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Abstract

This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup
and closedown times, in which the length of the vacation period is controlled either by the number of arriv-
als during the vacation period, or by a timer. After all the customers are served in the queue exhaustively,
the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server imme-
diately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number
of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer
reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a
predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer
expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup
time before providing the service until the system is empty. If some customers arrive during this closedown
time, the service is immediately started without leaving for a vacation and without a startup time. We ana-
lyze the system characteristics for each scheme.
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1. Introduction

1.1. Literature review

Queueing systems with vacation period effectively arise in the stochastic modelling of many com-
puters and communication systems, manufacturing/production, and inventory systems. For a
comprehensive survey see Doshi [1]. In general, in order to control the length of the vacation period
we either use a queue lengthN (known asN policy by Yadin andNaor [2]) or a timer T (known as T
policy by Heyman [3]). Of particular interest is a tighter control over the length of the vacation per-
iod, which can be achieved by combining N policy and T policy. Considerable efforts have been
devoted to study these types of the controllable queueing models, such as Teghem [4], Takagi
[5], and many others. From those vast and rich literature, we review some well-known research
works according to listed below five kinds of classification for the studies on these control policies.

1.1.1. Queueing systems under N policy
Yadin and Naor [2] first introduced the concept of an N policy (without startup) which turns

the server on whenever N (N P 1) or more customers are present, turns the server off only when
none is present. For a reliable server, the N policy M/G/1 queueing system was first studied by
Heyman [6] and was developed by several researchers such as Teghem [4], Tijms [7], Gakis
et al. [8], Artalejo [9], Wang and Ke [10] and others. Analytic steady-state solutions of the N policy
M/Hk/1 queueing system were first obtained by Wang and Yen [11]. For an unreliable server,
Wang [12], Wang [13], and Wang et al. [14] derived analytic steady-state solutions of the N policy
M/M/1, the N policy M/Ek/1, and the N policy M/H2/1 queueing systems, respectively. Later,
Wang and Ke [15] investigated three control policies in an M/G/1 queueing system and proved
that in three control policies, the probability that the server is busy in the steady-state is equal
to the traffic intensity. Recently, Wang et al. [16] extended Wang and Yen�s system [11] to unre-
liable server case.

1.1.2. Queueing systems under T policy
The server returns to provide service immediately as long as there is at least one customer in the

system, but when there are no customers in the system, it becomes unavailable for a fixed length of
time T (a vacation). After a vacation period of length T, the server returns to the system. It begins
to serve if there is at least one customer present in the waiting line; otherwise, the server waits an-
other period of length T and so on until at least one customer is present. This kind of control pol-
icy is called the T policy and the T policy for the M/G/1 queueing system with a reliable server
was investigated by Heyman [3], Levy and Yechiali [17] and Gakis et al. [8]. Recently, Tadj
[18] investigated the T policy for the M/G/1 quorum queueing system by using embedded Markov
chain. He obtained the probability generating function of the number of customers in the system,
the expected length of the idle period, busy period and busy cycle, and the determination of the
optimum value T.

1.1.3. Queueing systems under N policy with general vacations
For some controllable queueing systems with general vacations, it is usually assumed that the

server becoming available, or unavailable, completely depends on the number of customers in the
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system. Every time when the system is empty, the server goes on a vacation. The instance at which
the server comes back from a vacation and finds at least N (predetermined threshold) customers in
the system it begins serving immediately and exhaustively. This type of control policy is also called
N policy queueing systems with vacations. Kella [19] and Lee and Srinivasan [20] first provided
detail discussions concerning N policy M/G/1 and M[x]/G/1 queueing systems with reliable server
and vacations, respectively. Later, Lee et al. [21,22] analyzed in detail the batch arrival M/G/1
queueing system under N policy with a single vacation and repeated vacations. Their results sig-
nificantly confirmed the stochastic decomposition property given by Fuhrmann and Cooper [23].
Recently, Ke [24] investigated Lee and Srinivasan�s system [20] by considering vacations and start-
up of an unreliable server.

1.1.4. Queueing systems with N policy and general startup
The server startup corresponds to the preparatory work of the server before starting the ser-

vice. In some actual situations, the server often requires a startup time before starting his each
service period. Concerning queueing systems combining N policy with a startup time, the N pol-
icy M/G/1 queueing system with startup time was first studied by Minh [25] and was investi-
gated by several researchers such as Medhi and Templeton [26], Takagi [5,27], Lee and Park
[28], and so on. Recently, Hur and Paik [29] examined the operation characteristics of M/G/
1 queueing system under N policy with server startup and explained how the system�s optimal
policy and cost behave for various arrival rates. The concept of closedown-time was first intro-
duced by Takagi [5]. Niu and Takahashi [30] studied the performance analysis of the switched
virtual connection (SVC) by a closedown time which is corresponding to an inactive timer dur-
ing which the SVC resource is reserved to anticipate more customers (packets) from the same
IP flow. The above authors mentioned focus on reliable servers for the server startup or
closedown.

