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Field programmable gate array (FPGA)-based systems are thought to be a practical option

to replace certain obsolete instrumentation and control systems in nuclear power plants.

An FPGA is a type of integrated circuit, which is programmed after being manufactured.

FPGAs have some advantages over other electronic technologies, such as analog circuits,

microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation

and control, and safety system applications. However, safety-related issues for FPGA-

based systems remain to be verified. Owing to this, modeling FPGA-based systems for

safety assessment has now become an important point of research. One potential

methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling

software/hardware interactions in modern control systems. In this paper, FPGA logic was

analyzed using DFM. Four aspects of FPGAs are investigated: the “IEEE 1164 standard,”

registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator.

The ModelSim simulations confirmed that DFM was able to accurately model those four

FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-

based systems. Furthermore, advantages of DFM over traditional reliability analysis

methods and FPGA simulators are presented, along with a discussion of potential issues

with using DFM for FPGA-based system modeling.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Field programmable gate arrays (FPGAs) are a type of pro-

grammable logic device. FPGAs can be utilized to construct

digital logic circuits. These programmable logic devices are

programmed by the end user to perform the necessary
om (P. McNelles).
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functions, and certain FPGAs are reprogrammable. FPGAs do

not usually include software or operating systems, as the logic

functions are programmed (synthesized) onto the chip itself.

The programming itself is implemented using hardware

description languages (HDLs) [1]. A well-known HDL, named

VHDL (very-high-speed integrated circuit HDL), is used in this
lf of Korean Nuclear Society. This is an open access article under
-nd/4.0/).
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Fig. 1 e DFM nodes, transfer boxes, and connectors. DFM,

dynamic flowgraph methodology.
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study. FPGAs can perform many of the control functions

performed by other electronic logics, such as analog circuits,

application-specific integrated circuits, microprocessors, and

PLCs. FPGAs can be used in different nuclear instrumentation

and control (I&C) systems, provided that they can be proved to

satisfy the safety requirements [2,3].

In the nuclear field,many I&C systems that are currently in

use in existing nuclear power plants (NPPs) are becoming

obsolete. FPGAs are being considered as replacements to those

systems. Compared with application-specific integrated cir-

cuits (ASIC) and analog circuits, FPGAs can be reprogrammed

if needed. Compared with PLCs and microprocessors, FPGAs

have been shown to have superior response time and faster

processing speed [4,5]. FPGA implementations have taken

place in Europe andAsia [6e8], and recently there is increasing

interest in these systems in Canada and the USA [9e11].

Very strict safety and quality requirements have been put

in place to ensure that the control systems in NPPs function

safely. This means that any FPGA-based systems would have

to undergo a thorough reliability analysis. To be used in an

NPP, an I&C system will have to meet certain qualitative and

quantitative reliability requirements; however, these re-

quirementswill vary among different regulators. In the case of

digital I&C systems, the use of software in the system must

also be verified. While FPGAs themselves do not run software,

the HDL code is used in configuring the FPGA, which can

introduce logic errors into the system. Therefore, both the

hardware and HDL logic components of FPGA-based systems

must be verified for FPGAs to be used in NPP I&C systems. In

this paper, the focus is on the HDL logic, including the Insti-

tute of Electrical and Electronics Engineers (IEEE) logic stan-

dards, important logical components of the FPGA, and a small

test system itself. Regulators may not set specific re-

quirements for FPGA-based systems; however, there is a

standard from the International Electrotechnical Commission

[12], and guides in the form of International Atomic Energy

Agency (IAEA) [13] and Nuclear Regulatory Commission

(NUREG) [14] documents that provide guidance on the design

and review of FPGA-based systems.

A failure mode and effect analysis (FMEA) at the compo-

nent and system levels will determine the potential failure

modes that can be used as top events in the analysis of FPGA

logic. The FPGA logic in these cases will be analyzed to

determine the top and initiating events that could lead to

failures in FPGA logic subcomponents and in the logic of the

system itself. Analysis of FPGA hardware components is

beyond the scope of this paper.

There are many reliability analysis techniques in the

literature and in industrial practice. The methodology used

in this paper is the dynamic flowgraph methodology (DFM).

DFM is a dynamic (time-dependent) methodology used to

model and analyze digital control systems. In this paper,

DFM is shown to be able to validate the logic of FPGA-based

systems, including uncovering errors that occur in the

logic, and the effect those errors could have on the system or

system components. The use of ModelSim simulations adds

evidence to the DFM results, to help confirm that DFM can

accurately model FPGA system logic. This, in turn, helps

validate the use of DFM in the analysis of FPGA-based sys-

tems, and allows for DFM to be applied to more in-depth
qualitative and quantitative analyses in future research

projects.

A detailed description of DFM and its advantages over

other reliability analysis techniques are presented in Section

2. Using this methodology, several important aspects of FPGA

systems are modeled and analyzed. Section 3 discusses three

important aspects of FPGA-based systems: the IEEE 1164

standard, registers, and configurable logic blocks (CLBs). Af-

terward, an FPGA-based dynamic signal compensator is pre-

sented, and a simplified sample FMEA is discussed. The

results of the analyses based on the models created in Sec-

tions 3 are presented and discussed in Section 4. Finally, the

advantages of DFM for FPGAmodeling and potential issues are

covered in Section 5.
2. Dynamic flowgraph methodology

This section describes the theory and application of DFM.

