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a b s t r a c t

A phenomenological study of parabolic and spherical indentation of elastic ideally plastic materials was
carried out by using precise results of finite elements calculations. The study shows that no ‘‘pseudo-
Hertzian’’ regime occurs during spherical indentation. As soon as the yield stress of the indented material
is exceeded, a deviation from the, purely elastic Hertzian contact behaviour is found. Two elastic–plastic
regimes and two plastic regimes are observed for materials of very large Young modulus to Yield stress
ratio, E/ry. The first elastic–plastic regime corresponds to a strong evolution of the indented plastic zone.
The first plastic regime corresponds to the commonly called ‘‘fully plastic regime’’, in which the average
indentation pressure is constant and equal to about three times the yield stress of the indented material.
In this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. hc/h = 1.47.
hc/h is only constant for very low values of yield strain (ry/E lower than 5 � 10�6) when aE⁄/Rry is higher
than 10,000. The second plastic regime corresponds to a decrease in the average indentation pressure and
to a steeper increase in the pile-up. For materials with very large E/ry ratio, the second plastic regime
appears when the value of the non-dimensional contact radius a/R is lower than 0.01. In the case of spher-
ical and parabolic indentation, results show that the first plastic regime exists only for elastic-ideally
plastic materials having an E/ry ratio higher than approximately 2.000.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction the surrounding elastic strains. In these circumstances the
A characteristic feature of the spherical indention is that dif-
ferent regimes can occur during the deformation of metals. So
far, elastic, elastic–plastic with elastically-dominated and plasti-
cally dominated parts, fully plastic and finite deformation regimes
were observed for spherical indentation (Hertz, 1881; Tabor,
1951; Johnson, 1985; Mesarovic and Fleck, 1999; Park and Pharr,
2004; Pane and Blank, 2006). The deformation process produced
during spherical indentation is well described if the regime is
elastic, but this is more complex when plasticity occurs. Many
experimental and numerical studies have been performed in or-
der to understand the phenomena which occur during spherical
indentation. Following the early work of Tabor (1951), Johnson
(1985) suggested that the spherical indentation process can be di-
vided into three distinct regimes: elastic, elastic–plastic and fully
plastic. When the yield point is first exceeded the plastic zone is
small and fully contained by material which remains elastic so
that the plastic strains are of the same order of magnitude as
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material displaced by the indenter is accommodated by an elastic
expansion of the surrounding solid. As the indentation becomes
more severe, either by increasing the load, an increasing pressure
is required beneath the indenter to produce the necessary expan-
sion. Eventually the plastic zone reaches the free surface and the
material is free to move by plastic flow to the sides of the inden-
ter. This is the ‘‘uncontained’’ mode of deformation analysed by
the theory of rigid-plastic solids proposed by Ishlinsky (1944)
which used the slip-line method, as well as Hill et al. (1989)
and Biwa and Stôrackers (1995) which used deformation and flow
theory, respectively. It is assumed that the two ranges of loading,
i.e. elastic–plastic and fully plastic, correspond respectively to the
‘‘contained’’ and ‘‘uncontained’’ modes. For the ‘‘uncontained’’
mode, the elasticity is considered as negligible. According to the
similarity solution proposed for the ‘‘uncontained mode’’ (Biwa
and Stôrackers, 1995), the upper limit of the mean contact pres-
sure, which is usually interpreted as the material hardness, is
equal to three times the yield strength of an elastic ideally plastic
material. In the elastic–plastic regime, the mean contact pressure
starts from a value equal to 1.07ry and reaches the value of the
similarity solution. The ratio between the mean contact pressure,
Pm, and the yield stress corresponds to the ‘‘constraint factor’’
called w, which is commonly used to study the transition

http://dx.doi.org/10.1016/j.ijsolstr.2012.04.005
mailto:Olivier.bartier@univ-rennes1.fr
mailto:Xavier.hernot@univ-rennes1.fr
mailto:Xavier.hernot@univ-rennes1.fr
http://dx.doi.org/10.1016/j.ijsolstr.2012.04.005
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


2016 O. Bartier, X. Hernot / International Journal of Solids and Structures 49 (2012) 2015–2026
between elastic–plastic and ‘‘fully’’ plastic regime. On the basis of
results of different experimental and numerical indentation tests
using spheres, Johnson (1985) showed that fully plastic deforma-
tion is reached at a value K = E⁄a/(ryR) � 40. For elastic-ideally
plastic solids, w increases until the ratio E⁄a/(ryR) is equal to
40–50 (Mesarovic and Fleck, 1999). More recently, for a range
of E⁄/ry ratio, which includes most metals, Park and Pharr
(2004) showed that full plasticity is achieved when the value of
the ratio E⁄a/(ryR) is equal to 50–200. For elastic-ideally plastic
materials of E/ry ratio in the range 20–1500, which covers most
metals, ceramics, and glasses, the results suggest that fully devel-
oped plasticity, as conventionally defined by the point at which
the constraint factor levels off at a value of about 3, starts at
the much higher value E⁄a/(ryR) = 110 (Taljat and Pharr, 2004).
Lastly, in a study of the role of plasticity in spherical indentation
for different kinematic and isotropic materials, the limit between
the elastic–plastic regime and the fully plastic regime was fixed
at E⁄a/(ryR) = 80 by Pane and Blank (2006).