1.1.5. Combined N policy and T policy
Gakis et al. [8] first introduced the concept of a Min(N,T) policy which terminates the server�s

vacation if either N (N P 1) customers have appeared in the system or T time units have elapsed
since the end of a busy period or the end of the previous T time units and at least one customer in
the system waits for service, which occurs first. The distributions and the first two moments of the
busy and idle periods in the Min(N,T) policy M/G/1 queueing systems with a reliable server oper-
ating under six dyadic policies were developed by Gakis et al. [8]. They have also shown that in all
policy cases the steady-state probability that the server is busy is equal to the traffic intensity.
Doganata [31] first considered the NT policy M/G/1 queueing system with a reliable server and
derived the expected values of the performance measures. Alfa and Frigui [32] studied the NT pol-
icy MAP/PH/1 queueing system with a reliable server and no startup. They have proved that the
vacation period distribution is of phase type. Alfa and Li [33] and Li and Alfa [34] separately stud-
ied the NT policy for both M/G/1 and M/M/S queue in a manufacturing system with cost struc-
ture. Recently, Hur et al. [35] optimized the operating cost of an M/G/1 queueing system using
Min(N,T) policy. They derived steady-state system size distribution, and established a cost func-
tion to reveal the characteristics of the cost function and found the optimal operating policy. In
this paper our NT policy differs from the NT policy of authors mentioned above. We will consider
the NT policy for an M/G/1 queueing system, in which the unreliable server is shutdown by a
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closedown time when the system is empty, and needs to perform a startup time before starting his
each service (completion) period.

Existing research works, including those mentioned above, have never investigated cases
involving server breakdowns, startup and closedown. Queuing models with server breakdown,
startup and closedown accommodate the real-world situations more closely. There are many
applications in which the system is operated only intermittently. The system will be shutdown
by a closedown time when no customers are present. Therefore, it would be practical to consider
the vacation policies for queuing models, in which an unreliable server is characterized by startup
and closedown.

1.2. Model description and assumptions

In this paper, we consider two different kinds of NT-policies for the M/G/1 queueing system
where termination of the vacation period is controlled by two threshold parameters N and T.
The detailed description of the models are given as follows:

Assumptions of the Model 1. The server terminates his vacation as soon as the number of arriv-
als reaches N or the waiting time of the leading customer reaches T units since the end of the close-
down time.

1. Customers arrive according to a Poisson with rate k. The service time provided by a single
server is an independent and identically distributed random variable (S) with a general dis-
tribution function S(t). If at any time any customer arrives, he goes to the service facility for
service. Arriving customers forms a single waiting line based on the order of his arrivals. The
server can serve only one customer at a time.

2. The server is subject to breakdowns at any time with Poisson breakdown rate a when it is
working. Whenever the server fails, it is immediately repaired at a repair facility, where
the repair time is an independent and identically distributed random variable (R) with a gen-
eral distribution function R(t).

3. In case the server breaks down when serving customers, he is sent for repair and the customer
who has just being served should wait for the server back to complete his remaining service.
Immediately after the server is fixed, he starts to serve customers until the system is empty,
and the service time is cumulative. A customer who arrives and finds the server busy or bro-
ken down must wait in the queue until a server is available. Although no service occurs dur-
ing the repair period of a broken server, customers continue to arrive according to a Poisson
process.

4. Whenever the system becomes empty, the server shuts down (deactivates) by a closedown
time. When the number of arrivals in the queue reaches to a predetermined threshold N
or the waiting time of the leading customer reaches T units since the end of the closedown
time, the server immediately reactivates and is temporarily unavailable for the waiting cus-
tomers. He needs a startup time with random length U before starting service. As soon as the
server finishes startup, he starts serving the waiting customers until the system becomes
empty.

5. If a customer arrives during a closedown time, the service is immediately started without sat-
isfying the conditions of NT vacation and without a startup time.
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Assumptions of the Model 2. The server terminates his vacation as soon as the number of arriv-
als accumulated to N or the time units after the end of the closedown time reaches predetermined
T units.

The first three and the last assumptions are the same as those in Model 1. However the fourth
assumption now is that the system only reactivates if the number of arrivals in the queue waiting
for service reaches to predetermined threshold N, or the time units after the end of the closedown
time reaches T units. The server still requires to perform a startup before his each completion
period is started.

