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If one can associate with each vertex of a graph an interval of a line, so that two intervals
intersect just when the corresponding vertices are joined by an edge, then one speaks of an
interval graph.

1t is shown that any graph on v vertices is the intersection (“product”) of at most [{v] interval
graphs on the same vertex set.

For v = 2k, k factors are necessary for, and only for, the complete k-partite graph K., .

Some results for the hypergraph generalization of this question are also obtained.

1. Introduction

Given several undirected simpie graphs on the same vertex set V, their edge
product or “intersection” is the graph in which two vertices in V are joined by an
edge just when they are so joined in all of the given (‘““factor ) graphs.

An interval graph is a graph to each vertex of which can be associated a
compact interval of R so that two vertices are joined by an edge just when the
corresponding intervals intersect.

With these definitions, one can state

Theorem 1. (a) Every graph on v vertices is the edge product of [fv]or fewer
interval graphs.
(b) For v=2k, k factors are necessary for, and only for, the complete k-partite

This subject was suggested by Chvatal’s investigations [1] of finite families of
finite sets with the Helly property. Helly’s theorem on convex sets [2, p. 117]
states that if a finite family of more than d convex sets in R? has the property that
any d+1 of the sets have a common point, then the whole family has a common
point. For d =1, this states an obvious property of intervals. This property
extends at once to “bricks” in R, that is, to cartesian products of intervals of the
d coordinate axes: for arbitrary d, if any 2 bricks of a finite family intersect then
the whole family intersects.

A finite family of finite sets has the “Helly-1 property”” when any subfamily
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whose members intersect pairwise has nonvoid intersection. The relation between
these notions follows from Theorem 1:

Corollary 1. A finite family of v finite sets has the Helly-1 property if and only if
there is a d and for each set a brick in R such that any subfamily intersects just
when the corresponding bricks do.

Postponing the proof of Theorem 1, we prove the corollary: If such a brick
representation exists then the Helly-1 property follows. Conversely, the pairwise
intersections of sets in the family determine a graph. By Theorem 1, this graph is
the edge product of d interval graphs.’ The cartesian product in R? of the interval
representations of the factor graphs is by construction a correct brick representa-
tion of pairwise intersections. The Helly-1 property uniquely determines all
higher intersections as a function of the pairwise intersections. Bricks always have
tiiis property and the given family has it by assumption. (J

There is a natural extension of this question to hypergraphs, i.e. finite families
of (k + 1)-tuples from a firite set V. Call such a hypergraph convex if one can
associate to each element of V a convex set in R* such that a (k + 1)-tuple is in
the hypergraph just when the corresponding convex sets intersect.

Theorem 2. Every hypergraph of (k + 1)-tuples on v vertices is the intersection of no
more than 3(}) convex hypergraphs on the same vertex set.

This is only an upper bound, of order v*, on the number of factors required.
For k =2, (systems of triples) we obtain a lower bound of the same ozder.

2. The graph case

Lemma 1. If vertices a and b of graph G are not joined by an edge and the graph
G'. obtained from G by deleting a, b and the edges incident on them, is a product of
d interval graphs, then G can be obtained as a product of d +1 interval graphs.

Proof. By assumption there is a brick representation of G’ in R? with vertices v;
mapped to bricks B!. Let B}, be a brick in R? meeting all the B!. Add one
coordinate axis and represent G as follows: For v; € G' not joined to either a or b
in G, take B;=B;x[-1,1]. For v;e G joined to a but not to b in G, take
B, = B/ x[-1,3]. For v,€ G’ joined to b but not to a in G, take B; = B;x[~3, 1].
For t,€ G’ joined to both a and b, take B, = 87%[-3, 3]. For a take B,X[2, 3]
and for b take B,x[~3, —2]. This realizes G by bricks in R?*! thus as product of
d+ 1 interval graphs. (]

Ynly the fact that a finite d exists is needed. This can be seen directly from the observation that a
complete raph with one edge deleted is an interval graph. Thus Theorem 1 is not essential here.
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This gives part (a) of Theorem 1 by induction. For v <3 all graphs are interval
graphs by inspection. Assume Theorem 1(a) true for up to v-2 vertices and
consider G on v vertices. Either G = K,,, the complete graph, which is an interval
graph, or else there is an unjoined pair, a, b of vertices. Their deletion gives a
graph G’ realizable with [3(v—2)]=[3v]- 1 or fewer factors, so that G is a product
of no more than [3v] interval graphs by Lemma 1. O

Part (b) of Theorem 1 is true for k = 2 since one can easily check that the only
graph with v <4 that is not an interval graph is the square (4-cycle)K,,.

as a product of fewer than k interval graphs.