Another parameter, c2, and equal to a2/(2hR), is also used in or-
der to study the deformation regimes. This parameter was pro-
posed in order to quantify the degree of piling-up and sinking-
in during the indentation test. c2 > 1 indicates piling-up, whereas
c2 < 1 accounts for sinking-in (Matthews, 1980; Hill et al., 1989;
Taljat et al., 1998; Alcala et al., 2000; Kucharski and Mröz,
2001). In the case of material elastically deformed by indentation,
c2 is constant and equal to 0.5. When the stress under the inden-
ter is higher than the yield stress of the indented material, this
parameter increases with the indent depth during a stage called
‘‘elastic–plastic indentation regime’’ (Mesarovic and Fleck,
1999). For higher indent depths, the c2 parameter is again consid-
ered constant during the stage called ‘‘fully plastic regime’’ (Mat-
thews, 1980; Hill et al., 1989; Taljat et al., 1998; Alcala et al.,
2000). For indentation by a sphere, Bower et al. (1993) and Mes-
arovic and Fleck (1999) show that the fully plastic regime can be
subdivided into two regimes. For relatively small contact sizes, a
similarity solution applies while for large contact sizes, a finite
deformation mode dominates. Mesarovic and Fleck (1999) define
the first regime: ‘‘plastic similarity regime’’, in which w and c2 are
constant. By observing the results of Mesarovic and Fleck (1999),
we can notice a difference between the lower limit of the ‘‘fully
plastic regime‘‘ determined by c2 and the lower limit of the ‘‘plas-
tic similarity regime’’ determined by w and c2. For example, in the
case of E⁄/ry ratio equal to 10,000, w is constant when E⁄a/(ryR) is
equal to about 40–50 and c2 is constant when E⁄a/(ryR) reaches
the value of 1000. The second regime inside the ‘‘fully plastic re-
gime’’, called ‘‘finite deformation regime’’ by Mesarovic and Fleck
(1999), occurs for large contact sizes and corresponds to a drop of
w and c2. ‘‘For smaller E⁄/ry ratios, Mesarovic and Fleck (1999)
showed that the plastic similarity regime is never reached since
c2 increases in the elastic–plastic regime and immediately falls
with increasing contact size in the stage called ‘‘finite deforma-
tion regime’’. For Bower et al. (1993) and Mesarovic and Fleck
(1999), the drop in c2 value for large contact sizes represents
the failure of the assumptions involved in the similarity solution,
especially the assumption of infinitesimal strain kinematics
(Bower et al., 1993; Mesarovic and Fleck, 1999) and the boundary
condition of uniform normal velocity (Mesarovic and Fleck, 1999).
We can notice that the similarity solution was also determined
with the assumption that the geometric profile of the indenter
can be represented by a power-law relationship. This assumption
includes indentation by a rigid sphere, since, for small contact
sizes, the profile of a sphere can be approximated by a paraboloïd
of revolution. For large contact sizes, the failure of this assump-
tion in the case of spherical indentation can also explain the drop
in the a2/2hR ratio. Indeed, in a recent study, Hernot et al. (2006)
showed that the use of the c2 parameter has for consequence a
noticeable underestimation of the contact radius for large values
of penetration depth because the spherical indenter cannot be
considered as similar to the parabolic indenter.

The aim of this work is to study the different indentation re-
gimes during parabolic and spherical indentation of elastic-ideally
plastic materials on the basis of precise numerical simulations. For
our study, we propose to analyse the evolution of the constraint
factor w, the contact depth–penetration depth ratio (hc/h), the c2

parameter and two non-dimensional expressions (dF/da).(a/F)
and (da/dh).(h/a) during the indentation test. The expansion of
the plastic deformation in the indented zone and the location of
the maximum plastic deformation will be also studied in this work.
In a first step, the analysis is carried out by using the results of
numerical simulations of the indentation of an elastic–plastic
half-space by a frictionless rigid paraboloïd of revolution. This type
of indenter is used for the same reason as mentioned before in a
previous study (Hernot et al. (2006)). In a second step, some
numerical simulations are performed in the case of a rigid
spherical indenter in order to study the influence of the shape of
the indenter on the indentation regimes for high contact radius
values. Another goal of the proposed paper is to validate the use
of the non dimensional expressions (dF/da)�(a/F) and (da/dh)�(h/a)
for the study the indentation of elastic-ideally plastic materials.
This work is the first step before studying the indentation regimes
during spherical indentation of work hardened materials by using
the non-dimensional expressions (dF/da)�(a/F) and (da/dh)�(h/a).
The proposed paper is a contribution to the study of material
elastoplastic properties evaluation by spherical indentation.
Tabor’s relation or plastic similarity solution are used in various
methodologies for mechanical property extractions through inden-
tation experiment (Tabor 1951; G. Sundararajan and Tirupataiah,
1994; Field and Swain 1995; Taljat et al. 1998; Ahn and Kwon
2001; Kucharski and Mröz, 2001, 2004, 2007; Huber and Tyulyu-
kovskiy, 2003; Mulford et al. 2004; Weiler et al. 2005; Herbert
et al. 2006; Jeon et al. 2006; Kim et al. 2006; Jiang et al. 2009;
Zhang et al., 2009). W and c2 parameters are used in Tabor’s rela-
tion and plastic similarity solution. Most of these methods were
used with the assumption that the indentation regime is fully plas-
tic. The results of the proposed work allow the validity of these
methods in the case of weak strain hardened material to be
determined.