As a practical application fitting our general model is the following produce to order system for
a product, which based on the work of Zhang et al. [36]. Assume that customer orders for this
product arrive according to a random process. It is desirable that the production begins whenever
the number of orders reaches a critical value N (the minimum set-up lot size satisfied benefit). In
other words, if the number of orders is less than N the production waits until the Nth order ar-
rives. To maintain good business or have some cause it does not make the orders delay too long if
there is not up to N available. The management policy is to set up the facility (startup) and begin
production when there are N orders in the queue or the first order has been waiting for T units of
time. Moreover, the production may be interrupted when facility encounters unpredicted break-
downs. When production interruptions occur (breakdowns), it is emergently recovered with a ran-
dom time. The facility is shut down by a closedown time whenever the production ends and no
orders arrive. The closedown time may be referred to machine maintenance and others.

The objectives of this paper are as follows: First, we construct some propositions for the M/G/1
queue with an unreliable server and general vacations, which will be used frequently in subsequent
sections. Second, we derive the system size distribution, the waiting time distribution in the queue
and other important system characteristics for two different kinds of NT policy models. Third, we
show that the results generalize those of the N policy and the T policy M/G/1 queueing system
with a reliable server. Finally, some special cases are also presented in this paper.
2. The M/G/1 queue with an unreliable server and generalized vacations

Before going into the study of this system, let us recall some results in the ordinary M/G/1
queueing system with an unreliable server. Let H be a random variable representing the comple-
tion time of a customer (the nth arrival), it is time interval from the server begins to serve the cus-
tomer (the nth arrival) to the ends of his service, which include the repair time of server because of
probable breakdowns in the customer�s service time (the service time of the nth arrival). The useful
results by Gaver [37] and Tang [38] are as follows:
E½H � ¼ E½S�ð1þ aE½R�Þ; ð1Þ

E½H 2� ¼ ð1þ aE½R�Þ2E½S2� þ aE½S�E½R2�; ð2Þ

qH ¼ kE½H � ¼ qð1þ aE½R�Þ; ð3Þ
where q = kE[S]. Note that qH is traffic intensity and it should be assumed to be less than unity.
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Now, we consider an M/G/1 queueing system in which the server may meet unpredictable
breakdowns while working and may perform generalized vacations (vacation, or startup, or idle)
when system is empty.

First, let us define several items used for the generalized vacation model. We call a time interval
when the server is either unavailable (for various reasons such as vacation, or startup or idle) an
idle period. A time interval when the server is working continuously is called a busy period. A vaca-
tion period may contain a number of vacations, just as a busy period may contain a number of
service times. During the busy period, the server may break down and start his repair immediately.
This is called breakdown period. After the server is repaired, it returns and provides service until
there are no customers in the system. The completion period is from the end of the idle period to no
customers in the system, which occurs before the system becomes empty and can be represented as
the sum of all busy periods and breakdown periods. The time interval consisting of an idle period
and a following completion period is called a busy cycle.

Further, let ak be the probability that k customers arrive during a completion time, we have
ak ¼
Z 1

0

ðktÞk

k!
e�ktdHðtÞ; k ¼ 0; 1; 2; . . . ; ð4Þ
where H(t) is d.f. of H.

2.1. Preliminary formulas for system size distribution

We first define f as the number of customers that arrive during each vacation, and u as the num-
ber of customers that arrive during a vacation period. The probability distributions and their
probability generating functions for f and u are as follows:
fk ¼ Pr½f ¼ k�; k ¼ 0; 1; 2; . . . ; ð5aÞ

uk ¼ Pr½u ¼ k�; k ¼ 1; 2; 3; . . . ; ð5bÞ

F ðzÞ ¼
X1
k¼0

fkzk; ð6aÞ
and
uðzÞ ¼
X1
k¼1

ukz
k: ð6bÞ
A vacation period begins only when there are no customers in the exhaustive service system. The
number u of customers that arrive during a generalized-vacation period (idle period) may depend
on the arrival process during that generalized-vacation period.

