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1. Introduction

Given two simple graphs® whose adjacency matrices have the same spectrum, what additional
information is sufficient to distinguish the graphs?

For example, if ab = cd and a + b = m + ¢ + d, where a, b, c, d, m are positive integers then
the complete bipartite graph K 5 is (adjacency) cospectral with K. 4 + Ky, the complete bipartite
graph K. 4 together with misolated vertices. These graphs may be distinguished by the spectra of their

complements, Ky p = Kq 4+ Kp and Kc ¢ + K = (K¢ +Kg) V K. For, —1 is an eigenvalue of the former
complement with multiplicity a4+ b — 2 and of the latter with multiplicity a+ b — 3. However, there are
many examples of cospectral strongly regular graphs (see, e.g. [3]) and these cannot be distinguished
by the spectra of their complements because cospectral regular graphs have cospectral complements.

As an additional test to distinguish a graph, consider the spectra of its set of skew-adjacency ma-
trices; that is, of the set of skew-symmetric {0, 1, —1}-matrices derived from its adjacency matrix
A = [a; ;] by negating one of a; j, a; ; for each unordered pair ij.

Fig. 1 (from [3]) shows all pairs of adjacency cospectral graphs on six vertices. Each graph in the first
row is adjacency cospectral with the graph below it. The skew-adjacency matrices of a graph G all have
the same spectrum if and only if G has no cycles of even length (Theorem 4.2). We call such a graph an
odd-cycle graph. All but the second pair of graphs have skew-adjacency matrices with different spectra
because one of the graphs is an odd-cycle graph and the other is not.

It is known (and shown in Lemma 5.3) that the coefficients of the characteristic polynomial of the
skew-adjacency matrices of a graph are the absolute values of those of its adjacency matrix if and only
if the graph is a forest. Thus, two forests are adjacency cospectral if and only if some (or all) of their
skew-adjacency matrices are cospectral. In particular, the second pair of graphs in the figure have the
same adjacency spectra and the same (unique) skew-adjacency spectra.

It is not clear how often it would be practical or effective to distinguish graphs by the spectra of
their derived sets of skew-adjacency matrices, but, as we have just seen, addressing that question leads
to interesting results.

Section 2 reviews relations between coefficients of a characteristic polynomial and collections
of vertex disjoint directed cycles in a weighted digraph. The relations are specialized to the case of
adjacency matrices in Section 3. These relations and those for other matrices of graphs may be found
in[8].

In Section 4, the skew co-spectral characterization of odd-cycle graphs is proved (Theorem 4.2). Eq.
(8) is the key to that result and most of the other results in this section. It expresses the coefficient sy
of X" ¥ in the characteristic polynomial ps(x) of a skew-adjacency matrix S in terms of vertex disjoint
collections of edges and even cycles of G that cover k vertices. In particular, if G is an odd-cycle graph,
it implies that sy is the number of matchings in G that cover k vertices.

Section 5 explores relations between the characteristic polynomials of adjacency matrices and
skew-adjacency matrices. It is observed there that G is an odd-cycle graph if and only if the coefficients
of the characteristic polynomials of all of its skew-adjacency matrices are the absolute values of the
coefficients of its matchings polynomial. It is not known if this equivalence is still true if the coefficient
condition holds for some skew-adjacency matrix of G (Problem 1).

Section 6 contains groundwork for an investigation of ps(G), the maximum value of the spectral
radii of the skew-adjacency matrices of a graph G. It is not known that G must be an odd-cycle graph
if all of its skew-adjacency matrices have the same spectral radius (Problem 2). Also, we conjecture
that if G is an odd-cycle graph on n vertices whose skew-adjacency matrices have the greatest spectral
radius, then G has a vertex joined to all others (Conjecture 6.1 and following comment). Together with
Remark 6.1, Lemma 6.3 may be regarded as an analogue of the Perron-Frobenius theorem, one with
nonnegative matrices replaced by those skew-signings of a symmetric nonnegative matrix with zero
trace for which the spectral radius is maximum.

Section 7 contains bounds on the number of skew-adjacency matrices of a graph that have distinct
spectra.

5 Terminology in the introduction that is not defined later may be found, e.g., in [22].
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Fig. 1. The adjacency cospectral graphs on six vertices.

2. Characteristic polynomials from weighted digraphs

—

Given an n x n matrix A = [a; ], let G (A) be the arc-weighted digraph on the vertex set V =

[n] = {1, 2, ..., n} with arc set E(_G)) = {(i,j) : a;j # 0} and weight qg; j assigned to arc (i, j). An
example is given in Fig. 2.

When t > 1, a dicycle of length ¢ is a digraph with a vertex set {i, iy, .. .1} and arcs (ix, ik+1),

1 < k < tand (i¢, i1). A dicycle of length t = 1 is a loop (i1, i1). For example, in the arc-weighted

digraph _G) (A) inFig. 2, there is a dicycle of length 1 (or loop) at vertex 1, dicycles of length 2 (or digons)
on each of the vertex sets {1, 2}, {2, 3}, {2, 4} and a dicycle of length 3 on the vertex set {2, 3, 4}.

Let UZ denote the set of all collections U of vertex disjoint dicycles in G (A) (including loops and
digons) that cover precisely k vertices of _G> (A). For TJ) € EZ let e( U ) denote the number of dicycles
in TJ) of even length (including digons) and let 86y A =1

Let the characteristic polynomial of A be denoted by

(i.j)eE(TH -

pa(x) = det(xl — A) = X" + a1x" ' 4 -+ - + ap_1X + ap. (1)

Then (—1)¥ay is equal to the sum of the k x k principal minors of A. Because dicycles of even length
are associated with permutations with negative sign (see, e.g. [2, p. 45]), it follows that

a=D¢ Y D@ =3 1'Uingw, 2)

Telr T etie
— . I . .
where | U | denotes the number of dicycles in U . In particular, A has determinant

detA = (=1)"ay = (=" > (—1)'7ln7(A). (3)
Uen,

For example, applying (2) and (3) to the arc-weighted digraph _G) (A) for the 4 x 4 matrix A above,
we see that det A = adfh and

pa(x) = X —ax® + (—bc — de — gh)x2 + (ade + agh — dfh)x + adfh.

3. Characteristic polynomials of adjacency matrices

If G is a simple graph with vertex set V. = [n] = {1, 2, ..., n} and edge set E(G), the adjacency
matrix of G is the n x n symmetric {0, 1}-matrix A = A(G) with a;; = 1ifij € E(G) and a;; = O if
ij € E(G). In particular, each diagonal entry of A is 0.

A routing U of a vertex disjoint collection U of cycles and (isolated) edges in a simple graph G is
obtained by replacing each of the cycles in U by a dicycle and each edge in U by a digon. Thus, if c(U)
denotes the number of cycles in U, then U has 2¢V) routings.

