentally regulated. Evidence suggests that these disas- tivity-dependent competition mediated through the
sembly events are not due to competitive interactions postsynaptic cell (Sanes and Lichtman, 1999; Katz and
between motoneuron branches innervating a single Shatz, 1996). The role of the postsynaptic cell as inter-
muscle (G.W.D. and Benjamin A. Eaton, unpublished mediary is further strengthened by recent experiments
data). Mechanistically, retrograde synaptic TGF-� sig- at the mammalian NMJ where visualization of an entire
naling and retrograde axonal transport have been impli- motor unit over time reveals that input elimination occurs
cated in synapse disassembly at the Drosophila NMJ. asynchronously among branches of a single motoneu-
Synaptic TGF-� signaling is necessary for the normal ron without any apparent regional bias, arguing for local

control at each muscle fiber (Keller-Peck et al., 2001).development of the Drosophila NMJ (Aberle et al., 2002;



Review
255

Despite the relative consensus that the postsynaptic and disappearance) of Homer-GFP in different regions
of a single cell are more highly correlated than the dy-cell acts as intermediary during synaptic competition,

it appears that postsynaptic disassembly need not pre- namics between different cells (Ebihara et al., 2003).
One interpretation is that individual cells have differentcede presynaptic retraction. Electrophysiological re-

cordings at the mammalian NMJ, correlated with post- biases regarding synapse formation and elimination.
Molecularly, it has long been hypothesized that with-synaptic receptor staining, demonstrate that removal of

postsynaptic receptors can precede the retraction of the drawal of trophic support could initiate synapse disas-
sembly or input elimination (Snider and Lichtman, 1996;presynaptic element (Colman et al., 1997; Akaaboune

et al., 1999). However, live imaging experiments at the Sanes and Lichtman, 1999), and there is recent experi-
mental evidence that trophic support is necessary formammalian NMJ also provide clear evidence of re-

tracting presynaptic elements at sites where postsynap- synapse maintenance and development (Huang and
Reichardt, 2001; McAllister et al., 1999; Cohen-Cory,tic receptors persist (Walsh and Lichtman, 2003). Fur-

thermore, at some muscle fibers types, receptors can 2002). Loss of NT4 or TrkB at the NMJ promotes synapse
elimination, and loss of TrkB signaling in the cerebellumpersist following complete presynaptic retraction (Pun

et al., 2003). It is possible that loss of receptors need results in the development of fewer GABAergic syn-
apses assessed at both the light and ultrastructural lev-not proceed to completion prior to presynaptic elimina-

tion at some synapses, and at other synapses postsyn- els (Gonzalez et al., 1999; Belluardo et al., 2001; Rico
et al., 2002). Inhibiting TrkB function during the criticalaptic disassembly need not occur prior to presynaptic

retraction. Thus, while evidence is stacked in favor of period impairs ocular dominance formation (Cabelli et
al., 1997). Conversely, at both central and peripheralthe postsynaptic cell mediating the synaptic competi-

tion that leads to input elimination or synapse disassem- synapses, excess neurotrophin signal can prevent com-
petition-based plasticity, presumably because the neu-bly, the mechanisms that dismantle the synapse may

have some degree of autonomy in the pre- versus post- rotrophin signal is no longer limiting for synaptic support
(Cabelli et al., 1995; Riddle et al., 1995; Nguyen et al.,synaptic element.

A similar situation is observed in Drosophila. At the 1998). In the Drosophila olfactory system and NMJ, simi-
lar mechanisms underlying synapse disassembly mayDrosophila NMJ, signals from the postsynaptic muscle

could initiate a presynaptic program of disassembly involve TGF-� signaling (Lee et al., 2000; Aberle et al.,
2002; Eaton et al., 2002; McCabe et al., 2003).since synapse disassembly can occur locally at one

of several muscles contacted by single motoneurons There are conceptual problems, however, with the
hypothesis that synapse disassembly is initiated and(Eaton et al., 2002). However, the earliest molecular sig-

natures of retraction occur presynaptically at this syn- driven simply by the withdrawal of trophic support. In
instances where only one or a few synapses are disas-apse, suggesting that the motoneuron may have a deter-

ministic role for synapse disassembly. Examination of sembled within a presynaptic arbor, it is difficult to imag-
ine how trophic withdrawal could precipitate such afixed preparations suggests that presynaptic elimination

of synapsin- and vesicle-associated proteins precede spatially confined event. Furthermore, the speed of syn-
apse disassembly can be substantially faster than thethe removal of postsynaptic receptors (Eaton et al.,