Section 2.1 will provide an overview of DFM. Section 2.2 will

discuss the actual DFMmodel, and Section 2.3 will discuss the

main limitation regarding the use of DFM.
2.1. DFM overview

DFM represents the system being analyzed using a directed

graphmodel. After themodel is built, it can be analyzed by the

inductive and deductive algorithms built into the methodol-

ogy [15]. The DFM deductive analysis will return a list of

“prime implicants” (PI), which are sets of occurrences that

would cause the top event (failure event). They are understood

to be themultivalued logic equivalent ofminimal cut sets. The

http://dx.doi.org/10.1016/j.net.2016.03.004
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Fig. 2 e DFM model for logic and mathematical functions. DFM, dynamic flowgraph methodology.
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inductive analysis will return a similar list, although the PIs

are referred to as “sequences.” DFM also incorporates time-

dependent behavior, allowing for both static and dynamic

(time-dependent) analyses [15].

DFM was created in order to model both hardware and

software components. This makes it a suitable method for

modern digital electronics such as FPGAs. It has been shown

to be more effective than well-known traditional methods

such as FMEA, fault tree, and event tree for modeling the

complicated hardware/software/firmware interactions in

digital systems [16e18]. Furthermore, DFM also was rated as

one of the methodologies for having the most positive fea-

tures and the fewest negative or uncertain features [16e18]. A

literature search of recent publications has consistently

shown DFM to be an effective method for reliability analysis

and probabilistic risk assessment of those systems [19e22].

2.2. DFM model and calculations

The actual DFM model consists of a series of process variable

nodes, connections, and transition boxes between these

nodes to show the relationship between system parameters

[15]. The nodes, transition boxes, and connectors are shown in

Fig. 1.

In Fig. 1, the nodes are used to represent the parameters,

process variables, or components of the system being
analyzed. Continuous nodes represent a continuous behavior,

discrete nodes represent a discrete behavior, and logical

nodes show logic tests on the current state of the system. In

the analysis, all nodes work in the same way, but look

different in the model to make it easier for the user to un-

derstand what is being represented. A process variable node

can represent an output value, such as a temperature or

voltage output. Each node is then discretized into an arbitrary

number of states that the node can take on (e.g., “High

Voltage”, “Low Voltage,” etc.).

A transfer box represents functional relationships between

the components of the model (similar to the transfer function

of a system). The transition box works in a similar manner,

but includes time delays, allowing one to model the time

dependence of the system and/or the system components.

The user will input decision tables into these boxes, to

determine the output of the box, based on the combination of

inputs. These decision tables are then combined to make one

“critical transition table” when the model is run, and then the

PIs are calculated using the DFM algorithms [15]. An example

table is given in Section 3.2.

The causal connection shows the input and output of the

boxes (the cause-and-effect system behavior). The condi-

tioning connectors indicate the connections between the

input and output of functions and determine which function

is used.

http://dx.doi.org/10.1016/j.net.2016.03.004
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Fig. 3 e DFM model for FPGA register. DFM, dynamic flowgraph methodology; FPGA, field programmable gate array.
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The basis for solving the actual DFM model is similar to

what is used to calculate the minimal cut sets in fault tree

analysis (FTA). Each PI is calculated as follows [15]:

PIj ¼
\n
i¼1

XðjÞ
i ¼

Yn
i¼1

XðjÞ
i¼1 (1)

where X represents each nodeestateetime step combination,

referred to as a “literal.”

There are several ways to calculate the top event probabil-

ity, once the PI probability is calculated. The first method is to

take the sum of all the PI probabilities, which is the default

method in the Dymonda software program. The second

method is to employ the “upper bound” approximation using

the PI probabilities, which is often used in FTA.However, these

twomethods are approximations and tend to overestimate the

top event probability, as the PIs may not always be mutually

exclusive. The exact top event probability can be calculated by

converting the PIs to mutually exclusive implicants and then

taking the sum of the mutually exclusive implicants [15]. The

conversion of PIs to mutually exclusive implicants can be
Table 1 e Sample decision table for simplified register.

Inputs Outputs

Reset Enable Clock Input

1 * * * 0

0 0 * * 1

0 1 0 * 1

0 1 1 þ 0
computationally intensiveand timeconsuming, therefore, one

of the aforementioned approximations is often used to

approximate the top event probability.
2.3. DFM limitations

DFMhas certain limitations,with the largest issue being due to

the explosion of states or “state explosion” [22]. The inclusion

of a large amount of nodes and states can lead to very large and

complicated decision tables, creating a combinatorial explo-

sion of states during the analysis. This limits the application of

DFM to realistic systems of small- or medium-sized systems,

such as the FPGA test system shown in Section 3.4 [23]. State

explosion is not limited to DFM, as it is an issue for other dy-

namic methods, such as Markov models [24].
3. Materials and method

In order to prove that DFM is accurately modeling the FPGA

logic and system properties, the DFM results must be

compared with the results from an established source. To

accomplish this, the VHDL code was used to create test sys-

tems, as well as testbenches. The testbenches would provide

input stimuli in order to test the VHDL test programs. The test

programs used synthesizable VHDL codes where possible,

which were also used to create the VHDL netlists. The Mod-

elSim simulator programwas used to simulate the VHDL code,

using the testbenches. The results of the ModelSim

http://dx.doi.org/10.1016/j.net.2016.03.004
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Fig. 4 e CLB flowgraph with either “AND” gate or “OR” gate LUT. CLB, configurable logic block; CLR, clear; ENB, enable; LUT,

look-up table; MUX, multiplexer.
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simulations (“waveforms”) were then compared with the re-

sults of the DFM analyses, to determine the accuracy of the

DFM models.

