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Acetogenic anaerobic bacteria are defined as organisms employing the Wood–Ljungdahl pathway to
synthesize acetyl-CoA from CO2 or CO. Their autotrophic mode of metabolism offers the biotechno-
logical chance to combine use of abundantly available substrates with reduction of greenhouse
gases. Several companies have already established pilot and demonstration plants for converting
waste gases into ethanol, an important biofuel and a natural product of many acetogens. Recombi-
nant DNA approaches now opened the door to construct acetogens, synthesizing important indus-
trial bulk chemicals and biofuels such as acetone and butanol. Thus, novel microbial production
platforms are available that no longer compete with nutritional feedstocks.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Acetogens (acetogenic bacteria) are anaerobes that can use the
Wood–Ljungdahl pathway to (i) synthesize acetyl-CoA by the
reduction of CO or CO2 + H2 (ii) conserve energy, and (iii) fix
(assimilate) CO2 for the synthesis of cell carbon [1]. A detailed
characterization of acetogens and their metabolic capabilities is gi-
ven by Drake et al. [1] and Ragsdale [2], important traits are sum-
marized below.

Clostridium aceticum (spore-forming, mesophilic) was the first
acetogen isolated and characterized [3]. The organism got lost soon
after World War II and, thus, further investigations focused on Clos-
tridium thermoaceticum (spore-forming, thermophilic), the second
acetogen isolated [4]. This bacterium, later re-classified as Moorella
thermoacetica [5], was the model organism for Harland G. Wood
and Lars G. Ljungdahl for the elucidation of the biochemical and
enzymological features of the acetyl-CoA pathway, which was in
turn named Wood–Ljungdahl pathway. However, the organism
had been isolated under heterotrophic conditions, performing a
homoacetic acid fermentation, and was only shown in 1990 to be
able of autotrophic growth on CO2 + H2 or CO [6]. Similarly, the ace-
togen Clostridium formicoaceticum, when isolated as a pure culture,
could only be grown heterotrophically [7]. Thus, the first autotroph-
ic acetogen investigated in detail became Acetobacterium woodii,
which can grow on CO2 + H2 as well as on fructose and few other
cal Societies. Published by Elsevier
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heterotrophic substrates [8]. Soon after, an old culture of C. aceticum
(dated 1947) was rediscovered and reactivated [9]. Since then, this
organism is again available for further investigations. Interestingly,
Clostridium scatologenes, which was already isolated in 1927, was
only in 2000 characterized as an acetogen [10].

Until now, more than 100 acetogens have been isolated. Despite
their common feature of CO2 fixation via the Wood–Ljungdahl
pathway (for reviews see [1,2,11–15]), they are metabolically, eco-
logically, and phylogenetically diverse. The best characterized ace-
togenic species belong to the genera Acetobacterium (A. woodii) and
Clostridium (C. aceticum, C. autoethanogenum, C. ljungdahlii, and C.
ragsdalei), two of the known 22 genera harbouring acetogens. Spe-
cies of these two genera (Table 1) will be in the focus of the review.

Under anaerobic conditions, acetogens are able to grow chemo-
lithoautotrophically converting CO or CO2 + H2 as sole carbon
sources into mainly acetate. Besides acetate, some acetogenic
organisms (Butyribacterium metylotrophicum [16], C. autoethanogenum
[17,18], Clostridium carboxidivorans [19], Clostridium drakei [19],
C. ljungdahlii [20,21], C. ragsdalei [22,21], C. scatologenes [19],
Oxobacter pfennigii (formerly Clostridium pfennigii) [23]) produce
other products such as 2,3-butanediol, butyrate, ethanol, or butanol
(Table 1).