2. Numerical procedure

Numerical simulations were principally performed with rigid
parabolic indenter geometry, defined by the equation z = r2/(2R),
where r and z are respectively the radial and the vertical coordi-
nates and R is the radius of the osculatory circle. Several numerical
simulations of spherical indentation were performed in order to
examine the difference between the results obtained for spherical
indentation and parabolic indentation. These simulations were
performed in axisymmetric mode and under frictionless contact
conditions (l = 0) using the large strain elastic–plastic feature of
the Abaqus finite element code. A typical mesh, comprising four-
noded axisymmetric elements CAX4 (Abaqus, 1995), is shown in
Fig. 1. In order to obtain precise values of contact radius through-
out the indentation test, different numerical simulations were per-
formed with parabolic indenters of R values chosen in the range of
0.316 to 316,000 mm (R = 0.316, 1, 3.16, 10, etc.). Each finite ele-
ment calculation was performed so that the final contact radius
is equal to 1 mm. The dimensionless indentation curves a⁄–F⁄

and h⁄-a⁄ (a⁄ = a/R; F⁄ = F/(E⁄R2), h⁄ = h/R) were obtained by assem-
bling the final parts of the different indentation curves obtained for
each value of R. With this procedure, a minimum of 100 elements
became directly in contact with the rigid indenter for each point of
the indentation curves a⁄–F⁄ and h⁄–a⁄ used in this study. The mesh



Fig. 1. Typical finite-element mesh, composed of four-noded axisymmetric ele-
ments and rigid parabolic indenters: (a) overall; (b) detail in the region of contact.

Fig. 2. Proposed method for smoothing the numerical data.
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size was chosen so that, in all cases, the contact radius was 500
times smaller than the total length. According to the Hertz theory,
good numerical results were obtained with this mesh size for the
elastic indentation regime.

The constitutive model of the elastic-ideally plastic indented
material was taken to follow the well known J2-associated flow
theory with rate-independent deformation.

Finite element simulations were performed for materials exhib-
iting values of ry = 0.105, 1.05, 10.5, 105, 1050, 4200 and
10,500 MPa. Young modulus of 210 GPa and Poisson ratio of 0.3
are used for all simulations. These values were chosen in order to
give ry/E ratio in the range of 1/2,000,000–1/20, which includes
most metals.

The actual contact radius a in our FE analysis depends of the
horizontal coordinate of the last contact edge ‘‘node’’ between in-
denter and specimen. Because the actual contact radius is a dis-
crete value and depends on the mesh size of contact surfaces,
noisy (dF/da)�(a/F) and (da/dh)�(h/a) ratios were obtained starting
from the FE results. A similar problem due to the discrete incre-
ments in contact size was found by Mesarovic and Fleck (1999).

In order to obtain non-noisy (dF/da)�(a/F) and (da/dh)�(h/a) ra-
tios, fitted linear regression models with a least squares approach
were used in different intervals of the ln(a⁄)–ln(F⁄) and ln(h⁄)–
ln(a⁄) curves (Fig. 2). The interval used for the linear regression
of each point Xi includes the closest to Xj points (denoted by square
symbols in Fig. 2), such as:
Xi=v 6 Xj 6 v:Xi ð1Þ

where v is a constant which defines the length of the interval used
to fit the linear regression model to the data.

Examples of K–w and K–(dF/da)�(a/F) relationships obtained by
using the proposed method are shown in Fig. 3.

For the results shown in Fig. 3b, various lengths of interval used
for the linear regression were tested. The results show that the best
fit for the data was obtained for a v parameter approximately
equal to 1.2. For this reason, the value of v was fixed at 1.2 for
all the fitted results.

Fig. 4 shows a K–(dF/da)�(a/F) curve obtained by assembling the
final parts of the different numerical results obtained for each va-
lue of indenter radius, R, and after fitting the linear regression
model to the data. In this figure, the values of the coefficients of
determination, r2, are very close to 1 and thus indicate that the pro-
posed model is a good fit.