The three principal aspects of FPGAs considered in this

paper are presented in this section. Section 3.1 will discuss the

IEEE Standard 1164, while Section 3.2 presents the register

modeling. Section 3.3 shows the FPGA logic blocks modeling.

An example FPGA test system of a signal compensator is

shown in Section 3.4. Lastly, Section 3.5 will present a

simplified FMEA that was used to obtain the failure data (top

events) for the DFM analysis.

3.1. IEEE Standard 1164

IEEE 1164 is an important standardwhen using the VHDL code

to program the FPGA. It is a package that is compiled into a

library and is often imported into VHDL files. This standard

defines important features, including nine-state logic, reso-

lution function, and Boolean functions, such as AND, OR, XOR,

and NOT. The Boolean functions AND, OR, XOR, and NOT are

defined in tables, and the remaining functions (NOR, XNOR,

and NAND) are made using NOT function [25]. The states for

the nine-state logic can be found in the literature [25]. DFM is

used to model the logic and mathematical functions based on

this standard. A DFM model consisting of the logic and

mathematical functions is shown in Fig. 2.

In Fig. 2, the logic functions includes AND, OR, XOR, NOT,

NOR, NAND, and XNOR functions. The inputs are set to be the

logic states given in [25], producing various combinations of

outputs. A similar method is taken with the mathematical

functions, where two inputs are added (In_Add_1 and

In_Add_2), and the sum is compared with the product of the

other inputs (In_Prod_1 and In_Prod_2). The output “G_Out” is
then the output from the “greater or equal to function” (shown

as a “less than” function in the netlist). The ModelSim and

DFM results are given in Subsection 4.1.

3.2. Register

The register is an important component of digital logic and

FPGA operation. It is commonly used in electronic systems to

store a data value and output it at a certain clock edge. In

FPGAs, these registers are used in many kinds of sequential

and recursive logics, when the algorithms require results or

data from previous time steps [26]. The DFM model for the

register is shown in Fig. 3. Here, the “Reset,” “Preset,” “Input,”

and “Data” nodes all represent input signals into the register,

where the transition box (entitled “Register”) performs as a

register in an FPGA would. A time delay on “1” is included, in

order to hold the data for a time step, similar to an FPGA

register. The “Reset” signal will reset the register to “0,” while

the “Clock Enable” signal will allow the register to store the

new “Input” value, and then output the new value after a time

delay (based on the “Clock” signal). If the “Clock” signal does

not allow the register to update the value, then the previous

input value (“Prev_Input”) is used instead. This model also

includes the “Clock_Period” (if it is longer/shorter than speci-

fied), “Clock_Cycle” (if the clock has a duty cycle that is

different from 50%), as well as a node for the previous input

(“Prev_Input”), as that can have an effect on the output.

The value from the “Output” is fed back into the “Pre-

v_Input”, after a delay. The “Clock” node was broken down

into four states, 1, 0,þ,e, to represent the clock transitions. To

allow the “Clock” state to cycle, the “Prev_Clock” node was

included, which will store the previous “Clock” signal (after a

time delay) and then output the next state to the “Clock”. State

http://dx.doi.org/10.1016/j.net.2016.03.004
http://dx.doi.org/10.1016/j.net.2016.03.004


Fig. 5 e Flowgraph model for FPGA-based platinum detector. FPGA, field programmable gate array.
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Table 2 e Sample FMEA for FPGA aspects.

Aspect Failure mode Cause Effect

IEEE 1164 Or ¼ 0 “X” logic

“H” logic

Mathematical error

G_Out ¼ 0 “U” logic Logic error

Register Output “X” “X” logic Memory error

CLB Output “1” Logical errors Incorrect CLB value

DSC Spurious Trip Constant error System failure

Missed Trip Input error (“X”) System failure

CLB, configurable logic blocks; DSC, Dynamic Signal Compensator;

FMEA, failure mode and effect analysis; FPGA, field programmable

gate array; “H”, High; IEEE, Institute of Electrical and Electronics

Engineers; “U”, Uninitialized; “X”, Unknown.

Fig. 6 e ModelSim results for “OR_OUT” and “G_OUT” top

events.
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“þ” represents the rising edge, while state “e” represents the

falling edge. The clock will cycle through the clock states as

the time step changes. The “Output” node includes states for

“1” and “0,” as well as extra states for the outputs for “Reset”,

“Preset”, and “Data”. The results are then funneled to the

standard “1” and “0” for the “Reg_Out” node. Results for the

register model and ModelSim simulations are given in

Subsection 4.2. An example of a decision table, similar to the

one used in the “Register” transition box is given in Table 1. To

save space, it was assumed that the “Previous Input” had a

value of “1.” It should be noted that the “*” represents a “Don't
Care” value.

In Table 1, it is seen in the first row that if the “Reset” signal

is received, then the “Output” is reset to “0,” regardless of the

other inputs. If the “Reset” signal is “0,” then the other inputs

will become relevant. In the second row, the “Clock Enable”

signal is “0,” so the register will not update the value, and the

“Previous Input” of “1” will be output again. If the “Clock

Enable” signal is “1”, but the “Clock Signal” is “0” and the clock

transitions on a rising clock edge, then the “Previous Output”

valuewill be output again. In the last row, if the “Clock Enable”

is “1” and the “Clock Signal” is “þ,” then the register will up-

date and output the new value of “0.”
3.3. FPGA logic blocks

All FPGAs share certain basic components, namely input/

output ports, programmable interconnects, and CLBs. Input/
Table 3 e Sample implicants for “OR_OUT ¼ 0” and
“G_OUT ¼ 0” top events.