CO and/or CO2 are substrates for the two branches of the
Wood–Ljungdahl pathway (Fig. 1), the methyl and carbonyl
branch. Acetyl-CoA is the main intermediate of the pathway and
serves as a precursor for the anabolism and catabolism of the
respective organism. In the methyl branch, CO or CO2 is reduced
through a series of tetrahydrofolate (THF)- and cobalamin-
dependent reactions into a methyl group. This methyl group is
B.V. Open access under CC BY-NC-ND license.
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Table 1
Acetogenic clostridia.

Organism Substrate Products Optimum
temperature (�C)

Remarks Reference

Acetitomaculum
ruminis

H2+CO2, CO Acetate 38 [62]

Acetoanaerobium
noterae

H2+CO2 Acetate 37 [63]

Acetobacterium bakii H2+CO2, CO Acetate 20 [64]
Acetobacterium

carbinolicum
H2+CO2 Acetate 27 [65,66]

Acetobacterium
dehalogenans

H2+CO2, CO Acetate 25 [67]

Acetobacterium
fimetarium

H2+CO2, CO Acetate 30 [64]

Acetobacterium
malicum

H2+CO2 Cetate 30 [68]

Acetobacterium
paludosum

H2+CO2, CO Acetate 20 [64]

Acetobacterium tundrae H2+CO2, CO Acetate 20 [69]
Acetobacterium

wieringae
H2+CO2 Acetate 30 [70]

Acetobacterium woodii H2+CO2, CO Acetate 30 Genome sequence available but not yet published;
doubling time on CO [h]: 13

[8,71,72]

Acetohalobium
arabicum

H2+CO2, CO Acetate 38–40 [73]

Acetonema longum H2+CO2 Acetate, butyrate 30–33 [74]
Blautia coccoides H2+CO2 37
Blautia

hydrogenotrophica
H2+CO2 Acetate 35–37 [75]

Blautia producta H2+CO2, CO Acetate 37 Doubling time on CO [h]: 1.5-3 [76,77]
Blautia schinkii H2+CO2 Acetate 39 [78]
Butyribacterium

methylotrophicum
H2+CO2, CO (after
adaption)

Acetate, ethanol,
butyrate, butanol

37 Doubling time on CO [h]: 13.9 [16,79,80]

Clostridium aceticum H2+CO2, CO Acetate 30 Genome sequence under construction [81–83]
Clostridium

autoethanogenum
H2+CO2, CO 2,3-Butanediol, acetate,

ethanol
37 Doubling time on CO [h]: 4 [17,21]

Clostridium
carboxidivorans

H2+CO2, CO Acetate, ethanol,
butyrate, butanol

38 Genome sequence available; doubling time on CO [h]:
4.3

[19,84]

Clostridium drakei H2+CO2, CO Acetate, ethanol,
butyrate

25–30 Doubling time on CO [h]: 5.8 [10,19,85]

Clostridium
formicoaceticum

CO Acetate, fomate 37 [7,83,86]

Clostridium glycolicum H2+CO2 Acetate 37–40 [87,88]
Clostridium ljungdahlii H2+CO2, CO 2,3-Butanediol, acetate,

ethanol
37 Genome sequence available; doubling time on CO [h]:

3.8
[20,21,29,89–
91]

Clostridium magnum H2+CO2 Acetate 30–32 [92,93]
Clostridium mayombei H2+CO2 Acetate 33 [94]
Clostridium

methoxybenzovorans
H2+CO2 Acetate, fomate 37 [95]

Clostridium ragsdalei H2+CO2, CO 2,3-Butanediol, acetate,
ethanol

37 Doubling time on CO [h]: 4 [22,21]

Clostridium
scatologenes

H2+CO2, CO Acetate, ethanol,
butyrate

37–40 Doubling time on CO [h]: 7.7 [19]

Eubacterium aggregans H2+CO2 Acetate, formate 35 [96]
Eubacterium limosum H2+CO2, CO Acetate 39 Genome sequence available; doubling time on CO [h]:

9
[97,98]

Morellla mulderi H2+CO2 Acetate 65 [99]
Morella thermoacetica H2+CO2, CO Acetate 55 Genome sequence available; doubling time on CO [h]:

9-16
[4,100–105]

Morella
thermoautotrophica

H2+CO2, CO Acetate 56–60 Doubling time on CO [h]: 7 [106–108]

Oxobacter pfennigii H2+CO2, CO Acetate, butyrate Doubling time on CO [h]: 13,9 [23]
Sporomusa acidovorans H2+CO2 Acetate 35 [109]
Sporomusa aerivorans H2+CO2 Acetate 30 [110]
Sporomusa malonica H2+CO2 Acetate 30 [111]
Sporomusa ovata H2+CO2 Acetate 30 [112]
Sporomusa paucivorans H2+CO2 34 [113]
Sporomusa rhizae H2+CO2 35 [114]
Sporomusa silvacetica H2+CO2 25–30 [115]
Sporomusa spaeroides H2+CO2 35–39 [112]
Sporomusa termitida H2+CO2, CO 30 [116]
Thermoacetogenium

phaeum
H2+CO2 58 [117]

Thermoanaerobacter
kivui

H2+CO2 66 [6,118,119]

2192 B. Schiel-Bengelsdorf, P. Dürre / FEBS Letters 586 (2012) 2191–2198



Fig. 1. Heterotrophic (A + B), autotrophic (CO2 + H2) (B), and autotrophic (CO) (C) fermentation by acetogens (Wood–Ljungdahl pathway). CODH/ACS: carbon monoxide
dehydrogenase/acetyl-CoA synthase; CoFeSP: corrinoid iron–sulfur protein. (1) A proton gradient is formed during the reduction of formyl-THF to methyl-THF in organisms
such as M. thermoacetica and C. aceticum. (2) A sodium gradient is formed during the transfer of the methyl group in organisms such as A. woodii. In this organism an Rnf
complex is additionally active in generating a sodium gradient. (3) For correct stoichiometry 2 additional CO must be oxidized to CO2 to provide the required reduction
equivalents.
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bound to CO, which is used directly or stems from the reduction of
CO2 in the carbonyl branch, and forms together with coenzyme A
acetyl-CoA. The respective catalyzing enzyme complex is called
carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/
ACS). Two enzymes are responsible for the production of reducing
equivalents which are required for metabolic processes: carbon
monoxide dehydrogenase (CODH) and hydrogenase. CO is the sub-
strate for the carbon monoxide dehydrogenase which generates
CO2 by the biological water-gas shift reaction (CO + H2O ? CO2 +
2H+ + 2e�), H2 is the substrate for a hydrogenase (H2 ? 2H+ +
2e�) [24]. Reducing equivalents are conserved in form of reduced
ferredoxin.

Energy conservation in the Wood–Ljungdahl pathway is still not
completely understood. Substrate level phosphorylation does not
result in a net ATP generation, as only 1 ATP is formed in the ace-
tate kinase reaction and 1 ATP is needed for formation of formyl-
THF. Therefore, an energized membrane coupled to the pathway
must be responsible for the generation of ATP. In Moorella thermo-
acetica and also Moorella thermoautotrophica, menaquinone and
cytochromes have been detected that presumably generate a pro-
ton gradient, together with ferredoxin, flavodoxin, flavoproteins,
and rubredoxin (for a model and recent reviews see [25,26]).
Cytochromes have also been detected in C. formicoaceticum and
C. aceticum [27]. Thus, this group of acetogens obviously uses an
electron-transport chain to generate a H+ gradient and ATP via a
F1F0-type ATPase. A different mechanism was found in A. woodii.
This organism is strictly dependent on sodium for growth [28]. Ele-
gant work, mostly by the group of Volker Müller, revealed that A.
woodii generates a Na+ gradient, which is then used for ATP gener-
ation by a specific sodium-dependent ATPase. From analogy to
methanogenic archaea it was proposed that the membrane-located
methyltransferase complex, transferring the methyl group from
methyl-tetrahydrofolate via the corrinoid iron–sulfur protein to
CODH/ACS serves as a sodium ion pump (for a review see [26]).
A third mode of energy conservation in acetogens was only discov-
ered recently. C. ljungdahlii is neither Na+-dependent nor does it
contain genes required for quinone and cytochrome synthesis. In-
stead, it harbors an Rnf complex, which is most probably used to
generate a proton gradient by simultaneous oxidation of reduced
ferredoxin and transfer of reducing equivalents to NAD+ [29]. The
first acetogen found to contain an Rnf complex, however, a so-
dium-dependent one, was A. woodii, where Rnf serves as a sodium
ion pump during caffeate reduction [30–34]. It might also allow an
additional energy conservation during acetogenesis [34].

