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Abstract

The higher spin interaction currents for the conformally coupled scakai®j space for both regular and irregular boundary
condition corresponding to the free anderacting critical point of the boundarg (N) sigma model are constructed. The
explicit form of the linearized interaction of the scalar and spin two and four gauge fields Au8espace using Noether’s
procedure for the corresponding spin two and four linearized gauge and generalized Weyl transformations are obtained.
0 2004 Elsevier B.V. Open access under CCBY license.

1. Introduction

In contrast to the case of usuAtlS;/CFT,4 correspondencgl] where the strong coupling regime of the
boundary theory corresponds to the weak coupled string/supergravity theory on the bukdShEFT3
correspondence of the critic@l(N) sigma mode[2] operates at small 't Hooft couplingand the corresponding
bulk theory is described as a theory of arbitrary even high spins. So it is a theory of Fradkin—Vasiligg] tyires
case ofAdS/CFT correspondence is also of great interest bechase dynamical consideans and calculations
both in AdS;;+1 andCFT, cases are essential on account of the absence of supersymmetry and BPS arguments
and because in this case of correspondgrerturbative expansions with athcoupling constants are mapped on
each other. So the essential pointt(4) andd = 3 O(N) sigma model correspondence is that both conformal
points of the boundary theory, i.e., daBle free field theory and criticahteracting point, in the larg@¢ limit
correspond to the same higher spin theory. Moreover as we have learnef2frtirase two points are connected
on the boundary by a Legendre transformation wiiohresponds to the different boundary condition (regular
dimensiong = 1 or shadows = 2) in the quantization of the bulk scalar field. This quantization of the free scalar
field in the AdS with different boundary conditions and cosponding multi-trace deformation of the boundary
theory were investigated and explored in many papers, we will refer just to the afdichesst interesting for us.
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In this article we explore these two different boundaonditions of the scaldiield from the point of view
of the linearized interaction of the scalar field with the high spin fieldd iz 4 AdS space. InSection 2we
extend our previous consideratif5] to the case of thg = 2 boundary condition. We show that if tifie= 1 case
corresponds to the interactionld5(4) gauge fields with theonformal (traceless) conservedlgher spin currents
constructed from scalar field, then the= 2 case we can describe in non-contradictory fashion witid& CFT
correspondence using the non-confordw@uble-traceless currents and gauge fields in Fronsdal's formul@&fion
In the last two sections we explicitly construct a linearized interadtiagrangian of the conformal scalar field
with the spin two and four gauge field using Noether’s procedurgdoge andgeneralized Weyl invariance (some
consideration of non-linear gauge invariant coupling of the scalar field on the level of equation of motion one can
find in [7]). We show that the interaction of the scalar with the spin four Fronsdal gauge field can be constructed
in a non-unique way due to the existence of the gauge invariant combinations of gauge field itself (analogue of
Ricci scalar for higher spins). But this ambiguity can be fixed in unique fashion by gauging the analogue of scale
invariance in the higher spin case. This is a symmetry with the local tensor parameter permitting to gauge away the
trace of a double traceless gauge field and leading ttrélcelessness of the corresponding spin four current.

2. Conformal and Fronsdal higher spin currentsand AdS;/CFT3

In our previous articlg¢5] we considered coupling of tHéS(d + 1) gauge field with a current constructed from
a scalar field in fixedAdS;+1 background. Using the ansatz including S, 1 curvature corrections we have
shown there that all ambiguity in the construction of a gpiraceless current from the conformally coupled scalar
field reduces to the ambiguity of the set of leading coefficientsn the expansion of the current
1 14 ag -1
J(lf)(z; a):E Z Ap(aV)efp(ﬁ(z)(aV)P(p(z) + > Z Bp(aV)Lpflvuq&(z)(aV)P*lvu(p(Z)
p=0 p=1
a2 2 1
{—p—1 -1 4
+ﬁ;cp<aw P1p(2)(@V)P ¢ () + O(a )+0<F), @)

whereA, =Ay_p, B, = By, C, = Cy_, andAg = 1. The tracelessness condition fixes relations betwiggn
C, andA,, in the following way[5]
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The unknownA , we can fix in two different ways: the first pobdity is to use the conservation condition for
the current. This leads to the recursion relation with the same solution fot jheoefficients[8] as in the flat
(D =d + 1)-dimensional case
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2 For the investigation of the conservationdatracelessness conditions for general spsymmetric conformal curren!lﬁll)uz...mZ we

contract it with the/-fold tensor product of a vecter*.
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For the important cas® = 4 this formula simplifies to

0\2
- ©
The result of our previous consideratif} was the following: the curvature corrections do not change flat space
tracelessness and conservation conditions betvezelirg coefficients antérefore the solutio(b) remains valid.