Proof. Suppose it could be. Let a;, b, (i=1,..., k) be the unjoined vertex pairs.
For each such pair the edge a;b; must be absent in at least one factor. By the
pigeonhole principle some factor has two such edges missing say a,b, and a,b,.
The four other edges joining these four vertices are in this factor as they are in the
product.

As the factor must be an interval graph, this gives an interval representation of
the square, which is impossible. [

It remains to show that if a graph G on 2k vertices requires k factors. it is
isomorphic to K,, . As this holds for k =2, assume k >2 and the asscriion
proved up to k — 1. If G requires k factors it is certainly not the complete yraph
(which is an interval graph). So there are unjoined vertices, say a, b. Let G' bie the
graph left when a, b are deleted. If G’ were the product of fewer than k—1
factors, Lemma 1 would contradict the assumption on G. Thus by the induction
hypothesis G’ is a K, ,_ ., on 2k —2 vertices. If all possible edges between {a, b}
and G' are in G then G is a K,,_ . If not, let (a, b;), i=1,...,k—1 be the
unjoined pairs of G' and suppose w.l.o.g. that aa, is not in G. As k >2 we could
have removed from G (a,, b,) instead of (a, b) and this removal also must leave at

proof of Theorem 1. 0

3. The hypergraph case

For a hypergraph of (k+1)-tuples, i.e. a (regular)?® (k +1)-hypergraph, the
property of having a representation by convex sets in R* leaves some freedom.
For indeed, knowing which families of k +1 of the scts have nonvoid intersection
determines intersections of all larger families (by Helly’s theorem) while the
intersections of families of 2 to k of the sets are not fully determined. Therefore,
we define a fight convex representation of a (k +1)-hypergraph as the association,

2«Regular” refers to the fact that ail hyperedges have the same cardinality. As all the hypergraphs
considered here are such, the qualification will be dropped in the sequel.
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to each veriex, of a compact convex body> of R* such that

(i) any k+1 of the bodies intersect iff the corresponding (k + 1)-tuple is a
hyperedge of the (k + 1)-hypergraph, and

(i1) any k of the bodies have a common point.

We prove the following strengthening of Theorem 2.

Theorem 2'. Every (!; + 1)-hypergraph on v vertices is the intersection of no more
then A(%) (k + 1)-hypergraphs with tight convex representaticns.

Proof. For v>k >0, denote by d,(v) the maximum number of factors required
for (k + 1)-hypergraphs on v vertices (it will turn out to be finite). From Theorem
1. we have d,(v)=[v]=<i(). Also, d(k+1)=1<i(*") for all k>0: if the
only k+1 tuple intersects, one can take all bodies the same, if not, take the
bodies to be the facets of a k-dimensional simplex. Either way, it is a tight convex
representation. Theorem 2 will thus follow by induction if one can show that

dk‘U“' l)sd,‘(v)+ dk-l(v).

Consider a (k + 1)-hypergraph G = (V, E) with vertex set V ={a,,...,a,} and set
E of (k + 1)-tuples from V. Let V'=V —{a,}, E'= E|V’ the (k + 1)-tuples from E
that arc in V’. Then G'=(V’, E’) is a (k + 1)-hypergraph on ¢ vertices and can be

represented by a product of p=<d, (v) tight convex (k + 1)-graphs G/, i=1,..., p.
Let C, be the convex body of R* representing a; in G/, j=1,.... vsi=1...., p.
For cach i, let C,, be a convex body of R* covering all the C;(j=1...., v), say

their convex hull.

By definition, for any k-tuple t of V' and any factor i=1,..., p; the sets C;
with je 1 have a common point. For (k + 1)-tuples this is the case for all i iff the
(k + 1)-tuple is in E’.

Let E” be the set of k-tuples in V' such that, with the addition of a,, they
belong to E. Then G"=(V',E") is a k-Lypergraph, and as such can be rep-
resented as  an  intersection of q=<d _,(v) tight convex k-hypergraphs

For each j=1,..., v there is a convex body D, in R*™! such that for every
(k = 1)-tuple 1 of j’s and fixed i, the {D,},., have a common point, while for a
k-tuple this is true for all i iff that k-tuple is in E”".

In each of the q factor representation. add a coordinate axis and let P, be a
point (# origin) on this axis. Let C,,;; (i=1,...,q; j=1,...,v) be the convex
hull in R*'' of D;; and P,. Let C p +io De the convex hull of the union of the D,
G=1,.... v), this is a convex set of R**' contained in the original R,

Then the C; (i=1, ..,p+q: j=0,...,0v) form a representation of G as a
product of p + g tight convex k-graphs on V. For indeed, it is shown below that

(a) in cach factor, all k-tuples intersect,

‘Here s convex body is a nonvoid compact conve set. An interior is not required.
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(b) all (k +1)-tuples in E intersect in each factor, and

(c) all other (k + 1)-tuples fail to intersect in some factor.