Fig. 4 shows discontinuities in the assembled final K–(dF/da)
�(a/F) curve at transitions between the numerical results obtained
for each value of indenter radius, R. These discontinuities do not
correspond to characteristic events during spherical indentation
but are due to the low number of nodes in contact at the beginning
of each finite element simulation. These discontinuities will not be
taken into account in the study of (dF/da)�(a/F) and (da/dh)�(h/a)
curves.
3. Parabolic indentation of elastic-ideally plastic materials of
larger E/ry ratio

Johnson (1985) argued that the degree of deformation in elas-
tic–plastic indentation depends upon the ratio of the representa-
tive strain a/R beneath the indenter to the Yield strain ry/E⁄ of
the half-space. Thus the degree of indentation is defined by the sin-
gle non-dimensional group aE⁄/Rry, which we shall name K. With
this rationale in mind, (dF/da)�(a/F) and (da/dh)�(h/a) ratios are
plotted versus aE⁄/Rry in Fig. 5, for parabolic indentation and mate-
rials with large E/ry ratios.

In these curves, different regimes can be distinguished. For
small values of aE⁄/Rry, the (da/dh)�(h/a) and (dF/da)�(a/F) ratios
are constant and respectively 0.5 and 3, which correspond to the
theoretical values of Hertz (1896). Starting from a critical value
of aE⁄/Rry,, the (dF/da)�(a/F) ratio decreases quickly then less
quickly until it reaches the value of 2. When this value is reached,
(dF/da)�(a/F) stabilizes and then decreases again. The lower the



Fig. 3. Numerical and fitted curve of w versus K obtained with v = 1.2 (a); fitted curves of K–(dF/da)�(a/F) obtained with various values of v (b); material of E/ry ratio equal to
2000.

Fig. 4. K–(dF/da)�(a/F) fitted curve and values of coefficients of determination
obtained for a material of E/ry ratio equal to 2000 (v = 1.2).

2018 O. Bartier, X. Hernot / International Journal of Solids and Structures 49 (2012) 2015–2026
E/ry ratio of the indented material, the earlier and steeper is the
last decrease in (dF/da)�(a/F).

As for the (dF/da)�(a/F) ratio, a big change in the (da/dh)�(h/a)
ratio occurs for the same values of aE⁄/Rry. The (da/dh)�(h/a) ratio
Fig. 5. (dF/da)�(a/F), (dF/h)�(h/F) and (da/dh)�(h/a) ratios
increases quickly starting from the elastic regime and up to a value
of K of about 8. Starting from K = 8, the (da/dh)�(h/a) ratio de-
creases and when K is higher than approximately 10,000, the
(da/dh)�(h/a) tends towards the similarity solution, i.e. 0.5, without
reaching this value for materials of E/ry ratio smaller than 200,000.
3.1. Yielding of the material

In parabolic indentation, the elastic regime is valid up to a K
parameter of 2.53. The (dF/da)�(a/F) and (da/dh)�(h/a) ratios show
that the indentation regime is different from the elastic regime
starting from a value of K which is very close to 2.53. This result
is different to those presented by Park and Pharr (2004) and Mes-
arovic and Fleck (1999) in previous studies of the evolution of the
constraint factor during spherical indentation. Indeed, these
authors determined a ‘‘pseudo-Hertzian’’ regime at the beginning
of the yielding of the indented material. For Park and Pharr
(2004), there is no deviation in behaviour from that expected based
on purely elastic Hertzian contact over the range of approximately
0 < K < 3.5. For Mesarovic and Fleck (1999), a ‘pseudo-Hertzian’
behaviour was found up to a value for K of 3.77. The K–w relation-
ship obtained with our numerical calculations for elastic-ideally
plastic materials of different yield stress confirms that no
versus K = aE⁄/Rry for materials of large E/ry ratio.



Fig. 6. Evolution of the constraint factor, w at the beginning of the yielding of the
indented material.
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‘pseudo-Hertzian’ behaviour exists during parabolic and spherical
indentation (Fig. 6). Indeed, this figure shows that the behaviour
is rather different to that of Hertzian behaviour starting from the
yielding of indented materials.

It is also underlined that the reason of the existence of the ‘‘pseu-
do-Hertzian’’ behaviour given by Park and Pharr (2004) is not cor-
rect. For Park and Pharr (2004), the existence of the ‘‘pseudo-
Hertzian’’ behaviour can be understood by considering the evolu-
tion of the plastic zone. Their explanation is that as the plastic zone
grows, it spreads upward and outward, but the plasticity is totally
constrained by surrounding elastic material up to K = 3.5 and at
loads slightly greater than this, the plastic zone first breaks through
the surface. Thus, the region of ‘‘pseudo-Hertzian contact occurs
when 2.52 < K < 3.5. As shown in Fig. 7, our results are not in accor-
dance with the results of Park and Pharr because the plastic zone
first breaks through the surface for a value of K greater than 3.5.
For the different elastic-ideally plastic materials tested in this
study, plasticity is totally constrained by surrounding elastic mate-
rial when the K parameter is equal to 3.5 and 3.77 and the plastic
zone first breaks through the surface when K is about 5.9
(Fig. 7c). In consequence, the deviation in behaviour from that ex-
pected based on purely elastic Hertzian contact is not due to the
break of the plastic zone through the surface.