We denote by Ln the number of customers left in the system immediately after the nth departing
customer. A sequence of random variables {Ln; n = 1,2,3, . . .} constitutes a Markov chain. Let us
define the steady-state distribution for {Ln; n = 1,2,3, . . .} as
pk ¼ lim
n!1

Pr½Ln ¼ k�; k ¼ 0; 1; 2; . . .
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As in the analysis to the ordinary M/G/1 system, the state-transition probability pji = Pr[Ln+1 =
ijLn = j] is given by
pji ¼

Piþ1

k¼1

ukai�kþ1 j ¼ 0; i P 0;

ai�jþ1 i P j� 1;

0 j P 1; 0 6 i < j� 1;

8>>><
>>>:
which satisfy the following equations:
pk ¼
X1
j¼0

pjpjk and
X1
k¼0

pk ¼ 1
from which we get
pk ¼ p0

Xkþ1

j¼1

ujak�jþ1 þ
Xkþ1

j¼1

pjak�jþ1. ð7Þ
Multiplying (7) by zk and summing over k = 0,1,2, . . . , we get the p.g.f. of {pk} as
PðzÞ ¼ p0

X1
j¼1

ujz
j�1

X1
k¼j�1

ak�jþ1zk�jþ1 þ
X1
j¼1

pjzj�1
X1
k¼j�1

ak�jþ1zk�jþ1

¼ p0uðzÞH �ðk � kzÞ
z

þ ðPðzÞ � p0ÞH �ðk � kzÞ
z

; ð8Þ
where H*(Æ) is LST of H.
Solving this equation for P(z), we get
PðzÞ ¼ p0½1� uðzÞ�H �ðk � kzÞ
H �ðk � kzÞ � z

. ð9Þ
We determine p0 by normalization condition, i.e., P(1) = 1, to be
p0 ¼
1� qH

E½u� . ð10Þ
Substituting (10) into (9), it finally yields
PðzÞ ¼ ð1� qHÞ½1� uðzÞ�H �ðk � kzÞ
E½u�½H �ðk � kzÞ � z� ð11Þ
from which we have the expected number of customers in the system
E½L� ¼ E½uðu � 1Þ�
2E½u� þ k2E½H 2�

2ð1� qHÞ
þ qH . ð12Þ
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3. Analysis of the NT policy for Model 1

The end of the idle period for Model 1 can be described by the following two situations:

Case 1: No customers arrive when the server is shutting down.

In this case the server operates the NT policy after shutdown. We may imagine an M/G/1 system
with vacations that end with f(> 0) customers and with a startup time U for the first customer. In
this case, Model 1 is as an extension of the M/G/1 queueing system given in Section 2. For this
system, we can use F(z)U*(k � kz) to denote p.g.f. of the number of customers found in the system
at the end of the idle period, where U*(h) is LST of U.

Case 2: Some customers arrive when the server is shutting down.

In this case, we use z to denote p.g.f. of the number of customers found in the system at the end of
the idle period.

From the well-known stochastic decomposition results by Fuhrmann and Cooper [23] and
using the above inferences listed, we obtain the p.g.f. of the number of customers found in the
system at the beginning of the busy period
uðzÞ ¼ D�ðkÞF ðzÞU �ðk � kzÞ þ ð1� D�ðkÞÞz. ð13Þ
3.1. System size distribution and expected number of customers in the system

Using (11)–(13), the distribution for the number of customers in the system at an arbitrary time
is given by
PðzÞ ¼ ð1� qHÞ½1� D�ðkÞF ðzÞU �ðk � kzÞ � ð1� D�ðkÞÞz�H �ðk � kzÞ
½D�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞ�½H �ðk � kzÞ � z� ; ð14Þ

E½L� ¼ D�ðkÞðE½F ðF � 1Þ� þ 2kE½F �E½U � þ k2E½U 2�Þ
2½D�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞ� þ k2E½H 2�

2ð1� qHÞ
þ qH . ð15Þ
In Eqs. (14) and (15), F represents the distribution of the number of arrivals during the vacation
period and the probability generating function for F is F(z), which are generalized from those of
Section 2, where
fk ¼ Pr½k arrivals during the idle period� ¼ ðkT Þke�kT

k!
; k ¼ 0; 1; . . . ;N � 2
and
fN�1 ¼ 1�
XN�2

k¼0

fk.
In this model,
F ðzÞ ¼
XN�1

k¼0

fkzk.
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It is to be noted that when T!1, we have E[F] = N and E[F(F � 1)] = N(N � 1). Likewise,
when N!1, we have E[F] = kT and E[F(F � 1)] = k2T2.

3.2. Waiting time distribution and expected waiting time in the queue

First let H �
oðhÞ denote the LST of the completion period in the ordinary M/G/1 queueing sys-

tem with an unreliable server. It is useful results of Tang [38] that the LST of the completion per-
iod started with one customer in the M/G/1 queueing system with an unreliable server can be
expressed by
H �
oðhÞ ¼ H �½h þ k � kH �

oðhÞ�; ð16Þ
where H*(Æ) is LST of completion time H.
Differentiating (16) with respect to h, we derive the expected length of the completion period

initiated with one customer in the system as
E½Ho� ¼
E½H �
1� qH

; ð17Þ
where E[H] and qH are given by (1) and (3).
The LSTW*(h) of the waiting time distribution in the queue can be found as follows. There is a