IfAisasymmetric {0, 1}-matrix with zero diagonal, then A is the adjacency matrix of an (undirected)

simple graph G = G(A).The digraph G (A) defined earlier is the doubly-directed graph obtained from
G(A) by replacing each edge by a digon and giving each arc a weight of 1. Thus, the summands in (2)
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Fig. 2. A square matrix and its associated arc-weighted digraph.

may be grouped according to the members U of the set U of all collections of (undirected) vertex
disjoint edges and cycles in G (of length 3 or more) that cover k vertices. Here dicycles of length 3
or more in _G) (A) are associated with undirected cycles in G(A), digons in E)(A) are associated with
edgesin G(A) and there are no loops in _G) (A) since A has zero diagonal. Each U in ¢4 accounts for 2¢()

summands in (2), one for each routing U of U. Thus, if A is the adjacency matrix of a simple graph G,
then the characteristic polynomial (1) of A has coefficients

a = z (_1)k+e(U)+m(U)2c(U) — z (_1)|U|2C(U)’ (4)
Ueldy Uelt

where e(U) is the number of even cycles in U, m(U) is the number of disjoint edges in U, c(U) is the
number of cycles in U, and |U| is the number of components of U. (See also [8, p. 32,10, p. 20,2, p. 45].)

A matching in G on k vertices is a set M = {iyiy, i3ig, ..., ix—1ix} of vertex disjoint edges in G.
A matching M in G is perfect if each vertex in G is in some edge of M. If the edge set of U € U is a
matching on k vertices, then k is even, |U| = k/2, c(U) = 0, and the summand (=1)VI2¢W) jp (4)
simplifies to (—1)"/ 2 Thus, if my(G) denotes the number of matchings in G that cover k vertices, then
my(G) = 0if k is odd and the coefficient formula (4) may be rewritten as

a = (=D m(6) + > (=)W, (5)
Ueuk.
c(U)=0

where (—1)§mk(G) = 0if k is odd. In particular,
(—1)"detA = a, = (=1)"*my(6) + Y. (—1)VI2eV). (6)

Ueln,
c(U)>0

For example, if A is the adjacency matrix of C,, the cycle on n vertices, then det A = 2 if n is odd and
detA =2 ((—1)”/2 - ]) if n is even.

4. Characteristic polynomials of skew-adjacency matrices

An orientation of a simple (undirected) graph G is a sign-valued function o on the set of ordered
pairs {(i, j), (j, i) | ij € E(G)} thatspecifies an orientation (or direction) to each edge ij of G.If ij € E(G),
we takeo (i, j) = 1wheni — jand o (i, j) = —1whenj — i.The resulting oriented graph is denoted
by G?. Both o and G? are called orientations of G.

The skew-adjacency matrix S° = S(G°) of G° is the {0, 1, —1}-matrix with (i, j)-entry equal to
o (i, j) if ij € E(G) and 0 otherwise. If there is no confusion, we simply write S = [s; ;] for S7. Thus
sij = 1if (i, j) € E(G?), —1if (j, i) € E(G?), and 0 otherwise. An example is shown in Fig. 3.

To obtai_n) the characteristic polynomial of S, we require the arc-weighted digraph E)(S). Because
ST = —S, G (S) will be doubly-directed and each digon will be sl«e_)w—signed: one arc will be weighted
1, and one arc weighted —1. For the example of G° and S above, G (S) is shown in Fig. 4.
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Fig. 3. The skew-adjacency matrix S of an orientation o of a simple graph G.

Fig. 4. The {—1, 1}-arc-weighted doubly-directed digraph of a skew-adjacency matrix.

Recall that 4, denotes the set of all collections U of (undirected) vertex disjoint edges and cycles (of

length 3 or more) in G that cover k vertices, and that a routing TJ) of U € U is obtained by replacing
each edge in U by a digon and each cycle in U by a dicycle.

%
Ifo isanorientation ofasimple graph Gand U isaroutingofU € Uy, leto (U ) = H(i j)eE(ﬁ)o(i,j).

We say that TI) is positively oriented (resp. negatively oriented) relative to o if o ( U ) equals 1 (resp.
ﬁ
—1), or, equivalently, if an even (resp. odd) number ci arcs in U have an _o)rientation that is opposite
to that in G°. For example, if U is a single edge, then U is a digonand o ( U ) = —1 since one arc of a
<«
digon always disagrees with one arc of G°. However, if U is a routing of a single cycle U and U is its
<~ — <« —
reversal, then o (U ) = o (U ) if U has even length, while 6 (U ) = —o (U ) if U has odd length.
o o . . pa . - o

IfS = 5(0_))15 the skew-adjacency matrix of G, then in (2), I (S) = H(i,j)eTl)sl’] = H(i,j)eTf

o(i,j) = o(U). Also, if the dicycle components (including digons) of U are U;, i € [k], then
v

o(U) = Hﬁ;la( U;).Thus, if S = S(G?) is the skew-adjacency matrix of G° and G (S) is the doubly-
directed arc-weighted digraph of S, then the summands in (2) over all routings U of a particular U
in Uy, will cancel if U contains an odd cycle and will all be equal if U consists only of edges and even

cycles.
Let ¢/ be the set of all members of i with no odd cycles. If o is an orientation of G and U €

Uz, let ¢t (U) (resp. ¢~ (U)) denote the number of cycles in U that are positively (resp. negatively)

oriented relative to o when U is given a routing TJ> (Because dicycles in T]) all have even length,
c¢T(U) and ¢~ (U) do not depend on the routing chosen.) Then c(U) = ¢ (U) 4+ ¢~ (U) is the total
number of cycles in U and, as before, if m(U) is the number of single edge components of U, then

|U| = c(U) + m(U) is the number of components of U. Let o (U) denote the common value of & (TJ>)
for the routings U of U € ;. Because each digon associated with an edge in U is negatively oriented,
o(U) = (=1)mW+e"U) — (—1)IUI+e"U) |t follows from (2) that if the characteristic polynomial of
Sis

ps(x) = det(x] —S) =x" +51x" " + -+ + 551X + sp,
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then sy = 0if k is odd and

K= (—)V2Wg ) = > (=) W) ek is even. (7)
veut veyy

If c(U) = 0 (i.e., if U is a matching) then o (U) = (—1)'”‘.Thus, s = 0ifkis odd and

s = m(G) + > (=) @2 it kis even, (8)
Ueuﬁ,
c(U)>0
where the sum is taken overall those U € U, that have atleast one cycle. In particular,det S = —s; = 0
ifnis odd and
detS =s, = mp(G) + > (—1)C+(U)2C(U), if n is even. (9)
Ueuf,
c(U)=>0

Thus, if the number m,, (G) of perfect matchings in G is odd, then detS # 0. The converse statement
fails. For example, if S is a skew-adjacency matrix of a negatively oriented even cycle C,,, thendet S = 4,
but m,(C,) = 2.