3.2. Beginning of the plastic deformation

For aE⁄/Rry > 2.53, (dF/da)�(a/F) decreases quickly and (da/dh)
�(h/a) increases quickly up to a value of aE⁄/Rry of about 8
(Fig. 5), a value not far from that for which the plastic zone first
breaks through the surface, i.e. aE⁄/Rry = 5.9 (Fig. 7). On the other
hand, the study of the (dF/dh)�(h/F) ratio shows that this parameter
decreases gradually over the range of 2.53 < K < 1000 (Fig. 5a).
These results and the large changes in (dF/da)�(a/F) and (da/
dh)�(h/a) observed at the first step of yielding indicate that the con-
tact radius increases very quickly.

From K = 8, a decrease in (da/dh)�(h/a) ratio is observed. From
the same value of K, there is less decrease of (dF/da)�(a/F). These
phenomena indicate that the speed of the piling-up formation de-
creases slightly. For Park and Pharr, aE⁄/Rry = 10 corresponds to
the transition between an elastically-dominated regime and a plas-
tically-dominated regime. For these authors, K = 10 corresponds to
the transition of two regimes, in which the indentation behaviour
depends or not on the work hardening characteristics of the in-
dented material. For our work, this explanation is not valid because
the studied materials are elastic-ideally plastic. Fig. 8 shows rather
that K = 12 is a value which is very close to that given by Park and
Pharr (2004) and corresponds to a modification of the location of
the maximum plastic strain. When K is smaller than 12, the max-
imum plastic strain is located along the axis of the symmetry, in
agreement with the Hertzian contact theory. Beyond this value,
Fig. 8 shows that the indentation regime becomes very different
from the elastic regime.

To resume, during the step corresponding to K values in the
range of 2.53 and 12, the plastic zone grows beneath the surface,
spreads upward and outward, breaks through the surface when
K is about equal to 5.9, and is not constrained by surrounding elas-
tic material at the end of the step (Fig. 7). The large changes in the
plastic zone mean, consequently, large changes in the (dF/da)�(a/F)
and (da/dh)�(h/a) ratios over the range of approximately
2.53 < K < 8 (Fig. 5). When K = 12, the location of the maximum
plastic strain is not located along the axis of symmetry.

3.3. ‘‘Elastic–plastic’’ and ‘‘fully plastic’’ regimes

For aE⁄/Rry > 6–8, the (dF/da)�(a/F) ratio decreases slowly up to a
value of K of approximately 200 (Fig. 5a). Fig. 8 shows that the max-
imum plastic strain location moves slowly upwards and outwards
starting from K = 12 and is located at the contact edge when the va-
lue of K is equal to 220. When the maximum plastic strain moves
toward the symmetry axis, i.e. for K values larger than 220, the
(dF/da)�(a/F) ratio and constraint factor, w, remain constant at val-
ues of 2 and 3, respectively, which correspond to the values of the
rigid-ideally plastic similarity solution (Fig. 9a). The values of w
are close of the values determinated by experimental investigations
(O Neill, 1944; Tabor, 1951) or by finite element simulations
(Mesarovic and Fleck, 1999; Park and Pharr, 2004). The value of K
starting from w = 3 is in the range of the values determined by Park
and Pharr (2004), i.e: E⁄a/(ryR) � 50–200. On the other hand, this
value is higher than those obtained by Johnson (1985), E⁄a/(ryR)
� 40; Mesarovic and Fleck (1999), E⁄a/(ryR) � 40–50; Taljat and
Pharr (2004), E⁄a/(ryR) = 110 and Pane and Blank (2006),
E⁄a/(ryR) = 80.

For aE⁄/Rry > 12, the (da/dh)�(h/a) ratio decreases slowly, but
conversely to the (dF/da)�(a/F) ratio is not constant starting from
K = 220 (Fig. 5b).

When K is higher than 10,000, (da/dh)�(h/a) tends towards the
similarity solution, i.e. 0.5 (Fig. 5b). Fig. 9b shows that the similar-
ity solution, i.e. hc/h = 1.47, is attained for a material of E/ry equal
to 2,000,000 when K is equal to 10,000. For materials of E/ry ratio
smaller than 200,000, the c2 parameter increases quickly with K
starting from the elastic regime and increases more slowly for val-
ues of K higher than about 200. This result shows that the models
in which the c2 parameter is considered constant during a stage
called ‘‘fully plastic regime’’ are not correct (Matthews, 1980; Hill
et al, 1989; Taljat et al., 1998; Alcala et al., 2000).

Fig. 9 shows the effect of friction on the values of the similarity
solutions. It is clear from Fig. 9a and b that the values of the simi-
larity solutions in terms of w and hc/h for the case of sticking inden-
tation are respectively higher and smaller than those obtained for
the case of frictionless indentation.

