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If one can associate with each vertex of a graph an interval of a line, so that two intervals 
intersect just when the corresponding vertices are joined by an edge, then one speaks of an 
irlterual graph. 

It is shown that any graph on u vertices is the intersection (“product”) of at most [iu] interval 
graphs on the same vertex set. 

For u = 2k, k factors are necessary for, and only for, the complete k-partite graph IL, ,. 
Some results for the hypergraph generalization of this question are also obtained. ‘*-““‘- 

1. Introduction 

Given several undirected simpie graphs on the same vertex set V, their edge 
product or “intersection” is the graph in which two vertices in V are joined Uy an 
edge just when they are so joined in all of the given (“factor”) graphs. 

An inter4 graph is a graph to each vertex of which can be associated a 
compact interval of R so that two vertices are joined by an edge just when the 
corresponding intervals intersect. 

With these definitions, one can state 

Theorem 1. (a) Every graph on v vertices is the edge product of [$v] or fewer 
interval graphs. 

(b) b;br u = 2k, k fuctors are necessary for, and only for, the compl?e k-partite 

graph K2 2 . *...v 2* 

This subject was suggested by Chvatal’s investigations [l] of finite families of 
finite sets with the Helly property. Helly’s theorem on convex sets [2, p. 1171 
states that if a finite family of more than d convex sets in Rd has the property that 
any d + 1 of the sets have a common point, then the whole family has a common 
point. For d = 1, this states an obvious property of intervals. This property 
extends at once to “bricks” in Rd, that is, to Cartesian products of intervals of the 
d coordinate axes: for arbitrary d, if any 2 bricks of a finite family intersect then 
the whole family intersects. 

A finite family of finite sets has the “‘Helly-1 property” when any subfamily 
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whose members intersect pairwise has nonvoid intersection. The relation between 
these notions follows from Theorem 1: 

Coroaruy 1. A finite family of u finite sets has the HeZly - 1 property if and only if 
there is a d and for each set a brick in Rd such that any subfamily intersects just 
when the corresponding bricks do. 

Postponing the proof of Theorem 1, we prove the corollary: If such a brick 
representation exists then the Helly-1 property follows. Conversely, the pairwise 
intersections of sets ir? the family determine a graph. By Theorem 1, this graph is 
the edge product of d interval graphs.’ The Cartesian product in Rd of the interval 
representations of the factor graphs is by construction a correct brick representa- 
tion of pairwise intersections. The Helly-1 property uniquely determines all 
higher intersections as a function of the pairwise intersections. Bricks always have 
this property and the given family has it by assumption. q 

There is a natural extension of this question to hypergraphs, i.e. finite families 
of (k + l)-tuples from a fir,ite set V. Call such a hypergraph convex if one can 
associate to each element of V a convex set in R“ such that a (k + 1).tuple is in 
the hypergraph just whet] the corresponding convex sets intersect. 

Theorem 2. Euery hypergraph of (k + l)- tuples on u vertices is the intersection of no 
mare thart &) convex hypergraphs on the same vertex set. 

This is only an upper bound, of order ZI&, on the number of factors required. 
For k = 2, (systems of triples) we obtain a lower bound of the same oyder. 

Lemma 1. If vertices a and b of graph G are not joined by an edge and the graph 
G’. obtained front G by deleting a, b and the edges incident on them, is a product of 
d ivterual graphs, then G can be obtained as a product of d + 1 interval graphs. 