It follows from (8) that if k is even, then

se < m(G) + > 270 (10)
Ueu,
c(U)=0
with equality if and only if each even cycle in G of length | < k that is disjoint from a matchingon k — |
vertices is negatively oriented relative to o.
More can be said when k = n. Because the union of two distinct perfect matchings of G is a member
U of Yf and each U € U with c(U) > 0 is determined by 2¢U) ordered pairs of perfect matchings, it

follows that m,(G)(m,(G) — 1) = > vy, 2¢U) Thus, when n is even,

c(U)=0
S0 < (@) + > 2V = my(6)°. (11)
veug,
c(U)>0

A subgraph H of G is termed nice [19, p. 125] if G — V(H) has a perfect matching. Note that if U € U
and C is a cycle in U, then C must be nice because each of the remaining cycles in U may be replaced
by matchings. It follows that when n is even, equality holds in (11) if and only if each nice even cycle
in G is negatively oriented relative to o.

Because S is skew-symmetric, iS is Hermitian and so has real eigenvalues [16, p. 171]. (When not
used as an index, i denotes the principal square root of —1.) Thus, S has pure imaginary eigenvalues
and, since S has real entries, the eigenvalues occur in complex conjugate pairs. It follows that if S has
rank t, then ps(x) = x”’tl'l,tc/z2 1 % + bi) for some nonzero scalars by. Thus s, > 0 for each k. In
particular, det S > 0. In fact, det S is the square of an integer. This follows from a result on the Pfaffian
of S (see Eq. (13) and the definition below).

If G is a simple graph with vertex set V = [n] = {1, 2, ..., n} and edge set E(G), the generic skew-
adjacency matrix of G is the n x n skew-symmetric matrix X(G) = X = [x; ;] where the entries x; j
withi < jand ij € E(G) are independent indeterminates over a field and where x; ; = 0if ij ¢ E(G).

If X is a generic skew-adjacency matrix of G, then the Pfaffian of X, pf X, is defined by the rule

pEX = D wt(Xm), (12)
MeM(G)

where M (G) denotes the set of all perfect matchings

M = {iyip, i3i4, ..., in—1in}
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Fig. 5. The only pairs of skew-adjacency cospectral odd-cycle graphs on six or fewer vertices.

in G and where wt(Xy,) is equal to the product I3, i1 yemXi; ij,, multiplied by the sign of the permu-
tation that takes (1, 2, ..., n) to (iy, iz, . . ., in). Because X is skew-symmetric, wt(Xy) is not affected
by the order of the edges in M or the order chosen for the vertices of each edge. If n is odd, or if n is
even and M(G) is empty, we take pf X = 0.

It is well-known (see, e.g. 6, p. 318]) that

detX = (pfX)2. (13)

Because the entries of X are independent indeterminates, det X = (pf X)? # 0 if and only if G has a
perfect matching (see also [6, pp. 317-323]). Thus, G has a perfect matching if and only if pf X is not
identically zero.

In particular, if S is a skew-adjacency matrix of G, then det S is the square of an integer,and det S > 0.
Also, if detS > 0 then G must have a perfect matching. However, if G has a perfect matching, it is
possible that det S = 0 because of cancellation in pf S. But, if the total number of perfect matchings
in G is odd (in particular, if G has a unique perfect matching), then detS > 0 for all skew-adjacency
matrices S of G.

The girthg(G) (resp. even girth g, (G) ) of agraph G is the length of a shortest cycle (resp. shortest even
cycle)in G, if one exists. If G has no cycles (resp. no even cycles) then g(G) (resp. g.(G)) is infinite. Recall
that my (G) denotes the number of matchings in G that cover precisely k vertices. Thus, my(G) = 0 if
the number of vertices in G is odd. The next lemma follows immediately from formula (8) for sj.

Lemmad4.1. In(8),if1 < k < g.(G), thens, = my(G) for all skew-adjacency matrices of G. In particular,
if G has no even cycles, then sy = my(G) for all k € [n], and the skew-adjacency matrices of G all have the
same spectrum.

We have been referring to graphs with no even cycles as odd-cycle graphs. A cactus is a connected
graph each of whose blocks (2-connected subgraphs) is an edge or a cycle. A connected odd-cycle
graph is a cactus each of whose blocks is an edge or an odd cycle [4, Ex. 3.2.3]. By comparison, the
graphs with no odd cycles (the even-cycle graphs) are the bipartite graphs. Graphs with no cycles (the
forests) are both even-cycle and odd-cycle graphs.

Example 4.1. Each of the four graphs in Fig. 5 is a connected odd-cycle graph. The first pair of graphs
has the same number of matchings on k vertices for each k = 2, 4, 6, and the second pair does as well.
It follows from Lemma 4.1 that the skew-adjacency matrices of each of the first two graphs all have
characteristic polynomial x® + 6x* + 8x% + 1 while the skew-adjacency matrices of each of the last
two graphs have characteristic polynomial x® + 6x* 4+ 6x? + 1. An exhaustive check shows that no
other pairs of connected odd-cycle graphs on six or fewer vertices have skew-adjacency matrices with
the same characteristic polynomial.

The following lemma shows that the odd-cycle graphs are the only graphs whose skew-adjacency
matrices all have the same spectrum.

Theorem 4.2. The skew-adjacency matrices of a graph G are all cospectral if and only if G has no even
cycles.

Proof. The sufficiency has already been observed in Lemma 4.1.
For the necessity, suppose that G has finite even girth I. Then each collection U in 4 consists either
of a single I-cycle in G or a matching in G covering [ vertices. By (8), the first [ coefficients of the
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characteristic polynomial of a skew-adjacency matrix S = S(G?) are

sy = mp(G) whenk <1 and s; = m(G) — 2 z o(C), (14)
10)=l

where my (G) is the number of matchings in G covering k vertices and the sum is taken over all cycles C
in G of (smallest even) length L. Thus, s; is the first coefficient that could possibly be used to distinguish
the characteristic polynomials of two skew-adjacency matrices of G.

For an edge e, let n (e) be the number of [-cycles C in G that contain e and have o (C) = 1, and let
n_(e) be defined analogously. Suppose that ny (e) # n_(e). If the direction of the arc on e is reversed,
then in (14) the contribution from the matchings will be unaffected as will that from the I-cycles not
containing e. But the contribution from the I-cycles that contain e equals —2 (n+(C) — n_(C)) and will
be negated. Consequently, s; will change. Thus G will have a skew-adjacency matrix whose spectrum
differs from that of S and the necessity will have been proved.

Suppose then that ny (e) = n_(e) for all edges e in G and all orientations G° of G. We shall see that
this leads to a contradiction.

Fort € {1,...,1},let ny(eq, ..., e:) be the number of [-cycles C in G that have ¢ (C) = 1 and
contain all of eq, . . ., e;. Define n_(eq, ..., e;) analogously.

We claim that for each t € {1,...,1}, ny(eqr,...,e) = n_(eq,...,e) for all orientations G°
and all edges eq, . . ., e;. We proceed by induction on t.