2. Acetogens as microbial production platforms for the
production of chemicals and biofuels

In the last few years, the industrial interest in autotrophic pro-
duction of bulk chemicals as well as biofuels has risen intensively.
This is due to the fact that gases (CO, or CO2 + H2) as sole energy
and carbon source have ecological and economical benefits. The
use of gaseous substrates contributes (under certain conditions)
to the reduction of the atmospheric greenhouse effect and gas fer-
mentation is less expensive, as industrial waste gases and synthe-
sis gas (also referred to as syngas) serve as substrates. Syngas is the
product of gasification of coal, poorly degradable biomass (straw,
wood), and municipal solid waste. It is also directly produced as
waste gas from industrial plants, e.g. steel mills. Until now, indus-
trial waste gases are preliminary used for heat production. The bio-
technological production of chemicals and biofuels using anaerobic
gaseous fermentation has important advantages compared to the
corresponding chemical production. Firstly, biotechnological pro-
duction is far more insensitive against variations or contamina-
tions in the composition of the gaseous substrate and, secondly,
leads to a higher product specificity [35]. Nevertheless, fermenta-
tions using gaseous substrates have not yet reached commercial
scale.

The publication of genome sequences and the development of
further molecular biological techniques, especially transformation
protocols, pushed the use of acetogenic organisms as a production
platform based on gases as sole carbon and energy source. Until
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now, the genomes of the acetogenic bacteria M. thermoacetica [36],
C. ljungdahlii [29], C. carboxidivorans [37–39], and Eubacterium
limosum [40] have been published (Table 1). The genome sequence
of A. woodii is completed and will be published soon; the genome
sequence of C. aceticum is in preparation.

3. Natural products from acetogens

2,3-Butanediol, acetate, butyrate, ethanol, and butanol are nat-
ural products of acetogenic bacteria. The chemolitoautotrophic
production of acetate, ethanol, and 2,3-butanediol using acetogens,
especially bacteria of the genus Clostridium and Acetobacterium, is
of special interest, as acetate and 2,3-butanediol are important
bulk chemicals and ethanol is a promising biofuel. So far, none of
the mentioned products is produced at commercial scale, but an
increased academic and industrial interest towards this goal has
been noticed during the last years.

3.1. Acetate production using Acetobacterium woodii

Acetate is a precursor for the synthesis of a variety of chemical
products, e.g. polyvinyl acetates. The global production ranges
around 10 million t/a. Generally, acetate is produced petrochemi-
cally, but it is also the main product of the acetogenic organism
A. woodii [8]. A first attempt to increase the acetate production
by A. woodii was already performed by Suzuki et al. [41]. Combin-
ing a bubble-column reactor, flocculated cells, and repeated batch
cultures, a maximum volumetric productivity of 2.7 g acetate
l�1 d�1 was achieved. Demler and Weuster-Botz [42] were able to
further increase the autotrophic acetate production by changing
process parameters of the anaerobic fermentation. In a batch-oper-
ated stirred-tank bioreactor, a maximum volumetric productivity
of 7.4 g acetate l�1 d�1 was measured at a hydrogen partial pres-
sure (pH2) of 1700 mbar and a controlled pH of 7. Under these con-
ditions, a final acetate concentration of 44 g l�1 was reached after a
process time of 11 days. This final acetate concentration reached
through autotrophic growth of A. woodii is the highest reported
so far [42].