The other way to fix this ambiguity is a bound@@¥# T3 consideration. The result |5]

A _Ce(_l)p (f7>
P20B) y(Be—p

Here 8 is the dimension of the scalar field of the bound®fT3, andC’ is the normalization constant of the
three point function of two scalars and the spgicurrent inCFT3 (we define also the Pochhammer symbols
(z)n =T (z+n)/T'(2)). The expressioli7), for 8 = 1, is in agreement with the previous o(@® obtained from
AdS; consideration, if we will normalize in7) C* = 2¢¢!. It means that thg = 1 point of boundanCFT3 (free
field conformal point of0 (N) vector model) we can describe asamformal HS(4) model inAdS;,. In other words

in this case we have to operate in dual higher spin theory with the linearized interaction

@)

(@conf _ 1 4 Oy {4
St = / d*x JghOrare O (8)
where the corresponding current is conserved and traceless
0 — ) —
Jdug"uz =0, Vi J/Llﬂzwuz =0. (9)

For 8 = 2 we have to change the constraints imposedl9nFor that we turn from conformal higher spins to
Fronsdal’q6] formulation where gauge fields andrrents are double traceless only

1
¢
s =1 [[abe yanomng0, (10
(Oap _ (O)ap _
hO‘ﬁMS"'M =0, Waﬂltsmw =0, (11)
¢ 14 traceless
(Sohl(tl)ww = (1 €p-re) €apgny =0 [Vﬂlwxil)uz--w] =0 (12)

and the conservation condition lookdittle bit different from the usual one due to the double-tracelessness of
the gauge field and current. Then we can realize the double-traceless aftensing two traceless (but not
conserved) currents®©, ©¢=2 with the same dimensiof+ 28 + O(1/N) on the boundary9]. It means that
the expansions for these fields start from the following series

1 l
1O =3 I;Af,(w)@%(z)(aw%(z) +oee (13)
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The Fronsdal fieldr () we can present then as

2
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The conservation conditiofd2) in this representation is

2
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From this we can read off a restriction on the coefficientd B) and(14)
p(D+2p—HAL + (L —p+(D+20—2p—2A} 1+ B, >+ B I =0. (19)
For D =4 we get
2 2 -2 pt-2
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Then after using7) for 8 =2 we obtain
cle! 1P —-2p+1
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is
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The latter sum can be proceeded using Pascal’sutarfior binomials. The result is very elegant
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So we show that in contrast to thfe= 1 case where the interaction incligdiine traceless conformal higher spin

currents, the8 = 2 boundary condition necessitates the interactigh the double trace higher spin currents. The
connection between these two types of interaction caddseribed adding local Weyl (in the spin two case) and
generalized “Weyl” invariants realizing the conformal coupling of the scalar with the higher spin fields.

3. Linearized spin two gauge and conformal scalar field interaction (£ = 2)

The well-known action for the conformally coupled scalar fieldirdimensions in external gravity is

(D—2)
4D -1)
In this section we restore the linearized form of this action in fikd8background using a gauging procedure both
for the gauge and Weyl symmetry on the linearized leWid.do this derivation just for methodical reasons because

the final nonlinear answer is know@5). But we would like to extend this consideration to the higher spin case
and try to elaborate a linearized construction which works in the €asé where the final answer is unknown.

S= % / Pz «/—G[G“"Vﬂ)vm -~ R(G)¢>2]- (25)
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We start from the massive free scalar action in the fikd8 external metrig
1
So(@) = / P2 J=g[V,up V" + 197 (27)

For getting an interaction with linearized gravity using the gauging procedure we have to Yanéth respect to
81p = e () Vo

5180 = /dDz V—gVHe [Vﬂ¢vv¢ — %(vwv% + A¢2)] (28)
and solving (we assume thgt andh”*’ have the same infinitesimal order) the equation
82So() +8°51(p. h @) =0, 62D =2V e, (29)
we immediately find the following cubic interaction linear in the gauge field
1 v
S1(6. h<2>) =5 / daPz /__gh@W[—Vme + g; (VupVHe + M)z)] (30)

Note that here we used many times partial integration wimielns that we admit that all fields or at least parameters
of symmetry are zero on the boundary, otherwise we woaleho check all symmetries taking into account some
boundary terms and their variations also. It is clear that for constructing the local interaction on the bulk we can
use partial integrations without watching the boundary effects.

