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Abstract

The H2STORE collaborative project investigates potential geohydraulic, petrophysical, mineralogical,
microbiological and geochemical interactions induced by the injection of hydrogen into depleted gas reservoirs and 
CO2- and town gas storage sites. In this context the University of Jena performs mineralogical and geochemical
investigations on reservoir and cap rocks to evaluate the relevance of preferential sedimentological features, which 
will control fluid (hydrogen) pathways, thus provoking fluid-rock interactions and related variations in porosity and 
permeability. Thereby reservoir sand- and sealing mudstones of different composition, sampled from distinct depths
(different: pressure/temperature conditions) of five German locations are analysed. In combination with laboratory 
experiments the results will enable the characterization of specific mineral reactions at different physico-chemical
conditions and geological settings.
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1. Introduction

As a result of energy production from renewable sources like wind and solar power and to ensure a
high electrical grid stability, fluctuations in energy supply have to be compensated by energy storage 
devices of different storage capacities. The largest natural storage potential is given by geological
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structures in the underground. In Germany, the storage of materials in geological formations is already 
applied for e.g. strategic reserves of natural gas, CO2 sequestration and waste disposals. In the US and UK 
hydrogen is also stored in (salt) caverns [1] and can be also of importance for Germany in the framework 
of storing renewable energy, transformed in hydrogen.  

However, due to their higher storage capacities and their widespread occurrence porous reservoirs 
(aquifers, depleted oil and gas reservoirs) might be even more relevant, especially in regarding long-term 
(seasonal) storage [2]. We present a brief introduction of the studied areas in the framework of the 
H2STORE project, which investigates the storage of hydrogen in siliciclastic formations and give an 
outlook of potential hydrogen reactions stored in sandstone reservoirs. 
 

Nomenclature 

XRF  X-ray fluorescence spectroscopy 

ICP-OES inductively coupled plasma optical emission spectroscopy 

SEM  scanning electron microscope 

XRD  X-ray diffraction 

COPL  original intergranular porosity loss due to compaction 

CEPL  original intergranular porosity loss due to cementation 

qz  quartz 

chl  chlorite 

bit  bitumen 

fsp  feldspar 

ab  albite 

ill  illite 

cc  calcite 

an  anhydrite 

kaol  kaolinite 

2. Study area and Methods 

The aim of our study is to investigate the main clastic sediment storage formations and their sealing 
mudstones in Germany. Therefore samples of five different locations (Fig. 1) with different geological 
settings are investigated (Tab. 1). Numerous analytical methods (e.g. light microscopy, XRF, ICP-OES, 
SEM, XRD) are applied to study the chemical and mineralogical composition of the samples, with a 
special emphasis on the pore-exposed grain surfaces, which may have a great reaction potential with long 
term stored hydrogen. 
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Fig. 1. Storage reservoir and research sites (No. 1-5, cf. Tab. 1) of the H2STORE project in Germany. In red = Permo-
Carboniferous, in light blue = Early Triassic and in green = Tertiary strata. Symbols mark storage reservoirs in use (red stars, blue 
dots, green crosses) and under construction (black triangles). Numbers refer to storage capacities in Mio. m³ (modified after [4]).

[3] 
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Table 1. Overview of the H2STORE research areas (Fig. 1) and their geological/structural variations in reservoir setting. 

 (1) Bavaria[5] (2) Brandenburg[6] (3) Lower 
Saxony[7] (4) Thuringia (5) Saxony-

Anhalt[8] 