way to derive W*(h) using regenerative arguments. Note that the points in time when each com-
pletion period ends are the system�s regeneration points. At these points, the number of customers
in the system is zero. The time interval between two such successive regeneration points is called a
generalized vacation cycle, whose length is denoted by Hc. The LST H�

cðhÞ and the expectation for
Hc are found by the delay cycle arguments (see [5, Section 1.2]) as
H�
cðhÞ ¼ D�ðkÞF ð1� ðh þ k � kH �

oðhÞÞ=kÞU �ðh þ k � kH �
oðhÞÞ þ ð1� D�ðkÞÞI�oðhÞH �

oðhÞ;
ð18Þ
and
E½H�
c � ¼

D�ðkÞðE½F � þ kE½U �Þ
kð1� qHÞ

þ ð1� D�ðkÞÞ 1

k
þ E½H �
1� qH

� 	

¼ 1

kð1� qHÞ
½D�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞ�; ð19Þ
where Io(h) = k/(k + h) is LST of the idle period for the ordinary M/G/1 queueing system.
To find W*(h), we consider three types of customers according to their arrival points. For these

customers that arrive during a delay cycle that is initiated with a generalized-vacation whose LST
F(1 � h/k)U*(h), it follows from the arguments by Takagi [5, Section 1.2] that we have
W �ðhjdelay cycleÞ ¼ ð1� qHÞ½1� F ð1� h=kÞU �ðhÞ�
ðE½F �=k þ E½U �Þ½h � k þ kH �ðhÞ� . ð20Þ
Customers that arrive during the closedown time have zero waiting time. Customers that during
the completion period have the LST of the waiting time
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W �ðhjbusyÞ ¼ ð1� qHÞ½1� H �ðhÞ�
E½H �½h � k þ kH �ðhÞ� . ð21Þ
Thus, considering all cases we obtain
W �ðhÞ ¼ 1

E½Hc�
D�ðkÞ E½F � þ kE½U �

kð1� qHÞ

� 	
� W �ðhjdelay cycleÞ




þð1� D�ðkÞÞ 1

k
þ E½H �
1� qH

� W �ðhjbusyÞ
� 	�

; ð22Þ
which can be simplified as
W �ðhÞ ¼ ð1� qHÞfD�ðkÞ½k � kF ð1� h=kÞU �ðhÞ� þ hð1� D�ðhÞÞg
½D�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞ�½h � k þ kH �ðhÞ� . ð23Þ
Differentiating (23) with respect to h, we finally get the expected waiting time in the queue
E½W � ¼ D�ðkÞðE½F ðF � 1Þ� þ 2kE½F �E½U � þ k2E½U 2�Þ
2k½D�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞ� þ kE½H 2�

2ð1� qHÞ
; ð24Þ
which is identical to Little�s result E½W � ¼ E½L�
k � E½H �

� 
obtained through (15).

Note that the second terms of (24) represent the expected waiting time in the queue for the
ordinary M/G/1 queueing system. Hence, the first term can be called �extra expected waiting time
in the generalized-vacation period (idle period)�.

3.3. Other system characteristics

In this section we derive the expected length of the completion period, the idle period and the
busy cycle.

3.3.1. Expected length of the completion period
Let H �

NT ðhÞ be the LST of the completion period for the NT policy M/G/1 queueing system
where an unreliable server is characterized by startup and closedown times. This system the server
is shutdown (deactivates) by a shutdown time at end of each completion period. When the number
of customers in the queue reaches N or the waiting time of the leading customer reaches T units
since the end of the closedown time, the server immediately reactivates and the first customer in
each completion period needs to wait for a server startup time U before receiving the service. If
some customers present when the server is shutting down, he immediately starts serving the wait-
ing customers without waiting the conditions of NT policy and without a startup time. It follows
from a property of the Poisson arrival process and the assumption of exhaustive service that those
points in time at which each completion period ends are the regeneration points of the system. If
there are k customers in the system at the beginning of a completion period, the subsequent com-
pletion period will consist of k independent completion times, which each is initiated with a single
customer�s completion time. Thus, we have
H �
NT ðhÞ ¼

X1
k¼1

uk½H �
oðhÞ�

k ¼ u½H �
oðhÞ�. ð25Þ
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Substituting (13) into (25), it finally yields
H �
NT ðhÞ ¼ D�ðkÞF ðH �

oðhÞÞU �ðk � kH �
oðhÞÞ þ ð1� D�ðkÞÞH �

oðhÞ; ð26Þ
where H �
oðhÞ is given in (16).