Implicant
1 (node)

Implicant
1 (state)

Implicant
117 (node)

Implicant
117 (state)

AND_OUT 1 ADD_In_2

ADD_OUT

XX

XXIN_NA_1 H

IN_NA_2 1

In_A_1 1

In_A_2 1

In_N 1

NAND_OUT 0

NOR_OUT 0

NOT_OUT 0

XOR_OUT 0
output ports are used to carry data signals to and from the

FPGA, while programmable interconnects are used to connect

the CLBs together. CLBs are of particular interest, as those

logic blocks contain the logic elements needed to perform the

desired logic functions. In the most basic form, each CLB will

contain a look-up table (LUT), register, and possibly a multi-

plexer (Mux) that can be used to bypass the register if desired

[1]. DFMwas used to create two separate logic blocks, onewith

an “AND” gate LUT, and the other with an “OR” gate LUT. This

will show how DFM can model the basic logic elements of an

FPGA, encompassing the components discussed in Sections

3.1 and 3.2. A block diagram is presented in Fig. 4.
3.4. Platinum dynamic compensation

Neutron detectors are used in NPPs to monitor neutron power

(flux) inside the reactor core. Several different materials are

used, such as platinum, rhodium, vanadium, and cobalt. In a

Canada deuterium uranium reactor, platinum detectors are

used in safety systems due to their fast (prompt) response.

Platinum detectors are composed of multiple isotopes and

therefore have multiple decay chains [27,28]. Dynamic signal

compensation is used to compensate for the delayed response

of the detector, in order to obtain an accurate reading of the

current neutron flux. The details of the platinum detectors

and signal compensation can be found in [29,30].

Fc ¼ 0:89f þ 0:045f
1þ 3:9s

þ 0:017f
1þ 30s

þ 0:021f
1þ 250s

þ 0:045f
1þ 2;500s

(2)

where Fc refers to the calculated neutron flux and f is the

actual neutron flux. Eq. (3) is a simplified transfer function for

the dynamic signal compensator [31]:

http://dx.doi.org/10.1016/j.net.2016.03.004
http://dx.doi.org/10.1016/j.net.2016.03.004
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Fc ¼
�
K1 � K2

1þ T s
þ K3

1þ T s

�
I (3)
Fig. 7 e ModelSim results for FPGA register analysis (top

event “Output¼ 1”). FPGA, field programmable gate array.
1 2

where I is the current from the detector; K1, K2, K3 are co-

efficients; T1, T2 are corresponding time constants; and s is the

Laplace transform variable [27,28]. Appending the values for

K1, K2, K3, T1, and T2, Eq. (3) becomes as follows:

Fc ¼
�
1:066� 0:028

1þ 30s
þ 0:038
1þ 2; 500s

�
I (4)

Converting Eq. (4) to a state space representation yields the

following equations:

_FðtÞ ¼
��0:0337 0

1 0

�
FðtÞ þ

�
1
0

�
IðtÞ (5)

FcðtÞ ¼ ½�0:0142 0 �FðtÞ þ ½15:99� IðtÞ (6)

The state space representation also included the scaling

factor, so that an input range of 0e10 V would produce an

output range of 0e150% full power (FP). The state space model

was then discretized, using the zero-order holdmethod, and a

sampling time of 0.5 seconds, resulting in the following

representation:

_FðtÞ ¼
�
0:9833 0
0:4958 1

�
FðtÞ þ

�
0:4958
0:1243

�
IðtÞ (7)

FcðtÞ ¼ ½�0:0142 0 �FðtÞ þ ½15:00� IðtÞ (8)

The block diagram for the platinum compensator is given

in Fig. 5.

In Fig. 5, the nodes “G_1”, “G_2”, and “G_3” are the logic

tests for the input being greater than or equal to the Trip

Setpoint(TSP), and “IV_2” and “IV_3” represent the additional

inputs. The “Phi(k)” node refers to the total flux calculation,

and the nodes named “A,” “B,” “C,” or “D,” which also contain

numbers (e.g., “A11,” “B1,” “C1,” D00) represent constants in the

state space equations in Eqs. (5) and (6). The registers (“Reg-

ister_1” and “Register_2”) store the outputs from Eq. (5) that

are needed for the calculation at the next time step. The

output of the state space equations is a neutron power, based

on the detector current, which is based on the neutron flux. As

the neutron flux is very high (generally of the order of 1014 n/
Table 4 e Prime implicant for DFM FPGA register analysis
(top event “Output ¼ 1”).

Implicant 26 (node) Implicant
26 (state)

Implicant
26 (time step)

Clock ± e1

Clock_Period Normal e1

Clock_Edge_Trigger R_E e1

Clock_Enable 1 e1

DATA_Input No_DATA e1

Input 1 e1

Preset_Signal 0 e1

Prev_Clock 0 e1

Prev_Input 0 e1

Preset_Signal 0 e1

Reset_Signal 0 e1

DFM, dynamic flowgraph methodology; FPGA, field programmable

gate array.
cm2/s), it is often expressed as a percentage of FP. To simplify

the calculations, the voltage input was taken in the range of

0e10 V, and the neutron power was scaled for 0e15%, with a

TSP set at 12.0%. In reality, the neutron power would have a

range of 0e150% FP, and the TSP being set at around 125% FP.