Age ~ 25 Ma ~ 225 Ma ~ 250 Ma ~ 250 Ma ~ 270 Ma 

Stratigraphy Tertiary Keuper Early-Middle 
Buntsandstein 

Early-Middle 
Buntsandstein 

Rotliegend 

Current depths ~ 1.600 m ~ 650 m ~ 1.700 m ~ 800 m ~ 3.500 m 

Current 
temperature 

~ 53-60 °C ~ 40 °C ~ 55-122°C ~ 40-80 °C ~ 125 °C 

Facies 
molasses 
(turbidites & 
debris flows) 

fluviatile, shallow 
marine 

playa platform playa platform, 
fluviatile 

playa platform 

Lithology 

heterogeneous 
(sand- & 
mudstone, 
carbonate clasts) 

heterogeneous 
(sand-, silt- & 
mudstone) 

heterogeneous 
(ooid-, silt-, sand- 
& mudstone) 

silt- & sandstone silt- & sandstone 

Reservoir type gas storage site CO2 storage site gas storage site depleted gas 
reservoir 

depleted gas 
reservoir 

Overburden 
shallow marine 
limestone & 
clastic sediments 

massive mudstone 
& carbonate 

marine shale, 
sulphate, halite 

marine shale, 
sulphate, halite 

salt & carbonate 

3. Results 

The burial history of the different sample locations varies, with maximum burial depths of about 4.0-
8.0 km in Saxony-Anhalt [8] and 2.8-1.8 km in Thuringia [9], most probably established during Triassic-
Cretaceous and Neogene times. 

First (sub-) microscopic analysis confirm significant detrital, mineralogical and petrophysical 
differences in the studied rocks. Due to depositional conditions and diagenetic evolution the analyzed 
reservoir samples vary in grain size from medium-grained to fine-grained sand- and siltstone with point 
grain to suturated grain contacts, reflecting different stages of sandstone evolution during reservoir rock 
evolution. All the reservoir sediments are sealed by overburden mudstones with commonly low amounts 
of silty components.  

Based on the detrital mineral content, the studied samples show a widespread variability, but also some 
regional clusters. According to the classification of McBride [10] sandstones from the Brandenburg site 
are lithic arkoses to feldspathic litharenites. In contrast Tertiary samples studied in Bavaria are of 
litharenitic composition. Samples taken from similar Buntsandstein stratigraphic horizons reveal slightly 
different compositions in Thuringia and Lower Saxony, ranging from arkoses to lithic subarkoses (Fig. 2).  

The compaction state in figure 3, after Houseknecht [11] and Ehrenberg [12] indicates a broad 
spectrum of mechanical compaction, cementation and porosity proportions. Permian (Saxony-Anhalt) 
samples show a larger influence of early cementation in contrast to the more mechanical compacted 
samples from Thuringia (Early Triassic).  

All together the sandstone composition varies from subarkoses to litharenites with a highly variable 
content of pore filling cements and porosity. These features confirm the suggestions already made by 
observations of grain-contacts which imply different rates of rock compaction and therefore on the 
potential of pore space evolution and its diagenetic mineral filling. 
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Fig 2. Variation in sandstone composition in terms of their quartz (Q), feldspar (F) and lithoclast (L) contents of the studied areas.
Due to their different mineral contents the sandstones are classified as (sub-) arkoses to litharenites, following the scheme of 

McBride [10]. Data from ([5], [6], [7], [8], [13] and own unpubl. data).

Fig 3. Pore space evolution in reservoir sandstones of the studied areas. Discrimination after Houseknecht [11] and Ehrenberg [12]. 
The Rotliegend samples show an early cementation on the pore space evolution due to their high amounts of intergranular cement

with respect to the intergranular volume (IGV). The Tertiary and Late Triassic samples have a reduced pore space (low IGV values)
along with low pore filling cement values, which indicates a higher mechanical compaction of the pore space. Note the Early aa

Triassic samples: here the Lower Saxony samples have high cement content and only minor indications of pronounced compaction
processes. In contrast the Thuringia samples have low cement content by higher rock compaction. These features suggest different

diagenetic and tectonic evolution in these areas during post-Triassic time.
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The major pore filling cements are carbonate minerals (Fig. 4J), anhydrite (Fig. 4H), quartz (Fig. 4H) 
and feldspar (Fig. 4G).  