For high values of K, Fig. 5a shows that the (dF/da)�(a/F) ratio
falls starting from the value of the similarity solution. For materials
of an E/ry ratio equal to 200,000 and 20,000, the drop occurs
respectively to values of K lower than 10,000 and 1000. Fig. 9a
shows that the drop of the (dF/da)�(a/F) ratio corresponds to the
drop of the constraint factor, w. The same behaviour has been ob-
served by Mesarovic and Fleck (1999) concerning the constraint
factor, w. Fig. 9b shows that the c2 parameter obtained for the
material of E/ry ratio equal to 20,000 becomes higher than that ob-
tained for the material of E/ry ratio equal to 200,000 for the same
value of K corresponding to the drop of the (dF/da)�(a/F) ratio and



Fig. 7. Evolution of the plastic zone during the parabolic indentation of a material of E/ry = 20,000 (PEMAG = plastic strain according to the Von Mises theory). (a) Yielding of
the material; (b) limit of the‘‘pseudo-Hertzian’’ regime defined by Park and Pharr (2004); (c) plastic zone first breaks through the surface; (d) yielding of the material at the
whole surface contact; (e) maximum plastic strain located at the contact edge; (f) maximum plastic strain located near the surface and the symmetry axis.
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the constraint factor, w. The greater increase in the c2 parameter
starting from a given value of the K parameter indicates that the
formation of the piling-up is accentuated as the indentation
continues. This result obtained for elastic-ideally plastic materials
indented by a parabolic indenter is different from that obtained by
Mesarovic and Fleck (1999) in the case of spherical indentation.
Indeed, Mesarovic and Fleck (1999) found that the beginning of
the finite deformation plasticity regime corresponds to the drop
of the constraint factor, w and the c2 parameter. Moreover, the
drop of the constraint factor, w does not correspond to that of



Fig. 8. Evolution of the localisation of the maximum plastic strain during parabolic indentation of materials of large E/ry ratio.

Fig. 9. Evolution of the constraint factor, w, and c2 parameter during parabolic indentation of materials of large E/ry ratio.
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the c2 parameter in the work of Mesarovic and Fleck (1999). No
explanation was given by these authors. We will discuss about this
point hereafter in the paragraph corresponding to the study of the
spherical indentation.

4. Parabolic indentation of elastic ideally plastic materials of
smaller E/ry ratio

Fig. 10a and b show that a drop in the (dF/da)�(a/F) ratio and the
constraint factor w occurs for materials of smaller E/ry starting
from a value of K, which decreases with decreasing E/ry. Fig. 10c
also confirms that the c2 parameter becomes higher than those of
materials with higher E/ry ratios for a particular value of K. The same
particular value is reached when the (dF/da)�(a/F) and w curves sepa-
rate from those obtained for a rigid plastic material. This phenome-
non occurs during a second plastic regime which corresponds
partly to the finite deformation plasticity defined by Mesarovic
and Fleck (1999). It is further noted from Fig. 10b that the maxi-
mum value of the average pressure associated with the similarity
solution is never attained for an elastic-ideally plastic material
with a E/ry ratio lower than about 20,000. Fig. 10c confirms that
no rigid-ideally plastic similarity regime of constant a2/2hR is ob-
tained during the parabolic indentation of an elastic-ideally plastic
material with a E/ry ratio lower than about 200,000.

Fig. 11 shows the constraint factor, w and the c2 parameter
changes according to the normalized contact size a/R. As was ob-
served by Mesarovic and Fleck (1999), this figure shows that the
curves of constraint factor, w versus a/R seem to coalesce to a sin-
gle master curve when a/R increases. Close examination of Fig. 11a
highlights a small difference between the curves obtained for
materials of a small E/ry ratio (smaller than 200). The existence
of a single master curve depending on the normalized contact size
a/R indicates that the elastic contribution to the strain field be-
neath the indenter is negligible, and the parameter E⁄a/(ryR) ceases
to uniquely define the degree of indentation. For Mesarovic and
Fleck (1999), the elastic contribution to the strain field beneath a



Fig. 10. Evolution of a/F�(dF/da), w and c2 = (hc/h) as a function of K, during parabolic indentation of elastic-ideally plastic materials.

Fig. 11. w and c2 parameters as a function of a/R.
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spherical indenter is negligible for a/R > 0.16, independent of the
magnitude of E/ry. Our results show that this is not the case for
parabolic indentation. Indeed, the curves of the constraint factor,
w versus a/R coalesce to a single master curve starting from a value
of a/R depending on the E/ry ratio of the indented material. For the
higher value of E/ry ratio, the constraint factor, w reaches the value
of similarity solution in a first step and then falls starting from a
very low value of normalized contact size a/R (lower than 0.01) fol-
lowing the master curve. The low value of the normalized contact
size a/R starting from where the finite deformation regime occurs



Fig. 12. Evolution of the localisation of the maximum plastic strain during parabolic indentation of materials of low and medium E/ry ratio.

Fig. 13. Constraint factor, w and contact depth–penetration depth ratio versus K for spherical indentation.
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Fig. 14. Comparison between spherical and parabolic indentations of elastic ideally plastic materials of E/ry ratios equal to 200 and 2000.
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does not validate the definition of the finite deformation regime gi-
ven by Mesarovic and Fleck (1999), i.e., ‘‘as the contact size in-
creases, the tangential velocity of points in contact with the
indenter deviates from the horizontal, so that the uniform vertical
velocity boundary condition ceases to be appropriate’’. For the
lower value of E/ry ratio, the constraint factor, w does not reach
the value of similarity solution and falls starting from a value of
normalized contact size a/R, which increases with decreasing the
value of the E/ry ratio of the indented material.