It can be seen that the previous values for F(t) are required

to calculate the correct flux. The registers (discussed in Sec-

tion 3.2) are used to store this information, therefore, the FPGA

code (and netlist) contains two registers. Additional code was

added, for trip logic. The flux value was compared with a TSP,

along with two other inputs, to create the two out of three

logics. The analysis results for the platinum comparator and

trip logic is given in Subsection 4.4.

3.5. Simplified FMEA example

This section will provide an example of an FMEA for the

different FPGA aspects discussed in Subsections 3.1e3.4.

These FMEAs produce the top events that are used in some

of the DFM analysis results, seen in Section 4. It should be

noted that not every DFM analysis considered actual fail-

ures, as the aim of the paper was to show the applicability

of DFM to modeling of FPGA-based system logic, and as

such the models included both correct and erroneous

behaviors.

Table 2 presents a simplified FMEA for failures that were

considered for the different aspects of FPGA logic. The first is
Table 5 e Prime implicant for DFM FPGA register analysis
(top event “Output ¼ X”).

Implicant 16
(node)

Implicant
16 (state)

Implicant 16
(time step)

Clock ± e1

Clock_Period Normal e1

Clock_Edge R_E e1

Clock_Enable 1 e1

DATA 0 e1

DATA_Input No_DATA e1

Input X e1

Preset X e1

Prev_Clock 0 e1

Reset_Signal X e1

Trigger_Select Pos e1

DFM, dynamic flowgraph methodology; FPGA, field programmable

gate array.
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Fig. 8 e ModelSim results for FPGA register analysis (top

event “Output¼X”). FPGA, field programmable gate array.

Fig. 9 e ModelSim results for sequence “Reset ¼ 1”.
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the IEEE logic standard, where it is seen that there could be

mathematical or logic errors (respectively), due to the pres-

ence of certain logic states. The “U” (Uninitialized), “H”

(High), or “X” (Unknown) logic states are generally used to

represent errors in simulation. These logic states can pro-

duce errors in mathematical/logic functions, resulting to the

incorrect (in this case) value of “0,” due to how the functions

are defined in the IEEE 1164 standard [24]. A similar issue is

seen with the register. If an “X” logic value is input into the

register, it would be stored, and the “X” would be output on

the next clock cycle, which could cause a failure at future

time steps.

The effects of the failure modes of the IEEE 1164 standard

and register are manifested when the larger FPGA aspects are

considered. Logic failures on mathematical/logic functions or

registers (such as “U” or “X” logic) can affect the entire CLB. In

this paper, an erroneous output of “1” (in this example) could

be produced, due to the “U” or “X” logic states. This may not

occur with the “OR” logic, depending on the other inputs, but

for other logic, such as “AND” logic, the output of the CLB

could be affected. This all builds up to the whole test system

level, where it is seen that a “Missed Trip” occurs due to an

“Input Error.” This could be due to an error of the input signal

itself, or due to errors passed along from the other compo-

nents (i.e., failure modes at the logic, register, or CLB level

cause failures at the whole system level). Lastly, it was seen

that “Spurious Trip” could occur not only through errors in the

subcomponents, but also through an incorrectly specified

constant, used in multiplication.
4. Results

This section shows the results for the models created in Sec-

tion 3. In each case, the entries in the PI tables that are of the
Table 6 e Sequence for initiating event “Reset ¼ 1.”

Sequence 1
(node)

Sequence 1
(state)

Sequence 1 (time
step)

Prev_Input 1 0

Reset_Type Asynch 0

Reset_Signal 1 0

Reg_Out 0 1
most notable are italicized. It should be noted that in certain

ModelSim waveforms, the signals “Reset”, “Clock Enable”,

“Clock”, and “Preset” (if needed) were shortened to “CLR”

(clear), “CE” or “Enable,” “CLK,” and “PRE,” respectively, to save

space in the specific waveform graph.

4.1. IEEE 1164 standard results

The results for the DFM analysis and the ModelSim simula-

tions for IEEE 1164 are presented in this section.

Table 3 shows sample implicants for the IEEE 1164 DFM

model, with the ModelSim results given in Fig. 6. The top

events for both the logic and themathematical functions were

set at “0,” and the DFM model was run deductively, to find the

PIs. In total, there are 192 PIs for the “OR_OUT” ¼ 0 node and

104 PIs for the “G_OUT” ¼ 0 node. It was seen that the inputs

and outputs of the logic model matched up with the inputs

and outputs in the ModelSim simulation. The “H” logic in the

“In_NA_1” input produced an “X” value at the output of the

“XNOR” logic gate. This in turn caused the overall output of the

“OR” logic to read “0.” It was also seen with the mathematical

model, that an unknown state (“XX”) in the “In_Add_2” input

would cause the “Add_Out” output to also read “XX”, forcing

the “G_OUT” node to read “0” (false), indicating that an error

with one of the inputs could cause the trip signal not to

actuate. This is the same as discussed in Subsection 3.5.

4.2. Register results

The results for the DFM analysis and ModelSim simulations

for the register are shown in this subsection. In the ModelSim

waveforms, the “Input” node (signal) is denoted as “D,” while

the “Output” is denoted as “Q.” Table 4 and Fig. 7 show the

results for a register where the Output ¼ “1.”