The case t = 1 is assumed. Suppose that the claim holds for some t < [ and let G° be an orien-
tation of G. For edges ey, €2, ...et, e.+1 in G, let ny(eq, ..., e, e+1) denote the number of I-cycles
C that have ¢ (C) = 1 and contain edges ey, ..., e;, but not edge e;1. Define n_(eq, ..., e, €+1)

analogously. Then

n+(el7 L) el’) = n+(el7 <o 6y ef+1) + n+(ela <o €py e[’+1)7
n—(elv ) e[) = n—(e]7 ) et—‘r]) + n—(e1a N ) et+1)7
andny(eq,...,e) =n_(eq,...,e:)byassumption. Next, consider the orientation G obtained from

G by reversing the orientation of e, 1. Then

ﬁ+(e17 ey el’) = n*(e]7 cees Bpy ef+1) + n+(e17 cees €y et+1)7
n_(er,...,e) =ng(er,...,ee1) +n_(er,...,e,ex1),
and 4 (eq, ..., e) = n_(eq, ..., e) by assumption. Consequently,
ny(er,...,ere+y1) —n-(er, ..., e, ex1)
= n7(81, <o 6y e[+]) - n+(e17 <o Epy e[+1)
=ny(er,...,e,e41) —n-_(er,...,e,et1).
Lines 1 and 3 above are equal and sum to zero. Thus ny (e1, ..., e, et+1) = n—(ey, ..., €, €4+1), as
desired. This completes the proof of the induction step, and the claim.
In particular, for any orientation G°, and edges eq, .. ., e; of an [-cycle, we have ny (e, ..., e) =
n_(eq, ..., e). This is a contradiction, since one member of the equality is 0, while the otheris 1. O

In the proof of Theorem 4.2, it was shown that if G is a graph with finite even girth [, then n.(e) #
n_(e) for some orientation G° of G and some edge e in G. It was necessary to prove this because it
need not hold for all orientations G° . For example, for the orientation G° of the 4 x 4 square lattice on
a torus with 16 vertices and 16 squares shown in Fig. 6,/ = 4 and n4(e) = n_(e) = 1 for all edges e.

If Ais an n x n matrix and R is a sequence with distinct entries from [n], then A[R] is the matrix
obtained from A by selecting rows with indices in R and columns with indices in R, taken in the order
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Fig. 6. A square lattice on a torus oriented so that ny (e) = n_(e) = 1 for all edges e.

that they appear in R. Thus, if R is a strictly increasing sequence, then A[R] is a principal submatrix of
A. Also, let A(R) be the submatrix of A obtained by deleting rows and columns with indices in R. (Here,
the order of the entries of R is not important).

Note that if S is a skew-adjacency matrix of a graph G of order n and R C [n], then S[R] is a skew-
adjacency matrix of G[R] = G — R, the induced subgraph of G obtained by deleting the vertices in the
complement R of the proper subset R. We now have the following theorem.

Theorem 4.3. Let G be a simple graph with vertex set [n]. Then G is an odd-cycle graph if and only if any
one of the following conditions holds:

1. G has no even cycles.

2. Each induced subgraph of G has at most one perfect matching.

3. For each nonempty subset R C [n], either det S[R] = 1 for every skew-adjacency matrix S of G, or
det S[R] = 0 for every skew-adjacency matrix S of G.

4. For each skew-adjacency matrix S of G and each nonempty subset R C [n], det S[R] = 0 or 1.

5. For every skew-adjacency matrix S of G and each k € [n], the coefficient sy of the characteristic
polynomial of S is equal to my(G), the number of matchings in G that cover k vertices.

6. The skew-adjacency matrices of G all have the same spectrum.

Proof. Condition 1 is the definition of an odd-cycle graph.

1 = 2.1If G has no even cycles, no induced subgraph could have two perfect matchings because
their symmetric difference would contain an even cycle.

2 = 3.Because det S[R] = (pf S[R])?, it follows that det S[R] = 1 if G[R] has one perfect matching
and det S[R] = 0 if G[R] has no perfect matching.

3 = 4. This implication is immediate.

4 = 1. We argue by contradiction. Suppose that G contains an even cycle and R is the vertex set
of a cycle in G of shortest even length. Then the edges of the induced subgraph G[R] consist of the
edges of the cycle and perhaps some chords which do not lie on shorter even cycles in G[R]. It follows
that either G[R] = K or that G[R] has at most one chord. If S is a skew-adjacency matrix for G, then
S[R] is a skew-adjacency matrix for G[R]. If G[R] has no chords then by (9), G[R] (hence G) may be
oriented so that det S[R] = 4. If G[R] has one chord, then it may be deleted since neither of the two
odd cycles it creates will affect det S[R]. If G[R] = K4 then by the comment following (11), G[R] has a
skew-adjacency matrix with determinant my(K4)? = 9.

1 = 5. This is proved in Lemma 4.1.

5 = 6. The skew-adjacency matrices of G all have the same characteristic polynomial, and so the
same spectrum.

6 = 1. This is the result of Theorem 4.2. [

5. Some polynomial comparisons

As before, let
pa(x) = det(xI —S) = x" + a;x" 1 + ... 4+ a,
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be the characteristic polynomial of the adjacency matrix A of a graph G, and let
ps(x) = det(xI —S) = x" +s;x" ' 4+ .-+ + 5,

be the characteristic polynomial of a skew-adjacency matrix S associated with an orientation G° of
G. Recall that my(G) denotes the number of matchings in G on k vertices. Thus my = 0 if k is odd.

Lemma 5.1. Let A be the adjacency matrix of a simple graph G with vertex set [n] and let S be the skew-
adjacency matrix of G associated with an orientation o of G. Then the polynomial coefficients ay and s
have the following properties:

1. sp = ax = mp(G) (mod 2) forallk € [n], sy = 0forallodd k € [n], and s, = my(G) for all even
kwith1 < k < g.(G).

. ay is even for all odd k € [n] and a, = 0 for all odd k < g(G).

ax = (—=D*2m(G) = (=1)¥2sy for all k < g(G).

. Ifg(G) is odd, a = 0 for all even k € [n] with g(G) < k < 2g(G).

. Ifg(G) iseven, a, = 0 for all odd k € [n] with g(G) < k < 2g(G).

. If ay is odd, then G has a perfect matching.

. Ifay is odd, thennisevenand a, =n+ 1 (mod 4).

. s, = detS = (pf S)? < my,(G)? with equality if and only if either n is odd (so s, = m,(G) = 0)
or n is even and each nice even cycle in G is negatively oriented relative to o.

VU U A WN

Proof. Properties 1-6 follow immediately from (5) and (8). Property 7 follows from property 1 and [1,
Thm. 1]. Property 8 follows from the definition and properties of the Pfaffian and the comment after
inequality (11). O

A graph G of even order is said to be Pfaffian if it has an orientation o such that | pf S°| = m,(G),
that s, if the condition for equality in Lemma 5.1(8) holds. For example, an examination of the constant
coefficient for each of the characteristic polynomials in Example 7.1 shows that Kj is Pfaffian but K3 3
is not. Clearly, every cactus of even order has an orientation that satisfies the equality condition in
Lemma 5.1(8) and so is Pfaffian. In fact, a construction of Kasteleyn [19, p. 322] shows that every planar
graph of even order is Pfaffian.