The pH control and the solubility of the substrate hydrogen
have been identified as the most important, rate-limiting parame-
ters of autotrophic acetate production using A. woodii. At a pH of 7,
the produced acetate is hardly (<1%) present as acetic acid [42]
and, therefore, the proven end product inhibition of acetic acid
[43,44] is circumvented. Demler and Weuster-Botz [42] clearly
demonstrated a linear relationship between the increasing cell
specific productivity of acetate and an increasing hydrogen partial
pressure in the gas phase. As hydrogen is only poorly soluble in
water [45], the increasing hydrogen partial pressure enhances
the hydrogen concentration in the medium.

The volumetric acetate productivity could be further improved
by (i) a high pressure fermentation process resulting in an even
higher hydrogen concentration in the medium, (ii) immobilization
of A. woodii, and (iii) applying a continuous process instead of a
batch process [42]. Furthermore, besides the process parameters,
the strain could be improved by means of genetic and metabolic
engineering. Availability of the genome sequence will allow identi-
fication of metabolic bottlenecks, which then can be overcome by
metabolic modelling.

3.2. Ethanol production

Ethanol is an important biofuel, used mostly as an additive to
gasoline. Three companies (IneosBio, Lisle, IL, USA; Coskata,
Warrenville, IL, USA; LanzaTech, Auckland, New Zealand) develop
autotrophic ethanol production using acetogenic bacteria with
the aim of commercialization [18]. The companies have pilot plants
and in part also demonstration plants of significant scale in opera-
tion. Thus, commercial production can be expected by 2013 or
2014.

3.3. 2,3-Butanediol production using C. autoethanogenum,
C. ljungdahlii and C. ragsdalei

Besides ethanol, LanzaTech is also interested in the commercial
production of 2,3-butanediol [21], a precursor for the synthesis of a
variety of chemical products (solvents, methyl ethyl ketone, gam-
ma-butyrolactone, and 1,3-butadiene) [46,47]. The potential global
market of the main products produced from 2,3-butanediol is
approximately 32 million t/a [21]. Generally, 2,3-butanediol is pro-
duced petrochemically, but is also a natural product of some bac-
teria, amongst others acetogenic bacteria of the genus
Clostridium. C. autoethanogenum, C. ljungdahlii, and C. ragsdalei pro-
duce 2,3-butanediol using gases (CO or CO2 + H2) as sole energy
and carbon source. Köpke et al. [21] demonstrated the production
of 2,3-butanediol during the stationary growth of all three species
in concentrations of 1.4–2 mM (126 mg l�1). Naturally occurring
autotrophic production of 2,3-butanediol using acetogenic bacteria
has not been reported before.

Contrary to acetate, butyrate, ethanol, and butanol which are
produced from acetyl-CoA as precursor, 2,3-butanediol is based
on pyruvate as precursor. In all three organisms, pyruvate is pro-
duced via a pyruvate–ferredoxin oxidoreductase (PFOR) [21]. For
2,3-butanediol production three enzymes are required: pyru-
vate:acetolactate synthase, acetolactate decarboxylase, and 2,3-
butanediol dehydrogenase. Respective genes have been detected
in all three acetogens [21]. In contrast to other organisms (e.g.
Bacillus species), where the genes form an operon [46,47], they
are spread over the genome of C. ljungdahlii [21]. The same is true
for the acetolactate synthase and acetolactate decarboxylase genes
of Clostridium acetobutylicum, which is able to form acetoin, the
precursor of 2,3-butanediol [46,47]. All genes probably responsible
for the production of 2,3-butanediol in C. autoethanogenum are
upregulated in the stationary growth phase, when 2,3-butanediol
production takes place [21]. Thus, acetogens are also promising
organisms for the production of 2,3-butanediol.