The simulation in Fig. 7 had the top event “Reg_Out¼ 1” for

one time step. The state “R_E” refers to a rising edge clock

trigger, “Normal” clock period means that there is no clock

delay, and the “Synch/Asynch” refers to synchronous and

asynchronous processes, respectively. The time steps in this

DFM model were taken as one time step being equal to one-

half of the clock cycle. In Fig. 7 (Implicant 26), it is seen that

having an Input of “1,” with the “Clock_Enable” signal of “1”

and a rising edge clock and triggerwill produce the “Output” of

“1,” when it is not pre-empted by other inputs such as the

Reset, Preset, or Load signals. The ModelSim results will not

explicitly show values for the “Clock_Edge_Trigger” and will

not explicitly state if the “Clock_Period” is correct; it will just

show what the value is.

http://dx.doi.org/10.1016/j.net.2016.03.004
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Table 7 e Prime implicant for DFM FPGA logic block
analysis (top event “Logic Block Out ¼ 1”).

Implicant 9 (node) Implicant 9
(state)

Implicant 9
(time step)

In_1In_2 11 e2

In_3 1 e2

In_4 1 e2

AND_Out 1 e2

Clock ± e2

Prev_Clock 0 e2

Clock_Enable 1 e2

Reset_Signal 0 e2

Clock 1 e2

Mux_S 0 e1

Prev_Clock þ e1

Reset_Signal 0 e1

In_1 1 0

In_2 1 0

In_3 1 0

In_4 1 0

DFM, dynamic flowgraph methodology; FPGA, field programmable

gate array.
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DFM can also be used to identify possible failure and/or

undesired outputs. This can include unknown values (“X”),

incorrect outputs, or incorrect clock transitions, as seen in

Table 5 and Fig. 8. In Table 5, the top event was set to

“Output ¼ X,” to simulate an error/failure state with the reg-

ister. In this case, an “Input” of “X” along with the “þ” “Clock”

transition on a rising edge clock, caused the “X” state to be

passed to the output. The “Input” is not overruled by a

“DATA,” “Preset,” or “Reset” signal (both “Reset” and “Preset”

signals are in the error state of “X”, so that does not preempt

the “Input”). The ModelSim results in Fig. 8 confirm this,

where the inputs of “Reset” ¼ “X”, “Preset” ¼ “X”, “CE” ¼”1”,

and “Input” ¼ “X” produce an “Output” of “X” (as discussed in

Subsection 3.5) when the clock transitions on a rising edge.

The sequence for an inductive analysis is shown in Table 6.

It was taken as an asynchronous reset signal of “1,” which

should pre-empt any other input combination and result in an

output value of “0.” As seen in Table 6, only the one PI is

produced, and it returns a value of “0,” as expected. This is

confirmed in the ModelSim simulation shown in Fig. 9 where

the simulation shown in Fig. 7 was run again, and this time

with the “Reset” signal set to “1.” As expected, all three out-

puts were “0.” In this case, if the asynchronous “Reset” (CLR)

signal is “1,” then the “Output” will be “0,” regardless of what

the other signals are, so the other signals in Fig. 9 have no

effect on the register output.
Fig. 10 e ModelSim results for “AND” logic block “Top

Event ¼ 1 at TS ¼ 0 and TS ¼ e1”.
4.3. Logic block results

The individual logic block models (“AND” and “OR”) were

analyzed, with the results shown in this section. The analysis

for the “AND” gate CLB was run for two time steps, with the

top event set to “Logic_Block_Out (‘LB_Out’) ¼ 1” at time steps

“0” and “e1.” This produced 23 PIs; two of them are shown

here. In Table 7, it is seen that the four inputs to the LUT

(“In_1” … “In_4”) are all in state “1,” which could produce a

value of “1” from an “AND” gate. When the clock transitions
(“þ”) and the “Enable” signal is “1,” the “AND” value of “1” is

loaded into the register. The register value is then selected by

theMux Select signal (“Mux_S”), which is then output from the

logic block at TS ¼ e1 and TS ¼ 0. The corresponding

ModelSim results are seen in Fig. 10. It is seen that all four

input signals are at a value of “1,” the “Enable” is at “1,” and the

“Reset” is at “0,” so when the clock transitions to “1,” the

“LB_Out” transitions to “1” (due to “AND” logic) and stays there

for the next clock cycle. As the “Mux_S” signal is “0,” the reg-

ister is not bypassed.

When discussing the “OR” gate CLB, an inductive analysis

of one time step was chosen, with the results shown in Table

8. It was seen that each input was assigned a different logic

state. Owing to the “OR” gate and the IEEE 1164 definition, the

output of the “OR” gate is a “1.” The value is then stored in the

register, as the “Enable” signal is “1,” “Reset” signal is “0,” and

the clock transitions on the rising edge (“þ”). This value is

stored in the register for one time step (stored at TS¼ 0) due to

the “Mux_S” value being “0”. The signal stored in the register is

then output at the next time step (TS ¼ 1), making the CLB

output value equal to “1.” The ModelSim results for this

simulation are shown in Fig. 11. The “Reset” signal is “0,”

“Enable” signal is “1,” and the “Mux_S” signal is “0”; the reg-

ister is used again. The inputs this time include several po-

tential error states (“U” and “X”), which eventually resolve to

“1” due to “OR” logic when the clock transitions (as discussed

in Subsection 3.5).