Recall that if G is an odd-cycle graph, then s, = m,(G) for all orientations o of G. Also, the condition
for equality in statement 8 of Lemma 5.1 is satisfied vacuously. Thus m,(G) = m,(G)? so m,(G) = 0
or 1. That is, each odd-cycle graph has at most one perfect matching. Of course, this must be the case
because the components of the symmetric difference of the edge sets of two distinct perfect matchings
are even cycles.

We now examine the polynomials p4 and ps for two special types of graph: those with no odd cycles
(the bipartite graphs), and those with no even cycles (the odd-cycle graphs).

If G has no odd cycles, that is, if G is bipartite, then Lemma 5.1 implies that a; = s, = 0 for all odd
k and all skew-adjacency matrices S of G. Lemmas 5.2 and 5.3 imply that more can be said for some
skew-adjacency matrix of a bipartite graph G. (The equivalence of conditions 1 and 2 in both of the
Lemmas 5.2 and 5.3 was proved by Shader and So in [21].)

Lemma 5.2. Let G be a graph of order n with adjacency matrix A. Then the following conditions are
equivalent:

1. G is bipartite.

2. SpecS = iSpec A for some skew-adjacency matrix S of G.

3. ps(x) = (—i)"pa(ix), for some skew-adjacency matrix S of G.

4, For some skew-adjacency matrix S of G, ay = (—1)"/25,< foralleven k € [n] and ay = s = 0 for
all odd k € [n].
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Proof. 1 = 2.If G is bipartite, let B be the biadjacency matrix of G as shown in (15). Let G° be the
orientation of G obtained by taking o (k, [) = 1 when kl € E(G) and k < L. Then the skew-adjacency
matrix associated with G° is the matrix S in (15). Then iS = P~AP where

0 B 0O B 10
A= , S= , and P = . (15)
BT 0 —BT O 0 il

Thus, A is similar to iS and so SpecA = i SpecS. But SpecS = SpecST = Spec(—S) = — SpecS, so
SpecS = iSpecA.
2 = 3.IftheeigenvaluesofAareAq, ..., Apand(2)holds,thenthe eigenvaluesofSareiAq, ..., iAg.

Thus, ps(x) = TTj_, (x — ikg) = TI}_;(—=i)(ix + Ax) = (—i)"pa(ix), since condition 2 implies that
SpecA = — SpecA.

3 = 4. If condition 3 holds then s, = (—i)"i"_ka,< = i¥ay. Since s, and ai are real numbers,
ax = sg = Oifkis odd and ay = (—1)%/2s; if k is even.

4 = 1.If condition 4 holds, then p4(X) = 0if and only if p4(—X) = 0. A standard result [8, p.87]
now implies that G is bipartite. [

As a special case of Lemma 5.2, we next consider graphs G that have no cycles at all, either odd or
even (that is, forests).

Lemma 5.3. Let G be a graph of order n with adjacency matrix A. Then the following conditions are
equivalent:

1. Gis a forest.

2. SpecS = iSpec A for all skew-adjacency matrices S of G.

3. ps(x) = (—i)"pa(ix), for all skew-adjacency matrices S of G.

4. For all skew-adjacency matrices S of G, (—1)*2a; = m(G) = s for all even k € [n] and
ay = sy = 0 forallodd k € [n].

Proof. Ifcondition 1 holds, then 4 holds by Lemma 5.1(3).If condition 4 holds, then the skew-adjacency
matrices of G are all cospectral so G has no even cycles by Theorem 4.2. Also, G has no odd cycles by
Lemma 5.2. Thus G is a forest, so 1 holds. The remaining equivalences follow easily. [

In Lemma 5.3(4), when G is bipartite but not a forest, it is possible that s, # m,(G) for all skew-
adjacency matrices of G. For example, if G is the 4-cycle, then m4(G) = 2 but s4(G) = det S must be a
perfect square.

Since graphs with no even cycles (the odd-cycle graphs) are in a sense the opposite of the well-
studied class of graphs with no odd cycles (the bipartite graphs), it is natural to seek properties of the
odd-cycle graphs. A feasible task would be to obtain more results on the skew spectrum of an odd-cycle
graph because Theorem 4.3(5) can be used to relate its unique skew characteristic polynomial to its
matchings polynomial (defined below), and because the latter polynomial is well-studied [10,19].

The matchings polynomial of a graph G of order n [10, p. 1] is

m(G, x) = i(—n"/zmk(c)x"—k,
k=0

where mg(G) = 1 and the k’'th summand is 0 if k is odd. Here, as before, my(G) denotes the number
of matchings in G that cover k vertices, while in the literature, my(G) usually denotes the number of
matchings in G with k edges. For example, for the graph G in Fig. 3, my(G) = 9, m4(G) = 21, and
me(G) = 11, s0 m(G, x) = x” — 9x° + 21x> — 11x.

The following lemma is an immediate consequence of the preceding results. In part 2 of the lemma,
it is well-known that m(G, x) = pa(x) if G is a forest (see, e.g. [10, Cor. 1.4, p. 21, 19, Thm. 8.5.3]).

Lemma 5.4. Let G be a graph of order n with adjacency matrix A.
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1. Gis an odd-cycle graph if and only if ps(x) = (—i)"m(G, ix) for all skew-adjacency matrices S of G.
2. Gis aforestif and only if m(G, x) = pa(x).

Problem 1. If ps(x) = (—i)"m(G, ix) for some skew-adjacency matrix S of G, must G be an odd-cycle
graph?

6. Spectral properties of skew-adjacency matrices

If M is an invertible matrix of order n with entries from some field and R is a proper nonempty
subset of [n] of cardinality r = |R|, Jacobi’s identity (see, e.g. [6, p. 301]) implies that

(det M) ! det M(R) = det ((adj M)[R]), (16)

where adj M = (cof A)T, the transpose of the matrix of cofactors of M.

If z is a column n-vector with complex entries, the notation |z| will be reserved for the vector with
|z|x = |zk| for each k € [n]. The vector z is a unit vector if z*z = 1, where z* = Z', the complex
conjugate transpose of z.

Lemma 6.1. Let G be an odd-cycle graph and let i, & real, be a (common) eigenvalue of the skew-
adjacency matrices of G. Let o be an orientation of G with skew-adjacency matrix S°, and let z° be a unit
io-eigenvector of S°. If ict is simple® then |27 | is the same vector for all orientations o of G.

Proof. Let M = Al — S°.Then M adjM = (det M)I = det(Al — S?)I. Thus, if A is an eigenvalue of 57,
then each nonzero column of adj M (if any) is a A-eigenvector of S°. If X is a simple eigenvalue of S°,
then adj M has a nonzero column because M is similar to a diagonal matrix with one diagonal entry 0,
and so has rank equal ton — 1.