4. Artificial products from acetogens

So far, acetogens have been modified to produce acetone and
butanol. The autotrophic production of acetone was achieved via
a synthetic biology approach using C. aceticum, butanol production
was established via pathway engineering using C. ljungdahlii. Ace-
tone and butanol are of enormous interest for the industry, as ace-
tone serves as precursor for the production of e.g. Plexiglas�, and
butanol is both, an important bulk chemical and a promising
biofuel.

4.1. Acetone production using Clostridium aceticum

Global acetone production amounts to 5.667 million tons [48].
Up to 90% of the currently used acetone is produced via the chem-
istry-based Hock synthesis pathway (cumene process) using pro-
pene and benzene, which are derived from crude oil [49]. Due to
rising naphtha prices and an increasing demand for acetone, the
acetone price has risen continuously over the last years. Fermenta-
tive production of acetone using gases as sole carbon and energy
source is a promising alternative regarding both, ecological and
economical aspects.

In a synthetic biology approach, C. aceticum was transformed
with different plasmids carrying different operons for the synthesis
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of acetone [50]. All plasmids were based on the Escherichia coli–
Clostridium sp. shuttle vector pIMP1 [51]. One construct (pIM-
P_adc_ctfAB_thlA) contained the genes adc, ctfA, ctfB, and thlA
(encoding acetoacetate decarboxylase, acetoacetyl CoA:acetate/
butyrate:CoA transferase subunit A and B, and thiolase under the
control of the PthlA promoter (promoter of the thiolase gene)), thus
representing the known acetone synthesis pathway of C. acetobutyl-
icum. In a similar plasmid (pIMP_adc_atoDA_thlA), the genes ctfA
and ctfB were exchanged for the genes atoDA encoding a acetyl-
CoA/acetoacetyl-CoA transferase from Escherichia coli. Both con-
structs should mediate an acetate-dependent acetone biosynthesis,
as acetate is required as a cosubstrate for the CoA transferase. A true
synthetic biology approach was based on the use of thioesterases,
which split off the coenzyme A-moiety from acetoacetyl-CoA, thus
forming a metabolic pathway not found in nature. The gene teII en-
codes a thioesterase from Bacillus subtilis and the gene ybgC an acyl-
CoA thioesterase from Haemophilus influrenzae. Both enzymes are
able to use acetoacetyl-CoA as substrate [52]. In C. aceticum, acet-
yl-CoA thus serves as a precursor of acetate as well as acetone.

Each plasmid carrying an acetone synthesis operon was trans-
formed separately into C. aceticum via electroporation, and growth
as well as acetone production of all four recombinant C. aceticum
strains were monitored. On fructose, the recombinant C. aceticum
strains harbouring the plasmids produced acetone up to 9 mg/l
[50]. Acetone was produced throughout the entire exponential
growth and at the transition to stationary growth. On gas (80%
H2/20% CO2 or 67% H2/33% CO2) as sole carbon and energy source,
the functionality of the plasmids was also clearly demonstrated,
acetone was produced up to 8 mg/l using the plasmid pIM-
P_adc_ctfAB_thlA [50,53]. Thus, proof of principle for using recom-
binant C. aceticum strains growing on CO2/H2 gas mixtures and
producing important bulk chemicals has been provided. As soon
as the genome sequence of the organism will become available,
the whole repertoire of meanwhile developed genetic techniques
can be used for further improvement of production. Inactivation
of genes responsible for formation of other products (e.g. ethanol)
will lead to higher product formation and easier downstream pro-
cessing. Integration of the construct into the genome will get rid of
antibiotic resistance genes on the plasmid, not suitable for an
industrial process. Stronger promoters will increase expression.
Such tools have been developed in the past for the clostridia (e.g.
[54–57]). It will also be possible to transfer the constructs into
other acetogens in order to find out the best suited species for
industrial production.