Differentiating (26) with respect to h and using (17), we obtain the expected length of the com-
pletion period for the NT policy M/G/1 queueing system given by
E½HNT � ¼ � dH �
NT ðhÞ
dh

����
h¼0

¼ ½D�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞ� E½H �
1� qH

. ð27Þ
3.3.2. Expected length of the busy period and the breakdown period
The expected length of the busy period and the expected length of the breakdown period are

denoted by E[BNT] and E[DNT], respectively. Recall that the completion period is the sum of
the busy period and the breakdown period which implies E[HNT] = E[BNT] + E[DNT]. Hence from
(1) and (27) we have
E½BNT � ¼
fD�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞgE½S�

1� qH
ð28Þ
and
E½DNT � ¼
afD�ðkÞðE½F � þ kE½U �Þ þ 1� D�ðkÞgE½S�E½R�

1� qH
. ð29Þ
3.3.3. Expected length of the idle period
Let INT be the idle period for the NT policy M/G/1 queueing system in which an unreliable ser-

ver is characterized by startup and closedown times. The server is shutdown by a closedown time
as soon as the system is empty. When closedown time is over, the server operates NT vacation
policy and requires a startup time before providing service. If some customers arrives at the sys-
tem when the server is shutting down, the service is immediately started without taking NT policy
and without a startup time. The idle period for this system is composed of the following two cases:

Case 1: No customers arrive when the server is shutting down

Let Iidle-startup be the length of the idle period minus the startup period since server shutdown. It
can be shown from Kleinrock [39, Chapter 5] that
I�idle-startupðk � zkÞ ¼ F ðzÞ ¼
XN�1

k¼0

fkzk; ð30Þ
where I�idle-startupðhÞ is LST of Iidle-startup.
The expectation of I�idle-startup is found from (30) as
E½I�idle-startup� ¼ �
dI�idle-startupðhÞ

dh

����
h¼0

¼ dF ðzÞ
kdz

����
z¼1

¼
PN�1

k¼0 kf k

k
¼ E½F �

k
. ð31Þ
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For this case, let I�1ðhÞ be the LST of the idle period which is the sum of Iidle-startup and U. It is
clear that I�1ðhÞ is convolution of I�idle-startupðhÞ and U*(h). Thus we have
I�1ðhÞ ¼ I�idle-startupðhÞ � U �ðhÞ ¼ I�idle-startupðhÞU �ðhÞ; ð32Þ
which leads to
E½INT � ¼
E½F �

k
þ E½U �. ð33Þ
Case 2: Some customers arrive when the server is shutting down

If some customers present when the server is shutting down, he immediately starts providing
service for the waiting customers without a startup time. Thus we have the LST of the idle period
for this case
I�2ðhÞ ¼
k

h þ k
; ð34Þ
which yields
E½I2� ¼
1

k
. ð35Þ
From the above two cases listed, we have the expected length of the idle period for the NT policy
M/G/1 queueing system (Model 1).
E½INT � ¼ D�ðkÞ E½F �
k

þ E½U �
� 	

þ 1� D�ðkÞ
k

� 	
. ð36Þ
3.4. Expected length of the busy cycle

The busy cycle for the NT policy M/G/1 queueing system, denoted by XNT, is the length of time
from the beginning of the last idle period to the beginning of the next idle period. From (27) and
(36), we have
E½XNT � ¼
D�ðkÞfE½F � þ kE½U �g þ 1� D�ðkÞ

kð1� qHÞ
. ð37Þ
4. Analysis of the NT policy for Model 2

In this section, we consider the NT policy for a system consisting of the classical N-policy and
T-policy. In this system, the only difference from the system discussed in Section 3 is that the sys-
tem is reactivated as soon as there are N customers accumulated in the queue or T time units have
elapsed since the end of the closedown time. It is to be noted in this case that the next closedown
time, startup period and completion period are zero if the time units after the end of the comple-
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tion period reaches the predetermined time T and there is no customer arrival. This system is as
another extension of the M/G/1 queue given in Section 2. From similar arguments as for Model 1.
For this system, use the p.g.f.
uðzÞ ¼ D�ðkÞ½F ðzÞ � f0 þ f0z�U �ðk � kzÞ þ ð1� D�ðkÞÞz ð38Þ

for the number of customers found in the system at the end of the idle period.