4.4. Platinum comparator results

The results for the DFM analysis and ModelSim simulations

for the platinum signal compensator are presented here. The

models were run for the top events of “Trip” and “Total Flux

High,” and for “No Trip.”

In Table 9, it is seen that all the system components are

functioning correctly, except in one instance. The clock tran-

sitions “þ,” the “Reset” signal is “0,” and the “Clock Enable”

signal is “1,” allowing the new (correct) values to be output

from the registers. However, it was seen that the value of “D”

in the state space model was higher than it should be, causing

the value of “Phi” to be above the setpoint. A second input also

read high (IV_3), causing the system to trip.

A similar implicant is shown in Table 10; however, in this

case the “D” value does not affect the top event. In this case,

the “Trip” signal reads “0”, in part due to an error with the

“Input_Voltage,” which has a value of “X.” The other nodes/

states in the run shown in Table 10 were the same as those in

http://dx.doi.org/10.1016/j.net.2016.03.004
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Table 8 e Sequence for “OR ¼ 1” inductive analysis.

Sequence 3
(node)

Sequence 3
(state)

Sequence 3
(time step)

In_1 1 0

In_2 0 0

In_3 U 0

In_4 X 0

Mux_S 0 0

Clock_Enable 1 0

Prev_Clock þ 0

Reset_Signal 0 0

Logic_Block_Out 0 0

In_1 1 1

In_2 0 1

In_3 U 1

In_4 X 1

Mux_S 0 1

Clock_Enable 1 1

Clock 1 1

Reset_Signal 0 1

Logic_Block_Out 1 1

Table 9 e Implicant for “Trip” and “Total Flux High.”

Implicant 11
(node)

Implicant 11
(state)

Implicant 11
(time step)

Clock ± e1

Clock_En_State 1 e1

Clock_En_Sig En_1 e1

Clock_Period Normal e1

D D_High e1

I(k)_2 I(k)_2_Correct e1

I(k)_3 I(k)_3_Correct e1

Input_Voltage Correct Voltage e1

Prev_Clock 0 e1

Prev_Input_1 Correct_Input e1

Prev_Input_2 Correct_Input e1

Register_1_Out Reg_Input_Correct e1

Register_2_Out Reg_Input_Correct e1

Clock_Period Normal 0

D D_High 0

Phi Total Flux High 0

I(k)_2 I(k)_2_Correct 0

I(k)_3 I(k)_3_High 0

IV_3 High_Voltage_3 0

Input_Voltage Correct_Voltage 0

Register_1_Out Reg_Input_Correct 0

Register_2_Out Reg_Input_Correct
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Table 9, therefore, only the differing states were included in

Table 10.

Fig. 12 shows the ModelSim results for Table 9. The high

value for “D” causes the flux to read “High” and assist in

causing a trip (false alarm), when one of the other channels

also denotes a trip. In this case, the ModelSim results do not

specifically show the value for “D” (internal signals are not

always monitored). However, it is seen in the ModelSim re-

sults that the flux value (“Out1”) is higher than what it should

be, for the given inputs. Fig. 13 gives the simulation results for

Table 10, where it shows “No Trip” due to some failure with

the input. The “Input_Voltage” node (“In1” in Fig. 13) has an

input of “X,” which points to some form of input failures,

including those fromother parts of the system (as discussed in

Subsection 3.5). This leads to the value of “Phi” to also be “X,”

as seen in “Out1.” This causes the two out of three logics to

return a value of “0,” and the “Trip” value is seen as “0” in the

figure. This would have the potential tomiss a trip, if the value

for that input was supposed to be high enough.
5. Discussion

This section discusses some of the advantages of DFM

discovered in this study whenmodeling FPGA-based systems.
Fig. 11 e ModelSim results for “OR” logic block inductive

analysis.
DFM is compared with static methods, simulation, and formal

methods, as presented in the following subsections.
5.1. Advantages of DFM over static methods

As seen from the analyses in this section, the “Clock” signal is

a very important input for FPGA-based systems. The clock

states and edge trigger will determine if the data are output

through the register(s). However, the clock period and duty

cycle can also affect the system.

These effects are seen in the following examples using the

platinum comparator. A separate testbench was created to

introduce a sine wave into the system. It was seen that the 10-

nanosecond clock period will output the calculated neutron

power much faster than a 25-nanosecond clock period. The

“Odd Cycle” response changes the standard 50% duty cycle to

a 75% “1” and 25% “0” clock, with a period of 25 nanoseconds.

No effect on the output signal was seen. This is because the

register transitions are on clock edges only, so the duty clock

cycle does not affect the output value. In the DFM model, the

“Clock_Period” node could introduce a clock delay. The DFM

model analysis then returned a clock delay for the “Clock_-

Period” node that was longer than the standard. This means

that the DFM model can predict what could cause the clock

delay and the effect they could have on the system. While the

clock periods are usually very fast (of the order of nanosec-

onds), long delays can slow down the calculations and

lengthen the trip time.

An example of this is seen in Table 11. A clock delay causes

the “Clock_Period” to be “Long,” i.e., longer than it should be,

meaning that it will not undergo transition when it is sup-

posed to. Even though the “Input_voltage” changes to “High,”

the clock delay disallows the register to output the new value,

causing the value for “Phi” to be read as “Normal” and not as

“High”. In the end, this causes the voting logic to indicate a “No

http://dx.doi.org/10.1016/j.net.2016.03.004
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Table 10 e Implicant for “No Trip.”