Proof. By assumption there is a brick representation of G’ in Rd with vertices Ui 
mapped to bricks Bi. Let B& be a brick in Rd meeting all the BI. Add one 
ccmrdinate axis and represent G as follows: For vj E G’ not joined to either a or 6 
in (3. take Bj = Ri x I-1, I]. For vi E G joined to a but not to b in G, take 
f?i = f3: x [-- 1,3]. For Ui E G’ joined to b but not 40 a in G, take Bi = B: X C-3,1]. 
For C, E G’ joined to both a and 6, take Bi = B’x C-3,3]. For a take B,-, x [2,3] 
and for b take &,x c-3, -21. This realizes G by bricks in Rd+l thus as product of 
d + f interval graphs. II3 

‘f)nls the fact that a finite d exists is needed. Th-:s can be seen directly from the observation that a 
con;pletc ,raph with one edge deleted is an interval graph. Thus Theorem 1 is not essential here. 
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This gives part (a) of Theorem 1 by induction. For v s 3 all graphs are interval 
graphs by inspection. Assume Theorem l(8) true for up to v-2 vertices and 
consider G on 2; vertices. Either G = & the complete graph, which is an interval 
graph, or else there is an unjoined pair, a, b of vertices. Their deletion gives a 
graph G’ realizable with [a(~ - 2)] = [iu] - 1 or fewer factors, so that G is a product 
of no more than [$v] interval graphs by Lemma 1. Cl 

Part (b) of Theorem 1 is true for k = 2 since one can easily check that the only 
graph with 27 ~‘4 that is not an interval graph is the square (4-cycle)&,. 

Lemma 2. The complete k-partite graph & 2 2 on 2k vertices cannot be obtained . 1...* 
as a product of fewer than k interval graphs. 

Proof. Suppose it could be. Let 4, bi (i = 1, . . . , k) be the unjoined vertex pairs. 
For each such pair the edge Uibi must be absent in at least one factor. By the 
pigeonhole principle some factor has two such edges missing say ulbl and u2b2. 
The four other edges joining these four vertices are in this factor as they are in the 
product. 

As the factor must be an interval graph, this gives an interval representation of 
the square, which is impossible. 0 

It remains to show that if a graph G on 2k vertices requires k factors. it is 
isomorphic to K2 2 . *.... 2. As this holds for k = 2, assume k > 2 and the assertion 
proved up to k - 1. If G requires k factors it is certainly not the complete graph 
(which is an interval graph). So there are unjoined vertices, say Q, b. Let G’ he the 
graph left when a, b are deleted. If G’ were the product of fewer than k - 1 
factors, Lemma 1 would contradict the assumption on G. Thus by the induction 
hypothesis G’ is a K2 Z . ,. . . 2 on 2k - 2 vertices. If all possible edges between {a, b} 
and G’ are in G then G is a K2 2 . . ...1 2. If not, let (Ui, bi), i = 1, . . . , k - 1 be the 
unjoined pairs of G’ and suppose w.1.o.g. that au, is not in G. As k >2 we could 
have removed from G (a2, b2) instead of (a, b) and,this removal also must leave at 
K 2 2 . ,.-., 2 which requires (a, a,) to be present. This contradiction completes the 
proof of Theorem 1. 0 

3. The hypergFaph case 

For a hypergraph of (k + 1)-tuples, i.e. a (regular)2 (k + 1)-hypergraph, the 
property of having a representation by convex sets in Rk leaves some freedom. 
For indeed, knowing which families of k + 1 of the s&s have nonvoid intersection 
determines intersections of all larger families (by Helly’s theorem) while the 
intersections of families _A r r\f 2 to k of the sets are not fully determined. Therefore, 
we define a tight convex representation of a (k + 1)-hypergraph as the association, 

2“Regular” refers to the fact that all hyperedges have the same cardinality. As all the hypergraphs 
considered here are such, the qualihcation will be dropped in the sequel. 
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to each veriex, of a compact convex body3 of Rk such that 
(i) any k + 1 of the bodies intersect iff the corresponding (k + l)-tuple is a 

hyperedge of the (k + 1).hypergraph, and 
(ii) any k of the bodies have a common point. 
We prove the following strengthening of Theorem 2. 

Theorem 2’. Every U: + l)-hypergruph on v vertices is the intersection of no more 
fhan &) (k + I)-hypevgmphs with tight convex representaticns. 