It was noticed, for materials of very high E/ry ratio
(E/ry > 20,000), that the constraint factor, w is close to the value
of the similarity solution when the maximum plastic strain, lo-
cated near the contact surface moves towards the symmetry axis
(Fig. 8). For these materials, this phenomenon occurs starting from
a value of K = 220. For materials of E/ry ratio lower than 20,000,
the values of K starting from the plastic deformation reaches the
contact edge and the symmetry axis decreases with decreasing
E/ry (Fig. 12). In paragraph 4, the second plastic regime has been
defined as being a regime where the constraint factor decreases
and the c2 parameter increases more with an increase in K. Figs.
10 and 12 show that the maximum plastic strain is located near
the contact surface and tends to move toward the symmetry axis
when the second plastic regime occurs. For small values of E/ry ra-
tio, the maximum plastic strain does not reach the contact edge be-
fore moving toward the symmetry axis because the second plastic
regime occurs for low values of K (Fig. 12c and d). The existence of
the second plastic regime is due to the high values of the plastic
strain located in periphery of the contact and to the greatest
facility of material displacement on the surface. The combination
of these two phenomena has as a consequence a decrease in the
mean contact pressure and a higher increase in the piling-up
(Fig. 10b and c). As the E/ry ratio of the indented material de-
creases, the different plastic regimes preceding the second plastic
regime disappear and are replaced by this one.

Tabor (1951) proposed that the strain value on the edge of a
spherical indentation of a given a/R is the ‘‘representative’’ strain
of the indentation. Figs. 8 and 12 show that there is nothing par-
ticularly important or significant about the plastic strain on the
indentation edge, as it is not always the maximum strain during
plastic deformation. Nanoindentations carried out on the surface
of annealed polycrystalline oxygen-free copper (OFC) of 99.99%
purity, showed that the maximum strain hardening occurs in
areas close to the centre of the indentations even for small a/R
ratios (Chaudhri, 2000; Lim and Chaudhri, 2002). Our results
agree with these experimental results. Indeed, maximum plastic
strain is found close to the centre of the indentations for small
a/R ratios in the case of materials of large E/ry ratio (Figs. 8
and 12a).
5. Spherical indentation of elastic ideally plastic materials

Fig. 13 shows the changes of w and hc/h with respect to K. Ex-
cept for the last part of the curves, the comparison between this
figure and Fig. 10b and c shows that results are similar to those
obtained for the parabolic indentation. The same deformation
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regimes as those presented for parabolic indentation exist for
spherical indentation.

For the final part of the curves shown in Fig. 13, the increase in
w and the decrease in hc/h are due to the loss of contact between
the indented material and the indenter when the value of the con-
tact radius is close to that of the indenter radius.

A more precise comparison between spherical and parabolic
indentations is presented in Fig. 14 in the case of elastic-ideally
plastic materials of E/ry ratios equal to 200 and 2000.

Fig. 14 shows that the difference between the values of c2 ob-
tained for spherical indentation and parabolic indentation is signif-
icant starting from values of non-dimensional contact radii higher
than approximately 0.2. Note that the c2 parameter is equal to a2/
(2hR) in our study. In the case of parabolic indentation, this param-
eter corresponds to the ratio between the contact depth, hc, and the
penetration depth, h. The c2 parameter was also often used in pre-
vious studies to determine the degree of the piling-up or sinking-in
in the case of spherical indentation (Matthews, 1980; Hill et al.,
1989; Biwa and Stôrackers, 1995; Taljat et al., 1998; Mesarovic
and Fleck, 1999; Alcala et al. 2000; Kucharski and Mröz, 2001).
However, this parameter, which is valid for all values of contact ra-
dius in the case of parabolic indentation, is incorrect for high val-
ues of contact radius in the case of spherical indentation.

We showed in a previous study that the use of this parameter in
the case of spherical indentation had, as a consequence, a large
underestimation of the contact radius for high values of penetra-
tion depth (Hernot et al., 2006). In order to obtain a correct value
of the hc/h ratio, it is necessary to use the following parameter,
called c’2, when the profile of the spherical indenter cannot be
approximated by a paraboloid of revolution:

c02 ¼ hc

h
¼ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � a2

p

h
ð2Þ

Fig. 14 confirms that the c2 parameter has consequently a signifi-
cant underestimation of the piling-up for large contact radius in
spherical indentation. Moreover, the examination of the evolution
of the c’2 parameter and of the c2 parameter obtained for the
parabolic indentation shows that the difference between the results
obtained for parabolic indentation and spherical indentation be-
comes significant starting from a value of a/R of approximately
0.3. This result is similar to that obtained for the w parameter.

In paragraph 3, we indicated that Mesarovic and Fleck (1999)
did not explain in their work why the decreases in the constraint
factor, w, and in the c2 parameter do not begin from the same value
of K. The above results explain this. The decrease in the constraint
factor is due to the decrease in contact pressure during the inden-
tation test. The decrease in w occurs starting from a value of K,
which depends on the indented material. The decrease in c2 is only
due to the incorrect formulation of this parameter which is used to
characterize the changes in piling-up or sinking-in.