4.2. Butanol production using Clostridium ljungdahlii

Butanol is an important industrial bulk chemical and a promis-
ing biofuel and/or biofuel additive (for reviews see [58,59]). As a
biofuel, butanol has properties which are superior compared to
ethanol [58–60]. Butanol has a lower vapor pressure, a higher en-
ergy content, and can be blended at any time and at any concentra-
tion with gasoline. Furthermore, butanol can be used without
modifications of car engines.

As the butanol production using solventogenic clostridia de-
pends on starchy substrates or molasses as carbon sources which
are expensive and compete with nutritional feedstock, gaseous
substrates and acetogenic clostridia are a promising alternative.

In this pathway engineering approach, C. ljungdahlii was trans-
formed with a plasmid, carrying the C. acetobutylicum butanol syn-
thesis pathway genes thlA, hbd, crt, bcd, adhE, and bdhA encoding
thiolase, 3-hydroxybutyryl-CoA dehydrogenase, crotonase, butyr-
yl-CoA dehydrogenase, butanol/butyraldehyde dehydrogenase,
and butanol dehydrogenase, respectively. All genes were under
the control of the promoter Pptb (promoter of the phosphotransbu-
tyrylase gene, one promoter at the beginning of the artificial oper-
on, a second promoter after the first three genes) and transcription
was terminated by the terminator Tadc (terminator of the acetoac-
etate decarboxylase gene, after the last gene) [29]. Naturally, C.
ljungdahlii produces acetate and ethanol when grown on gases
(CO or H2 + CO2). The artificial butanol production was planned
to start from the central metabolite acetyl-CoA.

C. ljungdahlii was transformed with the plasmid pSOBptb and
growth as well as butanol production of the recombinant C. ljung-
dahlii strain were measured. Although the vector lacked the genes
etfA and etfB, encoding the electron-transferring flavoproteins EtfA
and EtfA, which are essential for the activity of the Bcd enzyme
[61], the plasmid was functional in C. ljungdahlii, resulting in the
production of small amounts of butanol [29]. Inspection of the gen-
ome sequence of C. ljungdahlii revealed five pairs of genes encoding
electron-transferring flavoproteins, which could compensate for
the missing genes on the plasmid [29]. At the same time, the lack
of the genes etfA and etfB on the plasmid pSOBptb explained why a
recombinant E. coli strain harbouring the plasmid did not produce
any butanol. The recombinant C. ljungdahlii strain produced buta-
nol in the middle of the exponential growth phase (up to
150 mg/l butanol). However, then butanol was consumed by the
organism and the concentration dropped to almost zero (0–
15 mg/l) until the end of growth. As a new product, butyrate was
detected (53–71 mg/l) [29]. Two pairs of aldehyde/alcohol dehy-
drogenase genes have been found in the genome, the products of
which are most probably responsible for butanol oxidation [29].
Again, this will allow strain improvement by identification and
inactivation of these genes, placement of the construct into the
chromosome, usage of stronger promoters and genes encoding
more efficient enzymes, and streamlining the construct by removal
of hairpin-loop structures, resulting from the original construction.

5. Conclusions

The examples of recombinant C. aceticum producing acetone
and C. ljungdahlii producing butanol clearly show that alternative
fermentation processes will become available soon, which no long-
er depend on substrates (sugar, starch), competing with nutritional
feedstocks. In addition, gas fermentation will offer an ecological
advantage as greenhouse gases such as CO2 and CO will be con-
verted into industrial products. As bulk chemicals, they will be
found eventually in long-lasting products, thus in effect reducing
CO2 and CO emissions. And even if used as biofuels and burned
again, uptake and conversion of gases during the fermentation will
be almost equal to the amount released as CO2 during driving. It
will be important now to upscale the specific production rates in
order to meet the economic requirements. Then, a bright future
can be predicted for gas fermentation, as acetogenic production
platforms will be able to synthesize the whole repertoire of
microbially-formed metabolites.
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