PH&~ For v > k >O, denote by c&(v) the maximum number of factors required 
for (k + I)-hypergraphs on v vertices (it will turn out to be finite). From Theorem 
1. we have d,(v)= [$u]s&)~ Also, dk(k + l)= 1 s;(:+‘) for all k >O: if the 
only k + 1, tuple intersects, one can take all bodies the same, if not, take the 
bodies to be the facets of a k-dimensional simplex. Either way, it is a tight convex 
representation. Theorem 2 will thus follow by induction if one can show that 

&(v+ l)ddk(v)+dk-,(v). 

Consider a (k + 1 )-hypergraph C = ( V, E) with vertex set V =: {a,,, . . . ,a,] and set 
E of (k + 1 )-tuplcs from V. Let V’ = V - {a,), El’ = El V’ the (k + l)-tuples from E 
that arc in V’. Then G’= ( V’, E’) is a (k + I)-hypergraph on 2: vertices and can be 
rcprcscnted by a product of p s &(v) tight convex (k + l)-graphs G[, i = 1, . . . , p. 
Lst C,i be the convex body of Rk representing ai in Gi, j = 1,. . . . v; i = 1.. . . , p. 

For each i. let Ci,, be a convex body of Rk covering all the Cii(j = 1. . . . , v), say 
their convex hull. 

By definition, for any k-tuple t of V’ and any factor i = 1, . . . , p; the sets Cij 
with j E I have a common point. For (k + l)-tuples this is the case for aEI i iff the 
(k + 1 )-tuple is in E’. 

Let E” be the set of k-tuples in V’ suc’i~ that, with the addition of a,, they 
hclrrng to E. Then G” = ( V’, E”) is a k-f. ,,ypergraph, and as such can be rep- 
resented a!; an intersection of q 6 L-I!, _ ,( sj) tight convex k -hypergraphs 
ci:‘(i= l....,yl. 

For each j= l,..., u there is a convex body Dij in Rkvl such that for every 
(k - 1 )-tuplc I of j’s and fixed i, the {Diti}jEl have a common point, while for a 
k-tuplc this ir, true for all i iff that k-tu:)le is in E”. 

In each of the q factor representationBj add a coordinate axis and let Pi be a 
point(# origin)onthisaxis.LetC,+i,i(i=l,...,q;j=l,...,v)betheconvex 
hull in Rk ’ ’ of 0i.i and Pi. Let C, ei.0 be the convex hull of the union of the Di.j, 
cj- I,.... t’), this is a convex set of Rk’ ’ contained in the original Rk. 

Then the Cii (i=l, ..,p+qi j=O,.. ., v) form a representation of G as a 
product of p +- q tight convex k-graphs on V. For indeed, it is shown below that 

(a) in each factor, all k-tupfes intersect. 

“tf * 8 ra r: c’orrtcx hcdy is a nonvoid compact convw set. An interior is not required. 
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(b) all (k + 1)-tuples in E intersect in each factor, and 
(c) all other (k + 1)-tuples fail to intersect in some factor. 
Pruof of (a). If a0 is not in the k-tuple then the representing sets intersect in 

factors 1 , . . . , p by construction and in the points Pi of the other factors. It’ a, is in 
the k-tuple, the k-l other sets intersect in factors i = 1, . . . , p and are covered ii1 
each by Cio, while in the 4 other factors the k - 1 corresponding Di,i already 
intersect by construction and are covered by Cp+i,o. 

Proof of (b). For a (k + 1)-tuple not containing a, the representing sets intersect 
by construction in the first p factors and in the points Pi in the other 4 factors. If 
a, is involved, then in the first p factors the k other sets intersect by construction 
and are covered by Cio. In the 4 other factors the k sets Diii already meet by 
construction and are covered by Cp+i,o. 

Proof of (c). If a, is not involved the sets representing the (k + 1).tuple have a 
void intersection in one of the first p factors. 