Because M = Al — S is invertible over the field of rational functions in A, we may apply identity
(16) to a 2 x 2 submatrix of adj M to obtain the polynomial identity

det M det M(k, I) = det ((adj M)[k, I)

= Cr,k(M)Cp (M) — Cie, (M)C (M), (17)

where Cy (M) is the (k, I) cofactor of M. But det M, det M(k, 1), Cy (M) and C; ;(M) are the character-
istic polynomials of skew-adjacency matrices of the odd-cycle graphs G, G —k — I, G—kand G — I,
respectively, and so do not depend on o. Thus Ci ;(M)C; k(M) does not depend on o Also,

Cx(M) = G i(M") = G (M +57) = (=1)" 1) (—Al — %),

so, if A = ia, then C x(M) = (—l)"‘le,l(M). Thus, if A = i«, then |C x(M)| does not depend on o.
If A = i is a simple eigenvalue of S? then, as observed earlier, we may choose [ € [n] so that column
lof adj M is an i«e eigenvector, w’ say, of S°. Then (w7 |y = |C1x(M)| = |C k(i — S7)| for k € [n], so
|w? | does not depend on the orientation o of G. If z is a unit ix-eigenvector of S?, then z is a scalar
multiple of w” since ic is simple. Thus, |z° | does not depend on o. [

If M is a square matrix, let p (M) denote the spectral radius of M, that is, p (M) = max;, |X| where the
maximum is taken over all eigenvalues of M. If G is a graph with adjacency matrix A, let p(G) = p(A)
and let ps(G) = maxs p(S) where the maximum is taken over all of the skew-adjacency matrices S of
G. We refer to p (G) as the spectral radius of G and ps(G) as the maximum skew-spectral radius of G.

6 For example, by Lemma 6.3, ip(S°) is simple if G is connected.
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Lemma 6.2. If G is a simple graph, then ps(G) < p(G). Moreover,

1. If G is an odd-cycle graph, then ps(G) = p(S) for all skew-adjacency matrices S of G, and ps(G) is
the largest root of m(G, x).
2. If G is bipartite, then ps(G) = p(G). If G is connected and not bipartite, then ps(G) < p(G).

0 B| - 0 B
3. If G is connected and bipartite and A = ,S = _ , are an adjacency and a skew-
B" 0 —-B" 0
adjacency matrix of G, then p(A) = p(S) if and only if B = D1BD, for some {—1, 1}-diagonal
matrices Dy, D.

Proof. If S is a skew-adjacency matrix of a graph G with adjacency matrix A, then A = |S|, where
S| is the matrix with entries |S|x; = |sk,i| for all k, [. By the Perron-Frobenius theorem [16, p. 509],

p(S) < p(A) = p(G).

1. This follows from Lemmas 4.1 and 5.4(1).

2. By Lemma 5.2, ps(G) = p(G).

Suppose G is connected and ps(G) = p(G). Then p(S) = p(A) for some skew-adjacency matrix
S of G. Since ip(S) is an eigenvalue of S, the Perron-Frobenius theorem implies S = iDAD™! for
some diagonal matrix D with complex diagonal entries dy, . . ., d, of modulus 1. Thus, idyd; €
{—1, 1} when kI € E(G). We may take d; = 1, so this implies that the vertices of the connected
graph G may be alternately labelled by the two symbols 41, +i so that adjacent vertices are
assigned different labels. Thus G is bipartite.

3. If p(S) = p(A) then, because p(S) = p(A) for S as in (15), it follows easily from the Perron-
Frobenius theorem that § = DpSD~! where D may be chosen to be a {—1, 1}-diagonal matrix
since S and S have real entries. Then B = D1BD, where D; & D5 is a partition of D compatible
with that of S.

The converse implication in statement 3 follows easily. O

Problem 2. If G is a connected graph and p(S) is the same for all skew-adjacency matrices S of G,
must G be an odd-cycle graph?

Example 6.1 (The extremal skew-spectral radii of trees on n vertices). Let T be atree on nvertices. Because
Tisbipartite, ps(T) = p(T).Lovasz and Pelikan [18] show that ps(T) = p(T) < p(K1,n—1) = +/n—1,
and a result of Hong [15, Thm. 1] implies that equality holds only if T = Kj ,—1, the star on n vertices.
Also, a result of Collatz and Sinogowitz [7] implies that, ps(T) = p(T) > p(P;) = ps(Py), with
equality only if T = Py, the path on n vertices (see also [18]).

If S is a skew-symmetric real matrix of order n and z is a column n-vector with complex entries,
then z*Sz is pure imaginary:

'Sz = sz = D sz — Zizk) = 2i Y sgIm(Zz)).
k£l k<l k<l

Let wiy = 2s,1Im(zxz;) = 251k Im(Zjz). Because —iS is Hermitian, z*(—iS)z is real, so if S is a skew-
adjacency matrix of a graph G, then

Im(z*Sz) = 2" (—iS)z= D wq.
KIEE(G)
Also, p(—iS) = max,-;—1 z*(—iS)z, and an examination of the proof of this fact (in [16, p. 176], say)

shows that equality is attained if and only if the unit vector z is an eigenvector of —iS for the eigenvalue
p(—iS) = p(S). Thus
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p(S) = max Im(z Sz) = max Z wy where wyy = 2si Im(zyz), (18)
z*z=1
KI€E(G)
and equality is attained if and only if z is a unit p (S)-eigenvector of —iS, or, equivalently, a unit ip (S)-
eigenvector of S.

Lemma 6.3. Let G be connected and let S be a skew-adjacency matrix of G for which p(S) = ps(G). Ifz
is an eigenvector of S for the eigenvalue ip(S), then zy % 0 for all k € [n], ip(S) is simple, and wy; > 0
forallkl € E(G). Moreover, there is a {—1, 1}-signed permutation matrix P such that (PSP"); > 0 when
k<L

Proof. By scaling z, we may assume that z*z = 1. Then, by (18), p(S) = Im(z*Sz) Suppose that
kl € E(G). Let S be the skew- adjacency matrix of G such that S = —si,; and §; j = s; ; when ij # ki
Then p(S) > ,0(5) and, by (18), p(S) — (S) < Im(z*Sz) — Im(z*Sz) = 2wy. Thus, wy > 0.

_Suppose that wy; = 0.Then p(S) = p(S) = psay,and p(S) = Im(z*Sz) so z is also an eigenvector
of S for the common eigenvalue ip. Thus Sz = ipz = S2,500 = (S2)k — (S2) = 2sk,1z1. Thus, z; = 0
and sowj = Oforall vertices j adjacent to L. Since G is connected, by repeating this argument, it follows
that if w; = 0, then z; = 0 for all vertices j in G. Since z is not a zero vector, this is a contradiction.
Thus, wy; > 0 for each edge kl in G. But then wy # 0 for all k € [n], soip(S) is simple.