Proof of (a). If a, is not in the k-tuple then the representing sets intersect in
factors 1,. .., p by construction and in the points P; of the other factors. It g, is in
the k-tuple, the k-1 other sets intersect in factors i=1, ..., p and are covered ii
each by C,, while in the q other factors the k—1 corresponding D;; already
intersect by construction and are covered by C, ;.

Proof of (b). For a (k + 1)-tuple not containing a, the representing sets intersect
by construction in the first p factors and in the points P, in the other q factors. If
a, is involved, then in the first p factors the k other sets intersect by construction
and are covered by C,. In the g other factors the k sets D, already meet by
construction and are covered by C, ;.

Proof of (c). If a, is not involved the sets representing the (k + 1)-tuple have a
void intersection in one of the first p factors.

If a, belongs to the (k + 1)-tuple then, by construction, the intersection of the
corresponding D is void in one of the last q factors, as C,.; covers only the D
(and none of the rest of G,,,;) the intersection of the k + 1 representing sets C,.;;
(j in (k + 1)-tuple) is void for that factor.

This completes the induction. [

Turning now tS the question of lower bounds, one first nceds a generalization
of the fact that that K, is not an interval graph.

Consider two finite sets A, B such that |A|=|B|=k+1,|ANB|<k. If V=
A UB, then v =|V]| satisfies k +3<v=<2(k+1).

Lemma 3. For A, B, V as above, consider the (k + 1)-hypergraph G =(V, E) in
which E consists of all (k +1)-tuples on V except A and B. Then G has no tight
convex representation.

Proof. For k = 1 this reduces to the fact that K, , is not an interval graph. If the
lemma were false there would be a counterexample G, with minimum k, having a
representation by convex bodies C,(i=1,...,v) in R*. If v <2(k +1) there is an
i, say i=v, common to A and B, then let S=C, and let V'={1,...,v—-1}.
Otherwise A and B are disjoint, take one element from each, say v—1 from A
and v from B then let S=C,_;NC, and ket V'={1,...,v-2}. In either case
v'=|V'| and k'=k —1 will satisfy k'+3<v'<2(k’+1). By the tight representa-
tion property one has

(i) S is a nonvoid compact convex set
(ii) For all (k+1)-tuples from V' the corresponding k+1 sets C; have a
common point.
(iii) The intersection of S and k of the C,(i€ V') is nonvoid unless all the
indices of the C; belong to the same one of the sets A or B; there are exactly two
such k-tuples A’ and B’, with V'=A'UB’.
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By Helly , theorem there is a point P¢ S common to all the C;(ie V’). Let II be
a hyperplane strictly separating P from S.

Forie V' let T,=SNC, and let R; be the intersection of II with the convex
hult of T, .°™ When some of the T; have a common point the construction
produces 2 .¢- .mon point of the corresponding R;. Conversely, when some R;’s
have a common point X, then on the ray from P through X there are points from
each of the correspondirg T; and the one nearest to P belongs to all of them.

Thus the R, (ie V°) form a tight convex representation of the k-hypergraph
G'=(V', E') in which E’ consist of all k-tuples from V' except A’ and B'. Tkis
contradicts the minimality of k and completes the proof. [

Let G(V, E) be a 3-hypergraph in which E consists of all triples from V except
for a Steiner system. Such G thus exist for v = |V/| congruent to 1 or 3 modulo 6.

Theorem 2. Fos the above 3-hypergraphs, a rvepresentation by tight convex 3-
hypergraphs requires at least 1(3) factors.

Proof. A Steiner triple system on V consists of 3(3) triples. Each of these triples
must be missing in at least one factor. If the theorem were false the pigeonhole
principle implies that in some factor at least two of the Steiner triples, say A and
B, would be missing. The Steiner condition implies that A U B contains no other
triple of the system. Then the representation of this factor would provide, in
particular, a representation of the 3-hypergraph on A U B in which only triples A
and B are missing. This, however, contradicts the k =2 case of Lemma 3. [J

As the maximum required number of factors d, (v) is clearly monotone non-
decreasing in v, one has

| (v*) 1 (v)

- \ s_

3\ JSEOIS3,
where v* is the largest integer, not exceeding v, which is congruent to 1 or 3
modulo 6. Thus d,(v) is of »rder v?.

Remark. The use of compact convex sets for the representations is only a
convenience. It can easily be shown that the classes of intersection patterns
realizable by convex sets in R? that are (i) compact, (ii) compact with interior, (iii)
open, and (iv) general, are exactly the ~ame.
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