Implicant 3
(node)

Implicant 3
(state)

Implicant 3
(time step)

Input Voltage Input Voltage_X e1

D D_Correct e1

I(k)_3 X 0

Phi Total_Flux_X 0

D D_Correct 0

Fig. 13 e ModelSim results for “No Trip.”

Table 11e Prime implicants for “Missed Trip” due to clock
delays.

Implicant 1
(node)

Implicant 1
(state)

Implicant 1
(time step)

Clock_En_State 1 e1

Clock_En_Sig En_1 e1

Clock_Period Long e1

D Normal e1
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Trip”. In real operation, this would lead to a delay in the trip

signal, as the trip would occur once the next clock transition

occurs. Modeling of the clock signals represents a potential

advantage of DFM over traditional (static) reliability analysis

methods. The clock is dynamic, as it will change its state (“0”

/ “1”) based on the clock period. In order to properly model

the effects of the clock, including clock delays, the analysis

must be able to capture these clock effects.

5.2. Advantages of DFM over simulation

It was seen in Section 7 that DFM is able to model the

important logic and components of FPGAs, as well as the

FPGA-based test system. The ModelSim simulations were

intended to prove that DFM could be used accurately for that

purpose. However DFM also possesses certain advantages

over simulators. ModelSim would work inductively, giving

outputs based on the inputs combinations. However, Mod-

elSim will not identify exactly what combinations of events

resulted in those outputs. It will just produce the outputs.

DFM, on the other hand, will provide a list of PIs that will

breakdown the potential cause of the certain events. Another

advantage of DFM is modeling error states. With ModelSim, it

is difficult to include the effect of hardware failures, whereas

it is more easily accomplished in DFM using additional error

nodes/states. ModelSim would provide evidence of logic er-

rors. However DFM can be used for that purpose as well.

Lastly, DFM can include probabilities in the model, for use in

probabilistic analyses, while ModelSim cannot.

5.3. Comparison of DFM and formal methods

In this study, DFM was selected to analyze the FPGA logic;

however, other methods could also be used, such as formal

methods. Formal methods can be defined as “mathematically

rigorous techniques and tools for the specification, design,
Fig. 12 eModelSim results for “Trip” and “Total Flux High.”
and verification of software and hardware systems” [32].

Formal methods utilize mathematical representations of

systems (software and/or hardware), to mathematically verify

that the system functions as intended for all input combina-

tions and as such can uncover errors in the software/hard-

ware. DFM and formal methods have some similarities, as

they both can be used to analyze the software and hardware

components of digital systems, and uncover errors in the

system. Additionally, both methods run into issues for very

complex, realistic systems, as it may not be feasible to fully

analyze a complex system using either method. Formal

methods have also seen use in the verification process of

FPGA-based systems [33]. However, it should be noted that at

the time of this study, formal methods have been used much

more widely than DFM.

Significant differences exist between DFM and formal

methods. DFM does not rely on the mathematically rigorous

formulations that formal methods do; instead it employs

user-input decision tables and PI/multivalued logic functions

to analyze the system. Although DFM has seen some use in

the direct validation of software logic (PIs that do not contain

any hardware error states imply a software error) [34], DFM is

generally used to analyze the causes of a top event or the
I(k)_2 Correct Voltage e1

I(k)_3 High Voltage e1

Input Voltage Correct Voltage e1

Prev_Input_1 Correct_Input e1

Prev_Input_2 Correct_Input e1

Register_1_Out Reg_Input_Correct e1

Register_2_Out Reg_Input_Correct e1

Reset_State X 0

Reset_Signal R_0 0

Clock_Period Long 0

I(k)_2 Correct 0

I(k)_3 High 0

Phi Total_Flux_Normal 0

Input_Voltage High Voltage 0

Register_1_Out Reg_Input_Correct 0

Register_2_Out Reg_Input_Correct 0
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effects of an initiating event. For example, in DFM if a top

event is set to a “Trip,” then all possible scenarios, either

correct or erroneous, would be solved and stated in the PIs.

With DFM, the probabilities of each PI is given, along with the

probabilities of the top event, allowing for quantitative ana-

lyses, such as calculation of risk importance measures, or the

inclusion of DFM results in probabilistic safety assessment. In

contrast, formal methods will mathematically verify that the

system works for given inputs, but it does not allow for spe-

cific top events to be set, in order to determine theminimal cut

sets/PIs, and it will not perform probabilistic calculations.

Although DFM and formal methods share some connec-

tions for digital system analysis, they generally serve different

purposes. Formal methods are used to mathematically verify

a system, whereas DFM performs a reliability analysis more

similar to that of FTA or Markov methods; however, at the

time of this study, direct comparisons of the use of DFM and

formal methods were not seen in the literature.
6. Conclusion

In this paper, the DFM has been applied to model and analyze

important aspects of FPGA-based systems that could find use

in nuclear plant safety and control systems. These aspects

included the underlying IEEE 1164 standard for VHDL, the use

of registers (D flip-flops), logic blocks, and the implementation

of an FPGA-based signal compensator and trip logic system.

The analysis results were compared using the ModelSim

simulations of the VHDL code, which confirmed that DFMwas

able to correctly model the FPGA logic and properties, making

DFM a potential option for the modeling and simulation of

FPGAs and FPGA-based systems. The effects of clock delay in

the FPGA were examined with DFM, which showed that the

clock error could delay the trip, causing a “Missed Trip”. The

modeling of clock effects shows one potential advantage of

DFM for modeling FPGA-based systems, over traditional static

methodologies.
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