4.1. System size distribution and expected number of customers in the system

From (11), (12) and (38), we have the distribution for the number of customers in the system at
an arbitrary time
PðzÞ ¼ ð1� qHÞf1� D�ðkÞ½F ðzÞ � f0 þ f0z�U �ðk � kzÞ � ð1� D�ðkÞÞzgH �ðk � kzÞ
½D�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞ�½H �ðk � kzÞ � z� ; ð39Þ

E½L� ¼ D�ðkÞfE½F ðF � 1Þ� þ 2kðE½F � þ f0ÞE½U � þ k2E½U 2�g
2½D�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞ� þ k2E½H 2�

2ð1� qHÞ
þ qH ; ð40Þ
where
fk ¼ Pr½k arrivals during the idle period� ¼ ðkT Þke�kT

k!
; k ¼ 0; 1; 2; . . . ;N � 1
and
fN ¼ 1�
XN�1

k¼0

fk.
Furthermore, the p.g.f. for F is as follows
F ðzÞ ¼
XN
k¼0

fkzk.
4.2. Waiting time distribution and expected waiting time in the queue

Let Hc and H�
cðhÞ be defined as those in Section 3.2. By following arguments similar toModel 1,

we have
H�
cðhÞ ¼ D�ðkÞ½F ð1� ðh þ k � kH �

oðhÞÞ=kÞ � f0ðh þ k � kH �
oðhÞÞ=k�U �ðh þ k � kH �

oðhÞÞ
þ ð1� D�ðkÞÞI�oðhÞH �

oðhÞ ð41Þ
and
E½H�
c � ¼

1

kð1� qHÞ
½D�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞ�. ð42Þ
Similar to the analysis of Model 1, customers that arrive during a delay cycle have the LST of the
waiting time
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W �ðhjdelay cycleÞ ¼ ð1� qHÞf1� ½F ð1� h=kÞ � f0h=k�U �ðhÞg
fðE½F � þ f0Þ=k þ E½U �g½h � k þ kH �ðhÞ� . ð43Þ
Using the expression for the LST of the waiting time depending on the interval in which a cus-
tomer arrives, we obtain
W �ðhÞ ¼ 1

E½Hc�
D�ðkÞ E½F � þ f0 þ kE½U �

kð1� qHÞ

� 	
� W �ðhjdelay cycleÞ




þð1� D�ðkÞÞ 1

k
þ E½H �
1� qH

� W �ðhjbusyÞ
� 	�

ð44Þ
from which we get
W �ðhÞ ¼ ð1� qHÞfD�ðkÞ½k � kðF ð1� h=kÞ � f0h=kÞU �ðhÞ� þ hð1� D�ðhÞÞg
½D�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞ�½h � k þ kH �ðhÞ� . ð45Þ
From (45), we obtain the expected waiting time in the queue
E½W � ¼ D�ðkÞfE½F ðF � 1Þ� þ 2kðE½F � þ f0ÞE½U � þ k2E½U 2�g
2k½D�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞ� þ kE½H 2�

2ð1� qHÞ
; ð46Þ
which is identical to Little�s result E½W � ¼ E½L�
k � E½H �

� 
obtained through (40).

4.3. Other system characteristics

4.3.1. Expected length of the completion period
Let H �

NT ðhÞ denote the LST of the completion period for the M/G/1 queueing system, where an
unreliable server is characterized by startup and closedown times. At the end of each completion
period, the server deactivates through a closedown time. As soon as the number of arrivals in the
queue reaches to a predetermined threshold N or T time units have elapsed since the end of the
closedown time, the server immediately reactivates but is temporarily unavailable to the waiting
customers. He needs a startup time before providing service until the system becomes empty. If
some customers arrive at the system when the server is shutting down, he immediately provides
his service without waiting the conditions of NT vacation and without a startup time. As analyzed
in Model 1, we get
H �
NT ðhÞ ¼ D�ðkÞ½F ðH �

oðhÞÞ � f0 þ f0H �
oðhÞ�U �ðk � kH �

oðhÞÞ þ ð1� D�ðkÞÞH �
oðhÞ; ð47Þ
Differentiating (47) with respect to h and using (17), we obtain the expected length of the comple-
tion period for the NT policy M/G/1 queueing system (Model 2) given by
E½HNT � ¼
fD�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞgE½H �

1� qH
. ð48Þ
From (48), we have the expected length of the busy period and the expected length of the break-
down period, respectively, as follows:
E½BNT � ¼
fD�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞgE½S�

1� qH
ð49Þ
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and
E½DNT � ¼
afD�ðkÞðE½F � þ f0 þ kE½U �Þ þ 1� D�ðkÞgE½S�E½R�

1� qH
. ð50Þ
4.3.2. Expected length of the idle period
Now let us find the LST I�NT ðhÞ of the idle period (INT) for the NT policy M/G/1 queueing sys-

tem, in which the unreliable server applies the same operations described in the first paragraph of
this section. It can be shown from Takagi [5, Section 2.2] that
I�NT ðhÞ ¼ D�ðkÞ½F ð1� h=kÞ � f0 þ f0I�oðhÞ�U �ðhÞ þ ð1� D�ðkÞÞI�oðhÞ ð51Þ

from which we have the expected length of the idle period
E½INT � ¼ D�ðkÞ E½F � þ f0
k