If 4,0 belongs to the (k + 1)-tuple then, by construction, the intersection of the 
corresponding Diij is void in one of the last 4 factors, as Cp+i,o covers only the Qj 

(and none of the rest of Cp+i,j ) the intersection of the k + 1 representing sets Cp+i j 9 
(j in (k + 1)-tuple) is void for that factor. 

This completes the induction. q 

Turning now ts the question of lower bounds, one first needs a generalization 
of the fact that that I& is not an interval graph. 

Consider two finite sets A, B such that IA I= IBI = k + 1, IA n B) < k. If V = 

AUB, then u-IV( satisfies k+3sus2(k+l). 

Lemma 3. For A, B, V as above, consider the (k + l)-hypergraph G = (V, E) in 
which E consists of all (k -t 1)-tuples on V except A and B. Then G has no right 
convex representation. 

Proof. For k = 1 this reduces to the fact that K2,* is not an interval graph. If the 
lemma were false there would be a counterexample G, with minimum k, having a 
representation by convex bodies Ci (i = 1, . . . , v) in Rk. If v < 2(k + 1) there is an 
i, say i = v, common to A and B, then let S = C, and let V’ = (1, . . . , v - 1). 
Otherwise A and B are disjoint, take one element from each, say v - 1 from A 
and v from B then let S = C,_, n C,, md let V = (I,. . . , v - 2). In either case 

v’= IV’1 and k’= k- 1 will satisfy k’+3sv ‘s 2(k’+ 1). By the tight representa- 

tion property one has 

(i) S is a nonvoid compact convex set 
(ii) For all (k + 1)-tuples from V’ the corresponding k + 1 sets Ci have a 

common point . 
(iii) The intersection of S and k of the Ci (i E V’) is nonvoid unless all the 

indices of the Ci belong to the same one of the sets A or B ; there are exactly two 
such k-tuples A’ and B’, with V’= A’U B’. 
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By Hell3 , theorem there is a point P$ S common to all the Ci( i E V’). Let n be 
a hyperplane strictly separating P from S. 

For i E V’ let T = S f7 Ci and let Ri be the intersection of n with the convex 
hull, of T u I w When some of the Ti have a common point the construction 
prcrduce~ a ..c* rmon point of the corresponding Ri. Conversely, when some Ri’F 
have a common point X, then on the ray from P through X there are points from 
each of the corresponding Ti and the one nearest to P belongs to all of them. 

Thus the Ri (i E v”) form a tight convex representation of the k-hypergraph 
G’ = (V’, E’) in which E’ consist of all k-tuples from V’ except A’ and B’. Tliis 
contradicts the minimality of k and completes the proof. q 

Let G( V, E) be a 3-hypergraph in which E consists of all triples from V except 
for a Steiner system. Such G thus exist for u = IV1 congruent to 1 or 3 modulo 6. 

l’h~em 3. For the above 34ypergraphs, a representation by tight conuex 3- 
hypergraphs vequires at least &) factors. 

Pro& A Steiner triple system on V consists of $1;) triples. Each of these triples 
must be missing in at least one factor. If the theorem were false the pigeonhole 
principle implies that in some factor at least two of the Steiner triples, say A and 
B, uvou’ld be missing. The Steiner condition implies that A U I3 contains no other 
triple of the system. Then the representation of this factor would provide, in 
particular, a representation of the 3-hypergraph on A U B in which only triples A 
and B are missing. This, however, contradicts the k = 2 case of Lemma 3. Cl 

As the maximum required numbe:r of factors &(u) is clearly monotone non- 
decreasing in v, one has 

1 v 
sdz(u)=- 

0 22 

where o* is the largeslt integer, not exceeding o, which is congruent to 1 or 3 
modulo 6. Thus d*(u) is of ;lrder u’. 

R~rk. The use of cornpact convex sets for the representations is only a 
convenience. It can easily be shown that the classes of intersection patterns 
realizable by convex sets in Rd that are Bi) compact, (ii) compact with interior, (iii) 
open, and (iv) general, akre exactly the T%arne. 
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