The presence of site- and facies specific authigenic clay minerals is shown in figure 4. Clay minerals 
that occur in the samples are identified as illite (Fig. 4E-F), chlorite (Fig. 4A-D) and kaolinite (Fig. 4I), 
coating detrital grains which are  most frequenty exposed to the pore space. 

Bitumen, as a remnant of hydrocarbons, is present in the depleted reservoirs (Fig. 4A) and most 
common in Permian samples. Chlorite is a typical component in the Permian of Saxony-Anhalt and ooids 
are numerous in the Buntsandstein of Lower-Saxony (Fig. 4J). 

Fig. 4. Examples of the most common pore exposed mineral phases in the studied sites: in Saxony-Anhalt chlorite (Fig. 4A-D) and 
illite are abundant, whereas in Lower Saxony and Thuringia meshwork and fibrous illites are frequent (Fig. 4E-F). Additionally 

kaolinite (Fig. 4I) is present in some Thuringian sites. Pore-filling blocky cements, like carbonate, anhydrite, quartz, and feldspar 
(Fig. 4G, H) are widespread in all areas. However, in Bavaria carbonate is mainly formed during shallow marine deposition and 

forms ooids (Fig. 4J). A= light microscope; J= cathodoluminescence; all others SEM – Back scattered (B, F, I = thin section, E, G, 
H = rock fragments, C = element distribution by EDX (yellow = K , blue = Fe). 

First petrophysical results are shown in figure 5 and vary between the different sample sites and 
sample locations. In general authigenic clay minerals present in the samples of the Saxony-Anhalt reduce 
permeability and porosity. Samples that contain large amounts of blocky cements (Lower Saxony) have 
minor porosity but slightly higher permeability levels.  
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Fig 5. Porosity-permeability variations in the reservoir rocks of studied areas. In general all rock suites show an increase in porosity 
by enhanced permeability. Lower values are connected to higher contents of clay minerals and pore-filling cements and to

mechanical compaction (cf.ff Fig. 3). These features reduce the pore space volume and prevent extensive fluid flow migration,
resulting in moderate to poor reservoir conditions. (Data source: Saxony-Anhalt [8], Thuringia: D. Pudlo, unpubl. data, Lower 

Saxony: D. Albrecht, pers. comm.).

4. Discussion & Outlook

The detrital compositions of the rocks vary due to differences in source areas, transport conditions and 
depositional environments at the investigated sites. Additionaly post depositional, diagenetic burial
evolution of the sandstones at different pressure, temperature and pH/eH/fluid conditions strongly affect 
fluid-rock interactions. Therefore the study on the mineralogical content of such different reservoir rocks
will help to understand the influence of potential hydrogen reactions on reservoir quality.

Pore spaces, completely filled with blocky cements (e.g. anhydrite, quartz - Fig. 4H) exhibit reduced
rock porosity. Due to this feature no or only reduced fluid/gas flow in these parts of the reservoir are
expected.

The rock permeability is mainly related to clay minerals and their morphology, but these minerals may
also strongly increase the pore-exposed reaction surface. This exposure will increase fluid-rock 
interactions. These features and the amount of blocky pore-filling cements (like e.g. carbonate, anhydrite) 
result in a general, mostly site-specific correlation of rock porosity and permeability. Thereby these fluid-
rock reactions will be further complicated by the occurrence of e.g. hydrocarbons (bitumen, Fig. 4A) and
iron compounds (Fig. 4C) which stain clast rimming clay minerals [14]. Moreover the composition of the
formation waters in the depleted reservoirs (Fig. 6) and the presence of microbiological habitants [15]
will influence any mineralogical/geochemical reaction.

Also the potential generation of bio-methane [16] and of “gas-fingering” processes [17] by the 
injection of hydrogen in the sandstone reservoirs have to be considered and requires further investigations
[18].
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Fig. 6: Potential bio-(hydro-) chemical reaction scheme in hydrocarbon reservoirs [19]. 
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