þ E½U �
� 	

þ 1� D�ðkÞ
k

. ð52Þ
4.3.3. Expected length of the busy cycle
The busy cycle for the NT policy M/G/1 queueing system is denoted by XNT. From (48) and

(52), we have
E½XNT � ¼
D�ðkÞfE½F � þ f0 þ kE½U �g þ 1� D�ðkÞ

kð1� qHÞ
. ð53Þ
5. Special cases

In this section, we present some existing results in the literature which are special cases of our
system.

Case 1. As D*(k) = 0 and a = 0, Model 1 and Model 2 can be reduced to the ordinary M/G/1
queueing system with a reliable server. In this case, the results coincides with those of Klein-
rock�s system [39].
Case 2. Suppose that we have Pr[U = 0] = 1 and a = 0; then if we put T =1 and D*(k) = 1,
Model 1 and Model 2 can be reduced to the N policy M/G/1 queueing system with a reliable
server. In this case, the results coincides with those of Heyman�s system [6].
Case 3. Suppose that we let Pr[U = 0] = 1 and a = 0; then if we put N =1 and D*(k) = 1,
Model 1 can be reduced to the ordinary M/G/1 queueing system with a reliable server and mul-
tiple vacations of fixed length T. In this case, our model can describe the T policy M/G/1
queueing system, Eq. (24) for E[W] and (37) for E[XNT] can be simplified to the following
expressions:
E½W � ¼ T
2
þ kE½S2�
2ð1� qÞ
and
E½XNT � ¼
T

1� q
;
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which are in accordance with those of Heyman�s system [3] or Takagi�s system [5, Section 2.2]
with multiple vacations of fixed length T.
Case 4. Suppose that we let Pr[U = 0] = 1 and a = 0; then if we put N =1 and D*(k) = 1,
Model 2 can be reduced to the ordinary M/G/1 queueing system with a reliable server and a
single vacation of fixed length T. In this case, Eq. (46) for E[W] and (53) for E[XNT] can be sim-
plified to the following expressions:
E½W � ¼ kT 2

2ðf0 þ kT Þ þ
kE½S2�
2ð1� qÞ
and
E½XNT � ¼
f0 þ kT
kð1� qÞ ;
which agree with those of Takagi�s system [5, Section 2.2] with a single vacation of fixed lengthT.
Case 5. Suppose that we let a = 0; then if we put T =1 and D*(k) = 1,Model 1 can be reduced
to the N policy M/G/1 queueing system with a reliable server and a startup. In this case,
Eq. (24) for E[W] can be simplified to the following expression:
E½W � ¼ kE½S2�
2ð1� qÞ þ

NðN � 1Þ þ 2NkE½U � þ k2E½U 2�
2kðN þ kE½U �Þ ;
which is the same as � dW �ðhÞ
dh

���
h¼0

for Eq. (5.1) in Takagi [40].

Case 6. Suppose that we let a = 0; then if we put T =1,Model 1 can be reduced to theN policy
M/G/1 queueing system with a reliable server, startup and closedown times. In this case,
Eq. (24) for E[W] can be simplified to the following expression:
E½W � ¼ kE½S2�
2ð1� qÞ þ

D�ðkÞfNðN � 1Þ þ 2NkE½U � þ k2E½U 2�g
2k½D�ðkÞðN þ kE½U �Þ þ 1� D�ðkÞ� ;
which is identical to (2.63b) given in Takagi [5, Section 2.2].
Remark 1. Note that when f0 = 0, the results of Model 2 are the same as those of Model 1.
6. Conclusions

In this paper, we analyzed the system size distribution of an M/G/1 queueing system with an
unreliable server and generalized vacations. Using the analytical results, we derived the LSTs
of various system characteristics for two different kinds of NT policy M/G/1 queueing system with
a startup and closedown time possibly considered. This research presents an extension of the gen-
eralized vacation model theory and the analysis of the model will provide a useful performance
evaluation tool for more general situations arising in practical applications (see [32]).
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The research work related to the numerical results and the further comparison of the optimized
system based on this paper are more practical but complicated analytically. In the future, the
work can be considering other variant dyadic policies (such as ND policy, TD policy, . . .) or tri-
adic policies. Another interesting extension of this work is to consider a control vacation policy
where the server reactivates when there are more than N customers in the queue, or the server
reactivates with a possible probability when the first customer has waited for at least T units of
time and the queue size doesn�t reach the predetermined threshold N.
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