Let D be the diagonal matrix with k’th diagonal entry equal to 1 if argz, € [0, 7) and —1 if
argzy € € [m, 27). Then arg(Dz)k € [0, ) for all k € [n]. Choose a permutation matrix Q so that
Z = QDzis such thatargz, < argz ifk < landlet P = QD. Then Pis a {—1, 1}-signed permutation
matrix and Z is an ip(S)- -eigenvector of S = PSPT. Also, p(S) = p(S) since S is similar to S, and

Imzkz, > 0if k < [ since arg Zxzy = argz; — argzy € [0, ). By the first part of the lemma,
Wy = 25k 1 Imzxz; > O for all kl € E(G), so Sk, = 1 whenkl € E(G)and k < [. O

Lemma 6.3 may fail if p(S) < ps(G). For example, by (8), the characteristic polynomial of the skew-
adjacency matrix of a positive orientation (resp. negative orientation) of the 4-cycle C4 is z* + 4z°
(resp.z* + 472> +4). Thus ps(C4) = 2, and if S is the skew-adjacency matrix associated with a negative
orientation, then ip(S) = +/2i with multiplicity 2.

If G is a graph with vertex set [n], let G — kI denote the graph obtained by deleting an edge kI of G
(but not the vertices k or [), and let G — k and G — k — [ be the induced subgraphs obtained by deleting
vertex k and vertices k and I, respectively.

Lemma 6.4. If kl is an edge of G then p(G) > p(G — ki), ps(G) > ps(G — ki), p(G) > p(G — k) and
ps(G) > ps(G — k), with all inequalities strict when G is connected.

Proof. The statements for p(G) follow from the Perron-Frobenius theorem.

ALet?be askew-adjacency matrix of G—kl for which p(S) = ps(G—kl) and letz be a unit eigenvector
of § for the eigenvalue ip (S). Let S be the skew-adjacency matrix for G withs; ; = §; j ifij # kland with
sk,. = 1 or —1 chosen so that wy = 2s;Im(zxz;) > 0.Then by (18), ps(G) — ps(G — kI) > p(S) —
p(S) > Im(z*Sz) — Im(z*Sz) = wy > 0. Thus, ps(G) > ps(G — kl). Moreover, if ps(G) = ps(G — ki)
then ps(G) = p(S), wyy = 0and Lemma 6.3 implies that G is not connected. Thus, ps(G) > 0s(G — kl)
if G is connected and kl is an edge of G.

By removing edges of G incident to k, we also have ps(G) > ps(G — k) with strict inequality when
G is connected. OJ

Example 6.2 (The complete graph). If G is a graph on n vertices and K, is the complete graph of order
n, it follows from Lemmas 6.3 and 6.4 that p(G) < p(K,;) = p(A) = n — 1 and ps(G) < ps(K,) =
p(S) = cot %1 where A is the adjacency matrix of K, and S is the skew-adjacency matrix of K, which
has all entries above the diagonal equal to 1. The second inequality is a special case of Pick’s inequality
[11,20].
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Remark 6.1 (Generalizations to real skew-symmetric matrices). Many of the preceding observations
hold for skew-adjacency matrices of positive edge-weighted graphs; equivalently, for skew-signings
of symmetric matrices with zero diagonal and nonnegative real entries. Suppose that G is an edge-
weighted graph with positive edge weights a; ; = a; ; when ij € E(G) and a; ; = 0 when ij & E(G). If
o is an orientation of G, we may define an associated skew-weighted matrix S° by Sfj =a; = —Sﬁi
ifi — jin G°. Then, Lemmas 6.1, 6.3 and 6.4 all hold for positive edge-weighted graphs. In particular,
if G is a positive edge-weighted odd-cycle graph, the characteristic polynomial of S” does not depend
on o, so p(57) is the same for all o. Also, Lemma 6.3 may be regarded as an analogue (for those
skew-adjacency matrices of weighted connected graphs that have maximum spectral radius) of the
Perron-Frobenius theorem.

Example 6.3 (Minimum skew-spectral radii of connected odd-cycle graphs). By Lemma 6.4, if G is a
connected odd-cycle graph on n vertices with minimum skew-spectral radius, then G must be a tree.
From Example 6.1 it follows that among the connected odd-cycle graphs on n vertices, the path P, has
the minimum skew-spectral radius.

Let H, be the odd-cycle graph formed from the star K; ,—1 by adding [ (n — 1)/2] independent
edges between pairs of pendant vertices.

Lemma 6.5. 1. |[E(Hp)| = [3(n —1)/2].

2. p(Hy) equals % +/n— % when n is odd and the largest root of x> — x> — (n — 1)x + 1 when n is
even.

3. ps(Hp) equals \/n when nis odd and /n + /n2 — 4/+/2 when n is even.

Proof. 1. By the definition of H,, |[E(Hy)| =n—1+ [(n —1)/2] = [3(n — 1)/2].

2. Let A be the adjacency matrix of H, and let p = p(H,) = p(A). Because H,, is connected, p is a
simple eigenvalue of A and Ax = px for some eigenvector x with positive entries. If X is a vector
obtained by permuting the entries of x by an automorphism of Hy, then x is also a p-eigenvector
of A. Because p is simple, each such vector x is a multiple of x. It follows that x; = x; whenever i
and j are vertices of H, of degree 2. Solving the system Ax = px with this restriction on x gives
the values in statement 2.

3. Ifnis odd, delete the unique vertex of degree n — 1 in H, and use the standard identities for the
matchings polynomial [10, p. 2] to get

m(Hy, x) = xm(My—1,x) — (n — 1)m(My—3, X)
—xx®—1)"7 —x(n—1)E -1,

where M,,_1 isamatchingonn—1 vertices and M, is amatching on n—3 vertices together with
an isolated vertex. Then m(Hp, x) = x(x> — 1)% (x* —n) and ps(H,) = A/nby Lemma 6.2(1).
If nis even, delete the unique vertex of degree 1 in H,, to get m(Hyp,, x) = x m(Hy—1, X) —m(M,—_», X)

and substitute the previous formula with n replaced by n — 1 to get m(Hp, x) = (x> — 1) =N x* —
nx®> 4 1). Then the largest root of x* — nx?> + 1 gives the stated value for ps(Hp). O

Recall that a cactus is a connected graph each of whose blocks is either a cycle or an edge. The next
lemma asserts that the graph H, has the greatest size and the greatest spectral radius of the cacti of
order n. Part 2 of the lemma is proved in [5].

Lemma 6.6. If G is a cactus of order n, then
1. |E(G)| < |E(Hy)| and equality holds if and only if at most one block of G is a single edge and all

other blocks of G are 3-cycles.
2. p(G) < p(Hy) and equality holds if and only if G = Hp,.
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Proof. 1. Since a cactus G is planar and each edge of G is on at most one finite face, the number of
finite faces is at most |E(G)|/3. It follows from Euler’s formula for connected planar graphs [4, p. 143]
that |[E(G)| < [3(n — 1)/2]. Thus, by Lemma 6.5(1), |E(G)| < |E(Hp)| and equality is attained by the
graph H, (and every connected odd-cycle graph whose cycles are all triangles and with at most one
edge not in some triangle).