2002). The loss of these presynaptic antigens has also rate of protein turnover at a synapse, indicating that
destabilizing mechanisms may be necessary in additionbeen implicated as an early event in the elimination of

individual synapses in the central nervous system, in to the removal of the trophic support. For example, the
half-life of AMPA receptors at a central synapse hasvitro (Hopf et al., 2002). Examination of fixed prepara-

tions at the fly NMJ also suggests that retraction of the been measured to be 18–23 hr, and the half-life of NR2
is 16 hr (Huh and Wenthold, 1999). Yet live imagingmicrotubule cytoskeleton may be one of the earliest

events during synapse retraction (Eaton et al., 2002). studies have demonstrated that AMPA receptor-con-
taining synapses can be eliminated as quickly as 90These events appear to be followed by the removal of

postsynaptic receptors and the subsequent dissolution min and dendritic spines have been observed to be
eliminated in less than 1 day (Okabe et al., 2001; Grut-of the postsynaptic muscle membrane folds, which oc-

curs in parallel with the retraction of the presynaptic zendler et al., 2002; Trachtenberg et al., 2002).
Activity-blockade experiments at both central and pe-membrane.

There is also increasing evidence for cell-wide pro- ripheral synapses highlight the possibility that neuro-
transmitter release can act to stabilize the synapse. Atcesses that can bias a cell, pre- or postsynaptically,

toward increased synapse elimination. Perhaps the the vertebrate NMJ, 2 hr of complete blockade of neuro-
transmission has been observed to enhance the rate ofclearest examples are those demonstrating that hor-

monal signaling can initiate extensive remodeling and AChR turnover 25-fold (Akaaboune et al., 1999). These
data are consistent with genetic studies at the Drosoph-input elimination throughout a cell (Matsumoto et al.,

1988; Streichert and Weeks, 1995; Lee et al., 2000). ila NMJ examining glutamate receptor clustering in the
absence of presynaptic release (Saitoe et al., 2001). InThere is also evidence for intrinsic differences between

motoneurons (Barry and Ribchester, 1995; Personius the CNS, spines disappear following glutamate receptor
blockade or the addition of botulinum toxin (McKinneyand Balice-Gordon, 2001; Buffelli et al., 2002; Kasthuri

and Lichtman, 2003) and between different muscle types et al., 1999). It is conceivable that transmitter release
acts through the activity-dependent release of neuro-(Pun et al., 2003) that may influence synaptic competi-

tion and input elimination. Finally, time-lapse imaging trophins, but it is equally plausible that neurotransmitter
could act in concert with trophic support to add neces-of Homer 1cGFP in hippocampal cultures was used to

assay synapse dynamics (Ebihara et al., 2003). In this sary specificity.
Another interesting possibility is that the disruptionanalysis it was shown that the dynamics (appearance
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of specific synaptic scaffolds initiates synapse disas- and drive the process of synapse disassembly/input
sembly. It is clear that scaffolding proteins have an es- elimination are not known. However, we are learning
sential function in the organization and integrity of the quite a bit about the criteria that must be met by the
pre- and postsynaptic protein complexes (Chen et al., underlying signaling systems. Synapse disassembly is
2000; Sheng, 2001; McGee and Bredt, 2003). These scaf- controlled both spatially and temporally, affecting spe-
folds appear to be more dynamic than once thought, cific synapses within a dendritic tree or presynaptic
suggesting that there will be cellular signaling responsi- arbor from individual neurons (Keller-Peck et al., 2001;
ble for their maintenance and possibly their destruction. Eaton et al., 2002; Grutzendler et al., 2002; Trachtenberg
There is increasing evidence that modification to synap- et al., 2002). Synapse disassembly can be modulated
tic scaffolds can alter synapse formation and stability. by activity, may require trans-synaptic signaling, and
For example, overexpression of PSD-95 increases syn- may be initiated either pre- or postsynaptically (Sanes
apse stability and number in hippocampal cell culture and Lichtman, 1999; Eaton et al., 2002; Walsh and Licht-
and the localization of PSD-95 at the synapse has been man, 2003; Hopf et al., 2002). Synapse disassembly is
recently linked to glutamate receptor activity and visual also reversible in both the CNS and PNS (Antonini et
plasticity in response to eye opening (El-Husseini et al., 1998; Walsh and Lichtman, 2003; De Paola et al.,
al., 2000, 2002; Yoshii et al., 2003). Furthermore, the 2003). Together, these criteria argue that the process of
regulated disassembly of large protein complexes via synapse disassembly, even during “input elimination,” is
proteosomal or lysosomal degradation is a common not a switch-like, catastrophic process. Rather, it ap-
theme throughout cell biology that is recently being pears that the underlying mechanisms of disassembly
linked to synaptic growth and plasticity (Hegde et al., can be turned on and off and that the persistent action of
1997; DiAntonio et al., 2001; Burbea et al., 2002; a disassembly program may be necessary for extensive
Sweeney and Davis, 2002; Watts et al., 2003; Eaton and events such as input elimination.
Davis, 2003). Although altered scaffolding has not been
linked directly to synapse disassembly (Colledge and Coordinating Synapse Assembly and Disassembly
Froehner, 1998), ultrastructural visualization of synapse It is now well established that the refinement of neural
disassembly at the Drosophila NMJ suggests that one of circuitry is achieved by a combination of synapse
the first events in disassembly may be a loss of signaling assembly and disassembly. Remarkably, recent live
between the pre- and postsynaptic membranes at the imaging studies at developing central synapses demon-
active zone, as evidenced by an increased separation strate an apparent dynamic equilibrium between syn-
between the synaptic membranes and the clearing of apse formation and synapse disassembly (Sin et al.,
electron-dense material in the synaptic cleft (Figure 3; 2002; De Paola et al., 2003; Trachtenberg et al., 2002;
Eaton et al., 2002). Thus, disruption of the linkages be- Grutzendler et al., 2002). These studies suggest that the
tween pre- and postsynaptic scaffolds, including signal- opposing forces of synapse assembly and disassembly
ing and cell adhesions molecules, could be a precipitat- are coordinately regulated to attain constant synapse
ing event. density during the rearrangement of synaptic connectiv-