So we see that gauge invariance

5ip() =" @Vup (), 82 (2) =2V (e (2) (31)

in this linear approach doemt fix the free parameterand the corresponding spin two Noether current (energy—
momentum tensor)

U (p. 1) = V.V + gg“ (VupV"p + 292 (32)

is conserved but not traceless. But we can fix this prothewing noted that there is one more gauge invariant
combination of two derivatives and ong, field

D—-1
r(Z)(h(Z)(Z)) — Vﬂvvh(Z)uv _ Vzhff)ﬂ _ Th/(f)u’ 33.,.(2) (h(Z)) —0. (33)

It is of course the linearized Ricci scalar-but at this moment it is important for us that there is only one gauge
invariant combination oiszv) (z), two scalarsp (z) and two derivatives

/ dPz /gr®(h?)e?, (34)

3 We will useAdS conformal flat metric, curvature and covanialerivatives commutation rules of the type

L? 1
2 /
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[vu, vv]Vp = lengf - Ruvko V(f,

1 1
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which we can add to our linearized action with one more fsarameter. So finally we can write the most general
gauge invariant action in this approximation of the first order in the gauge field

SC'(r &, ¢, h?) = Z/dDzJ_[ LBV D+ 1g?]

n % / APz J—gh@m |:_V;L¢VV¢ + g;” (Vo VFH e + A¢2)]

D-1
+& / dDz«/—g[VMV,,h(Z)W — V221 — Thff)“]dﬁ. (35)

Then we search for the additional local symmetry permitting to remove the trace of the gauge,fieded
therefore leading to the traceless conformal spin two cirighe natural choice here is of course Weyl invariance
and we will define local Weyl transformation in linear approximation in the following way

5302 =A0(@p(R).  8In7(2) =20()gu. (36)

whereA is the conformal weight (one more additional free parameter to fit) of the scalar field. The important point
here is that when we impose on the gauge invariant a¢86hconformal (Weyl) invariancé€36) we obtain the
condition

AD  26D(D —1)

—— 8% (0, £,0,0?) = |:AA + = }04)2 + [A —1+ g]avmpva

SU( ) 2 L2
[25(1 D) — ]V20¢ =0 (37)
with the unique solution for all free constants
D 1D-2 D(D —2)
A=1——, =——, A= ———5—. 38
2 § 8D—1 412 (38)
So finally we come to the gauge and conformal invariant action
S . ) = So@) + 577 (. hP) + 577 (.8 D), (39)
where
1( b w, DWD=2) ,
So(¢) = > d7z/—g| VupVig + T¢ ; (40)
(2) 1 v guv D(D —2)
(¢.1%) =3 / dPz/=gh®" [—ww + %(wvw + T&)] (41)
1D-2 D—-1
Sr<2> (4, h(Z)) 551 / dP; \/—_g|:V/LVvh(2)‘“’ _ Vzh;(LZ)M h(2)u}¢ i (42)

which is of course the linearized actig@5) and can be obtained from that after expansion near toAU%)
backgrounds ., (z) = guv + hffv) (z) in the first order orhffg.

4. Solution for spin four

Now we start from actiorf40) to apply Noether’'s method for the following transformation of the scalar field
with a traceless third rank symmetric tensor parameter

8Xp = "V, V, Vi, ¢ =0. (43)

ap
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First of all we have to calculat& So. For brevity we introduce the notation (and in a similar way for any other
tensor)
=V, MY =V, Ve (44)
Then after variation of40) we obtain
3. 1.
5:So(¢) = f dx‘w-g{—V“"e““”vwawuw + 5€ Vo Ve Vi VG — SEHVE(Vp Vi)

1 ~VA
+ @[31)(0 +2) —8]¢" V¢V,

oz Suv D(D — 2)
— Ve [—vmvv(p + % (va“(p + quz)} } (45)

We see that we can introduce an interaction with the spin four gaugeh\ff%&% in the minimal way if we will
deform the transformation law for the spin two field. The solution for the equation

(] 4
82S0(@) +8°[SY " (¢, h@) + 57 (¢, h )] =0 (46)
is
1
SYY (6, h @) = Z / dx4«/—g|:h(4)“”°‘5VMV,,¢)VD,Vﬂ¢) — 3@y, VeV, VA + DYV, 6V, )
3D(D+2) -8
- 3DLED 28, g, g, </>], (47)
SR Iep = 4y heveb) - §ly = UV, V, Ve, (48)
sopPamv — v - §0p@uv — ogngy), (49)