2.See [5, Thm.3.1]. O

We conjecture that H,, also has the greatest skew-spectral radius of the odd-cycle graphs G of order
n.

Conjecture 6.1. If G is an odd-cycle graph of order n, then ps(G) < ps(Hy) and equality holds if and
only if G = H,,.

Of the odd cycle graphs with n vertices, if G has the greatest skew-spectral radius, G must be edge
maximal by Lemma 6.4. Thus, by Lemma 6.6(1), to prove Conjecture 6.1, it would be sufficient to prove
that G must contain a vertex of degree n — 1.

There are many papers containing techniques for examining the maximum spectral radii of the
adjacency matrices and Laplacian matrices of graphs with few cycles (e.g. [9,13,14,23]). Corresponding
techniques for the skew-adjacency matrices of odd-cycle graphs may be helpful. One of the standard
techniques used to compare spectral radii of adjacency matrices is that of edge-switching [23]. For
skew-adjacency matrices, the edge-switching technique takes the following form.

Lemma 6.7. Let S be a skew-adjacency matrix of a simple graph G of order n and let z be a unit eigenvector
of S for the eigenvalue ip (S). Let u, v be two vertices of G and suppose that uqu, . . ., usu are edges of G but
UV, ..., ugv are not. Let G be the graph obtained from G by deleting the edges uxu and adding the edges
uv,1<k=<t ]let<21 (l lm(zukaD — Suy,u [m(zukzu)) > 0, then ps(G) > p(S).

Proof. Let S be the skew-adjacency matrix of G with Sij = sij whenever (i, j) is none of (u, v) or
(v,u) for 1 < k <'s,and lets,, , = —S,,, have the same sign as Im(zy,z,). Then p(S) — p(S) >
Im(z*Sz) — Im(z*Sz) = 3} _; (1 Im(Zy,2y)| — Sypu IM(Zy,2y)) > 0. O

7. Skew-adjacency matrices of a graph with different spectra

Akey notion in estimating the number of skew-adjacency matrices of a graph with distinct spectra
is that of sign similarity. Two n x n matrices A and A are sign similar if A = DAD for some diagonal
matrix D with diagonal entries d; € {—1, 1} fori € [n]. In particular, two skew-adjacency matrices S, S
of a graph G of order n with edge set E(G) are sign similar if and only if there are n scalars d; € {1, —1}
such that §; ; = dd;s; j whenever ij € E(G). Sign similar skew-adjacency matrices of a graph must be
cospectral but, as the following lemma shows, the converse need not hold.

Lemma 7.1. Let S be a skew-adjacency matrix of a graph G. Then ST is sign similar to S if and only if G is
bipartite.

Proof. If S is a skew-adjacency matrix, then ST = —S is sign similar to S if and only there are d; €
{1, —1} such that dijd; = —1 whenever ij € E(G); that is, if and only if G is bipartite. O

The following lemma shows that, in determining skew-adjacency matrices S of a graph G that have
distinct spectra, it is sufficient to consider those for which s; ; = 1 when eitheri < j and ij is an edge
of a prespecified spanning forest of G ori < j and ij is on no even cycle in G.

Lemma 7.2. Let F be a forest in a graph G and let S be a skew-adjacency matrix of G. Then there is a
skew-adjacency matrix S sign-similar to S with S; j = 1 when either (a)i < j and ij is an edge of F or (b)
i < jandijis an edge of G on no even cycle in G.
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Proof. To prove part (a), we apply induction on the number m of edges of F to show that there is a
skew-adjacency matrix S sign similar to S with 5; j; = 1 whenever i < j and ij is an edge of F.

Ifm = 1, F has a single edge ij. If s; j = 1 wheni <j takeS =S. Ifs;j = —1, let S = DSD where
di = —1landdy = 1fork # j.Then§;; = —s;; = 1.

If F has m edges, let r be a leaf of F and let t be its neighbor in F. By induction, there is a diagonal
matrix D for which S = DSD has § 5ij = 1wheni < jandijis an edge of F\{r}.If r < tand5,; = 1or
t < rand5;, = 1, we are done. If not, let D be the diagonal matrix obtained from D by replacing d;
by —d;. Because r is adjacent only to ¢t in F, the product S = DSD will still equal 1 on (i, j) entries for
whichi < j and ij is an edge of F\{r}, but the signs of the (r, t) and (t, r) entries will be reversed.

To see part (b), note that if ij is an edge of G in no even cycle in G, then sy is unchanged in (8) if the
direction of on ij is reversed. Thus s does not depend on the sign of s; ;. [

We note that the previous lemma gives an alternate proof of the fact that the skew-adjacency
matrices of an odd-cycle graph all have the same spectra.

If G is a connected graph, to obtain an upper bound on the number of possible skew-adjacency
matrices of G with distinct spectra, it would be appropriate to first choose a spanning tree T of G that
contains as many edges as possible that are in even cycles of G. Then assign s;j = 1ifi < jandijis
an edge of T or ifi < j and ij is on no even cycle of G. If m edges of G that are on even cycles remain
unassigned, it follows that G will have at most 2™ skew-adjacency matrices with distinct spectra. The
following example shows that although this upper bound can be attained, it is sometimes very poor.

Example 7.1 (Characteristic polynomials of all skew-adjacency matrices of some graphs). In the (unori-
ented) graph G in Fig. 3, the path1 —2 —3 —4 — 5 — 6 — 7 is a spanning tree, and the edge 17 is on no
even cycle in G. As shown in G7, the 7 edges ij on the outer 7-cycle may be oriented so thati — j when
i < j,and the corresponding 7 entries of S above the diagonal will equal 1. There are four possible ways
that the remaining edges 25 and 16 may be oriented (only the orientation with5 — 2and 6 — 1is
shown). The characteristic polynomials of the skew-adjacency matrices for the four orientations are:
x” +9x° + 25x% + 21x, x’ +9x° 4+ 21x3 + 13x, x” 4+ 9x° + 17x% + 5x and x” + 9x° + 21x> + 5x.

On the other hand, if G is the complete graph Ky, then G has 6 edges, 3 of which are in a spanning
tree. Thus at most 263 = 8 distinct characteristic polynomials can be obtained from skew-adjacency
matrices. But it turns out that there are only two: x* + 6x% + 1 and x* + 6x* + 9.

Also, if G is the complete bipartite graph K3 3, then G has 9 edges, all cycles in G are even and a
spanning tree has 5 edges. Thus at most 2°~> = 16 distinct characteristic polynomials are obtained
from the skew-adjacency matrices of G. It turns out that there are only three: X6 +9x%, x4 9x* 4 16x2
and x® 4 9x* + 24x* + 16.

It would be interesting to obtain good estimates on the numbers of skew-adjacency matrices with
distinct spectra for all K, and K, 5.

7.1. Recent related work

The independent papers [12,17] (submitted shortly after our original submission in December
2010), overlap ours in places. In particular, both contain expressions for si. In this revised submission,
formula (7) for s, has been modified to resemble that in [12].
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