A discussion of synapse disassembly is not complete
ity. How, then, are the processes of synapse assembly

without considering the involvement of the synaptic cy-
and disassembly balanced? Studies at the NMJ provide

toskeleton. There is increasing data demonstrating the
insights into potential mechanisms.

importance of actin in the maintenance and modulation
One possibility for controlling the extent of synapseof the synapse. Actin is enriched both pre- and postsyn-

assembly and disassembly is to constrain the size ofaptically (Matus, 2000; Luo, 2002) and is highly dynamic
the axonal or dendritic arborization by cell-wide and(Colicos et al., 2001; Star et al., 2002; Fukazawa et al.,
cell-autonomous growth programs. In addition to the2003), and manipulations that alter actin dynamics, in-
evidence for a cell-wide regulation of synapse disas-cluding activity, also alter synapse morphology and sta-
sembly discussed earlier, recent work at the mammalianbility (Hatada et al., 2000; Lisman, 2003; Finn et al.,
NMJ lends further support to the generality of a cell-2003; Zhang and Benson, 2001; Fukazawa et al., 2003).
wide, coordinated regulation of synaptic assembly andFurthermore, there are numerous signaling pathways
input elimination. In this study, synaptic competitionthat may lead to modulation of the synaptic actin cy-
is examined between two motoneurons, labeled withtoskeleton that are present at the synapse including
different GFP variants, at each muscle fiber where theintercellular signaling molecules and cytoplasmic actin-
two motoneurons converge (Kasthuri and Lichtman,regulatory proteins (Murase et al., 2002; Penzes et al.,
2003). The analysis is made possible by visualization of2003; Finn et al., 2003). Evidence that actin might be
the entire axon arbor of two individual motoneuronsdirectly involved in stabilization and elimination is sug-
among many motoneurons that innervate a set of musclegested by pharmacological studies demonstrating that
fibers. It is possible, therefore, to assay the outcomeimmature, relatively dynamic synapses are susceptible
of synaptic competition between two motoneurons atto actin depolymerizing drugs while older, less dynamic
every muscle fiber where they converge, which is a mi-synapses appear largely resistant to pharmacological
nority of the fibers innervated by each MN (Figure 4).disruption of actin (Zhang and Benson, 2001; Lisman,
There are two remarkable observations. The first obser-2003). It should be noted, however, that there might
vation is that one motoneuron loses every competitionbe core components of the synaptic complex that will
with the second motoneuron (though the loser is ablepersist despite severe disruption of the actin and micro-
to win at other sites when competing with othertubule cytoskeletons (Allison et al., 2000; Dunaevsky
motoneurons). Thus, one motoneuron appears to haveand Connor, 1998).

In conclusion, the subcellular mechanisms that initiate an intrinsic competitive advantage over the other neuron
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hypothesis to explain the negative correlation between
arbor size and competitive vigor is that a cell-wide finite
resource influences the size of an arborization. This re-
source becomes dilute as a motoneuron gains territories
and size and somehow limits the ability of the neuron to
engage in synaptic competition (Kasthuri and Lichtman,
2003). Such growth restriction may act to prevent exces-
sive expansion of single arborizations during the refine-
ment of neural circuitry.