So we obtain the following gauged action with linearized interaction with both spin two and spin four gauge fields
and linearized usual Weyl invariance

4
SC (@, h?, h @) = sV (¢, h®) + 57 (9, hY), (50)
SOROmvre = gylhevied g0 @ny — oy ngy) 4 2V E) 4 25, (51)
D
8t ="V, ¢ + €V, V, Vig + (1 — E)mp, (52)

wheresW!(¢, h?) can be read fron89)—(42)and we note that on this linearized level usual Weyl transformation
does not affect the spin four part of the action but the spin four gauge transformation deforms the gauge
transformation for spin two gauge field.

Now we turn to the construction of the conformal invariant coupling of the scalar field with the spin four gauge
field in a similar way as in the case of spin two. For this we note first that here we can construct also the gauge
invariant combination of two derivatives aht* ®# This is the following traceless symmetric second rank tensor

3(D+1)
L2
sy @af — r®e =0, (54)

This is the analogue of the Ricci scalar in the spin four case and we can construct using thisatteasialitional
gauge invariant combinations of the same order.

SV (Er, £ 6. B ) =1 / APz J=gr®mV, oV ¢ + & / APz =gV Vur g, (55)

F&ap _ Vﬂvvh(‘l)uwﬁ _ Vzhl(f)/wﬁ _ V(“vuhl(f)ﬁ)ﬂv _ hl(f)aﬁ/t’ (53)
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Then we can define thgeneralized “Weyl” transformation for the scalar and spin four gauge field with the second
rank symmetric traceless paramegét’ (z)

SOR Db (1) =12x W ()P, 83¢(2) = AxP(2)Va Vo (2). (56)
where we introduced the “conformal” weight for the scalar field. Computing the following variations

4
5 So(p) + 8957 (6. h™)

. i D(D -2 - 3D .
= /{(A ~HvePyld (¢, %) - (A +5 3)x PV ViV Vi

A+D+3 1 . D(D —2) -
B 2 Vag Vi — = C(A, D)X P Vag Vi + %W}\/—g Pz, (57)
C(A,D):(A—l)(D—l)+%D(D—2)+(D+4)(w—1), (58)

52 51(4) (d), h(4))

—f f [ZDv@‘xﬁ) w2 (¢, 71)(2; 2)) — (D =23 VadVh — 2(D + )V V, Vs

2
— ﬁ(D +3)(3D + 4)X“ﬂVa¢Vﬁ¢:|«/—g dPz

D*(D -2 12(D + 1)(D + 2 - 8
—[sl i AR )] [aPev=gio? —ean + 1 [ P2 y=eviie? 9)

we see again that for obtaining a “Weyl” invariant interaction we have to deform the gauge and usual Weyl
transformation of the spin two gauge fieﬂ{fv)

89n2) =2(1— A —2DE)VH 3" + 2613 g (60)
Then solving the symmetry condition
@ e 0] @
57 S0(@) + 8 (SY " (. h D) + 877 (6. h@) + Y (9. h @) + 577 (¢.8P)) =0 (61)
we obtain again a unique solution for all three free parameters
~ 3
A=-3— 5D, (62)
1 D
- 63
1= gD +3 (63)
1 DMD-2
= 64
= A+ DD T3 (64)

Thus we constructed the linearized action for a scalar field interacting with the spin two and four field in a
conformally invariant way

(4) (4)
SW| (¢’ ],1(2)7 h(4)) — SW| (d), h(z)) + SJ‘{’ (d), h(4)) + Si (d)7 ],1(4))7 (65)
8o =e"Vup + €V, V,Vig + Ao + Ax 'V, V0, (66)
80 @1y = 2y e 4 2y EV) L 2(1 — A — 2DEVH 1Y) + 208, + 261X guv» (67)

sOp@uva _ gy (nevie) 4 12y (/wgaﬁ). (68)
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This interaction has an additional local symmetry permitting to gauge away the trace of spin two and four gauge
fields. So we can say that this is a linearized interactiorcdaformal higher spin theory of the type discussed in
[9,10]. Unfortunately at the moment we can present onlysihia four case in a completerm. But the general spin
¢ case inAdScan be considered in a similar but more complicated way and will be presented in future publications.
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