On the basis of their numerical results, Mesarovic and Fleck
(1999) defined the ‘‘finite-deformation plasticity regime’’ as being
a regime in which the constraint factor, w and the c2 parameter de-
crease. However, the c2 parameter is not valid when it decreases
and thus the definition of this regime is erroneous. The parabolic
and spherical results presented given in Fig. 10b and c and 13 show
that this regime must be replaced by a regime, called in this article
second plastic regime, in which the average pressure decreases (w
decreases) and the formation of the piling-up is accentuated
(greater increase in the hc/h ratio).
6. Conclusion

The different deformation regimes during parabolic and spher-
ical indentation of elastic-ideally plastic material are defined
starting from the numerical study of the evolution of (dF/da)�(a/
F), w, (da/dh)�(h/a) and hc/h versus the single non-dimensional
group, K = E⁄a/ryR and the non-dimensional contact radius, a/R.
The study of the changes in the (dF/da)�(a/F) and the (da/dh)�(h/a)
ratios indicates that, when the yield stress of an elastic-ideally
plastic material is exceeded, several deformation regimes can exist
according to the value of the E/ry ratio of the indented material.

For materials having a very large E/ry ratio, two elastic–plastic
regimes and two plastic regimes were found. A first elastic–plastic
regime is observed up to a K value of approximately 6–12. During
this stage, the maximum plastic strain is located on the axis of
symmetry and the (dF/da)�(a/F) and (da/dh)�(h/a) ratios change a
lot because of the large changes in the plastic zone. The second
elastic–plastic regime corresponds to a weak decrease in (dF/
da)�(a/F) up to a K value of approximately 220. During this step,
no large modification of the plastic zone is found but the maximum
plastic strain location moves slowly upwards and outwards and
then remains located at the contact edge. For the first plastic re-
gime, the (dF/da)�(a/F) ratio and constraint factor, w, remain con-
stant at values of 2 and 3 respectively, which correspond to the
values of the rigid-ideally plastic similarity solution. The study of
the (da/dh)�(h/a) and hc/h ratios shows that no rigid-ideally plastic
similarity regime of constant hc/h is obtained for materials of E/ry

ratio smaller than 200,000. For these materials, the hc/h ratio tends
towards the similarity solution, i.e. 1.47, without reaching this va-
lue. For materials of E/ry ratio higher than 200,000, hc/h and w are
constant when K = 10,000.

For the second and last plastic regime, the mean contact pres-
sure decreases and the piling-up increases even more. This de-
crease in the mean contact pressure and this higher increase in
the piling-up are more marked in the case of the spherical inden-
tation. For materials of very high E/ry ratio, the second plastic re-
gime appears when a/R is lower than 0.01. The low value of the
normalized contact size a/R, from which the second plastic regime
starts, shows that this regime is not related to a change of the
direction of the tangential velocity of the points in contact with
the indenter, as it was stated by Mesarovic and Fleck (1999).

The existence of the second plastic regime is due to the high val-
ues of the plastic strain located in the periphery of the contact and
to the greatest facility of material displacement on the surface. The
combination of these two phenomena leads to a decrease in the
mean contact pressure and a steeper increase in the piling-up.
The results of the finite element calculus show that the first plastic
regime exists during spherical and parabolic indentation only for
elastic-ideally plastic materials of an E/ry ratio higher than approx-
imately 2000. The comparison of the results obtained for parabolic
and spherical indentation shows that the c2 parameter generally
used in order to characterize the evolution of the piling-up or the
sinking-in in the case of spherical indentation is not correct beyond
a value of a non-dimensional contact radius, a/R equal to about 0.2.
When a/R is higher than 0.2, it is necessary to use the c’2 parameter
(c’2 = hc/h), equal to the true contact depth-penetration depth ratio,
in order to correctly determine the contact radius. To conclude, the
complexity of the changes in the (dF/da)�(a/F), w, (da/dh)�(h/a) and
hc/h parameters shows that it is not easy to determine simple rela-
tionships between the penetration depth, h, the contact radius, a,
and the applied load, F, when an elastic-ideally plastic material is
deformed by a sphere or a parabola. Particularly, this study shows
that the a–h power laws, proposed in the literature, are incorrect
with respect to their representation of the contact radius–depth
penetration relationship. This work shows that both Tabor’s rela-
tion and plastic similarity solution can not be used for mechanical
property extractions, through spherical indentation, in the case of
material with very weak strain hardening and E/ry ratio higher
than approximately 2000. The results show that the non-dimen-
sional expressions (dF/da)�(a/F) and (da/dh)�(h/a) are applicable
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for the study of the indentation regimes during spherical indenta-
tion of elastic-ideally plastic materials. This work is a first step be-
fore the study of the indentation regimes of work hardened
materials during spherical indentation, using the non-dimensional
expressions (dF/da)�(a/F) and (da/dh)�(h/a). The advantage of these
expressions is that they do not need the definition of a ‘‘represen-
tative’’ strain, which is needed in the case of w.
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