Genetic data from Drosophila provide some mecha-
nistic insight into this type of synaptic growth regulation
(Figure 4). Two recently identified genes, highwire (Wan
et al., 2000) and spinster (Sweeney and Davis, 2002),
are required to restrain normal synaptic growth since
mutations in these genes result in tremendous synaptic
overgrowth (200%–300%). highwire encodes a large,
multidomain protein that functions in part as an E3 ubi-
quitin ligase (DiAntonio et al., 2001). spinster encodes
a multipass transmembrane protein localized to the late
endosomal compartment (Sweeney and Davis, 2002).
Both proteins appear to be involved in regulating protein
traffic. Genetic data indicate that Spinster also regulates
synaptic TGF-� signaling (Sweeney and Davis, 2002)
that is necessary for synaptic growth at the Drosophila
NMJ (Marques et al., 2002; Aberle et al., 2002; McCabe
et al., 2003). These findings suggest an intimate linkFigure 4. Competition, Elimination, and the Relationship to Total
between the mechanisms of protein traffic and synapticNerve-Terminal Area
growth control, possibly through the regulation of(A) Schematic of synaptic competition at the mammalian NMJ based

on results from Kasthuri and Lichtman (2003). When only two growth factor signaling. Although synaptic competition
motoneurons are labeled (green and blue) from a large pool of unla- such as that observed at the mammalian NMJ does not
beled motoneurons (gray circles with no diagrammed axon), it is occur in Drosophila, it is worth speculating that similar
possible to study how these two axons compete at each muscle

mechanisms may supply the finite resource restrictionfiber where they converge. Unlabeled motoneurons also project to
discussed above and specify synaptic growth and com-and form synapses with these muscle fibers (gray NMJs). During
petitive vigor at the mammalian NMJ.competition, the MN with the smaller total synaptic area (green) has

a competitive advantage and wins at every site where it converges Mechanisms of synapse stabilization or maintenance
with the blue neuron. The blue neuron wins competitions at other could alter the effectiveness simultaneously of synapse
muscles, competing against unlabeled axons. These and other data assembly and disassembly. Increased synapse stabili-
define a correlation between competitive vigor, input elimination,

zation could suppress the dynamics of synapse assem-and total synaptic arbor area.
bly and disassembly, whereas weakening of synapse(B) Forward genetic screens in Drosophila have identified genes
stabilization could promote synapse assembly and dis-that normally function to restrict the total area of the synaptic arbori-

zation. Synaptic connectivity is molecularly specified in Drosophila assembly. In this context it has been demonstrated in
and there is no evidence of synaptic competition. At left is dia- both Aplysia and Drosophila that activity-dependent de-
grammed the stereotyped connectivity of three identified motoneu- creases in a homophillic cell-adhesion molecule that
rons at the end of synaptic development. Diagrammed at right is

destabilizes the synapse is both necessary and suffi-the extraordinary synaptic overgrowth that is observed at the end
cient for increased synaptic growth (Mayford et al., 1992;of synaptic development in two independent mutant backgrounds,
Schuster et al., 1996). Likewise, modulating synapsehighwire (Wan et al., 2000) and spinster (Sweeney and Davis, 2002).

Both mutations are implicated in regulated protein trafficking at the stability by neurotrophins affects synapse dynamics.
synapse (DiAntonio et al., 2001; Sweeney and Davis, 2002), although Increased GDNF signaling can block input elimination
it is not understood how these genes normally function to restrict at the mammalian NMJ, while reduced neurotrophin sig-
synaptic growth to achieve stereotyped total synaptic arborization

naling can be linked to enhanced elimination (Nguyensizes in wild-type animals.
et al., 1998; Keller-Peck et al., 2001; Gonzalez et al.,
1999; Belluardo et al., 2001; Rico et al., 2002). These
models and molecules are, however, insufficient to ex-throughout its entire presynaptic arborization. It has
plain how the desired synapse density is recognizedbeen recently demonstrated that a more efficacious syn-
and how independent mechanisms of synapse forma-apse will likely win a synaptic competition (Buffelli et
tion and disassembly are coordinated to maintain con-al., 2003). If synaptic efficacy can be linked to axonal
stant synapse density during the rearrangement of syn-activity, then differences in motoneuron activity could
aptic circuitry. A future challenge, therefore, will be notbe one means to bias competition throughout the entire
only to define the molecular mechanisms of synapsearborization of a single motoneuron (Buffelli et al., 2003).
assembly, disassembly, and maintenance, but to under-The second observation is that motoneurons with larger
stand how these mechanisms interact to achieve stereo-total arborizations are at a competitive disadvantage
typed patterns of neural connectivity. The answers arewhen they compete against motoneurons with smaller

total arborizations (Kasthuri and Lichtman, 2003). One likely to be derived through the intersection of potent
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Barry, J.A., and Ribchester, R.R. (1995). Persistent polyneuronalnew quantitative live imaging techniques and continued
innervation in partially denervated rat muscle after reinnervationcellular/molecular studies directed at the synapse.
and recovery from prolonged nerve conduction block. J. Neurosci.
15, 6327–6339.
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