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Abstract

A celebrated result by Favard states that, for certain almost periodic linear differential systems, the exis-
tence of a bounded solution implies the existence of an almost periodic solution. A key assumption in this
result is the separation among bounded solutions. Here we prove a theorem of anti-Favard type: if there
are bounded solutions which are non-separated (in a strong sense) sometimes almost periodic solutions do
not exist. Strongly non-separated solutions appear when the associated homogeneous system has homo-
clinic solutions. This point of view unifies two fascinating examples by Zhikov–Levitan and Johnson for
the scalar case. Our construction uses the ideas of Zhikov–Levitan together with the theory of characters in
topological groups.
© 2006 Elsevier Inc. All rights reserved.

Résumé

Un résultat célébré de Favard affirme que, pour certains systèmes différentiels linéaires presque pé-
riodiques, l’existence d’une solution bornée implique l’existence d’une solution presque périodique. Une
supposition essentielle dans ce résultat est la séparation des solutions bornées. Ici nous prouvons un théo-
rème de type anti-Favard : s’il y a des solutions bornées qui sont non-séparées (dans un sens fort), parfois il
n’existent pas des solutions presque périodiques. Des solutions fortement non-séparées apparaissent quand
le système homogène associé a des solutions homoclines. Ce point de vue unifie deux exemples fascinants
de Zhikov–Levitan et Johnson pour le cas scalaire. Notre construction utilise des idées de Zhikov–Levitan
ainsi que la théorie de caractères dans groupes topologiques.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the theory of linear differential equations with almost periodic
coefficients. Sometimes this field is called Favard’s theory, due to the contributions made by this
author in [5]. In that paper, published in 1927, Favard discussed the existence of almost periodic
solutions of an equation in RN of the type:

ẋ = A(t)x + b(t), (1)

where the matrix A(t) and the vector b(t) both are almost periodic (in the classical sense of
Bohr).

An important tool in the Favard’s work was the characterization of almost periodicity which
had been recently obtained by Bochner, leading to the concept of hull of an almost periodic
function. For the matrix-valued function the hull HA is composed by those functions A∗(t) which
can be obtained as uniform limits on the real line of the type:

A∗(t) = lim
n→+∞A(t + hn),

where {hn} is some sequence of real numbers. This notion was employed by Favard and its main
assumption was concerned with the bounded solutions of the so-called homogeneous hull of
Eq. (1), namely of the family of equations:

ż = A∗(t)z, A∗ ∈ HA. (2)

The assumption was:

(H) For every A∗ ∈HA, any nontrivial bounded solution to (2) is separated from zero.

For a solution ϕ(t), to be separated from zero means that

inf
t∈R

∣∣ϕ(t)
∣∣ > 0.

It must be noticed that condition (H) is automatically satisfied if the equations in (2) have no
bounded solutions excepting z ≡ 0. It also holds when the matrix A(t) is periodic.

In general, if (H) holds, the bounded solutions of the inhomogeneous hull of (1) must be
separated. This means that, if ϕ1(t) and ϕ2(t) are two different bounded solutions of the same
equation, arbitrarily chosen in the family:

ẋ = A∗(t)x + b∗(t), (A∗, b∗) ∈H(A,b),

then inft∈R |ϕ1(t) − ϕ2(t)| > 0. This separation property is crucial in Favard’s proof of the fol-
lowing statement (“mod” denotes the module of an almost periodic function).
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Theorem 1. (Favard [5]) Assume that (H) holds and (1) has a bounded solution. Then there exists
an almost periodic solution φ with mod(φ) ⊂ mod(A,b).

The main question we address in the present paper is what happens when (H) fails. This
question was already discussed by Zhikov and Levitan in [17] (see also [10]) and by Johnson
in [9]. In both cases the authors constructed fascinating examples of scalar linear equations for
which all the solutions are bounded, but none of them is almost periodic.

The example by Zhikov and Levitan dealt with quasi-periodic functions with two frequen-
cies. The function A(t) was taken from an example due to Bohr. It satisfied certain symmetry
assumptions, and the primitive A(t) = ∫ t

0 A(s) ds was such that

lim|t |→+∞
A(t)

|t |1/2
= −∞.

In Johnson’s example A and b where uniform limits of periodic functions. The function A was
taken from an example by Conley and Miller in [3] and, among other properties, its primitive
satisfies:

A(t) → −∞ as |t | → +∞.

In both examples ϕ(t) = exp(A(t)) is a solution of the homogeneous equation which takes ar-
bitrary small values, but, in fact, we have more: ϕ(t) is homoclinic to zero in the sense that
ϕ(t) → 0 as |t | → +∞. The aim of this paper is to show that Favard’s result does not hold when
such a decay takes place, unifying the two situations in [17] and [9]. Our main assumption is:

(H0) For some A∗ ∈ HA, Eq. (2) has nontrivial bounded solutions, and all of them are homo-
clinic to zero.

The result is summed up in the following statement.

Theorem 2. Assume that (H0) holds. Then there exists an almost periodic vector b(t) such that
mod(b) ⊂ mod(A) and (1) has bounded solutions, but none of them is almost periodic.

We do not know if (H0) could be replaced in the previous theorem by the negation of (H),
namely:

(wH0) For some A∗ ∈HA, Eq. (2) has a bounded solution ϕ with

inf
t∈R

∣∣ϕ(t)
∣∣ = 0, ϕ �≡ 0.

We observe that the main result in [11] implies that a scalar equation with A(t) quasi-periodic,
and represented by a sufficiently smooth function on the appropriate torus, cannot satisfy (H0).
On the other hand, such an equation will satisfy (wH0) as soon as A(t) is unbounded and A(t)
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has zero mean value, disregarding its smoothness. Favard [5] proved indeed that, in this case, one
may always choose A∗ ∈H(A) such that

t∫
0

A∗(s) ds � 0 ∀t ∈ R,

and the claim follows trivially from the unboundedness of this primitive.
An additional criticism about the previous theorem could be the lack of regularity of the

coefficients A and b. A function is in the class AP∞ if it belongs to C∞ and it is almost periodic
together with all its derivatives. The next statement says that smooth counterexamples may be
constructed.

Corollary 3. Assume that A satisfies the hypothesis of Theorem 2 and all its coefficients belong
to AP∞. Then in the conclusions we may take b with coefficients in AP∞.

At the end of the paper, in Appendix A, we give an example of an equation with coefficients
in AP∞ and satisfying (H0).

To conclude, let us notice that Theorem 2 states the nonexistence of almost periodic solutions
to (1) whatever their module is, either contained or not contained in mod(A).

In fact, in Section 2 we will prove that, under the same assumptions of Theorem 2, an almost
periodic solution to (1) must automatically satisfy the module containment property

mod(x) ⊂ mod(A).

This result was suggested to the authors by the proof of Theorem 2.2 in [9]. Then, in Section 6
we will show that these solutions may be seen as the continuous solutions of a suitable abstract
partial differential equation on HA:

Dx = A(ω)x + b(ω), ω ∈ HA. (3)

Here the coefficients A and b are the “extensions by continuity” of the almost periodic functions
A(t) and b(t) to HA (see Section 5). The operator D is a sort of directional derivative which
can be defined because HA has a well-known structure of topological group. This is a standard
approach when A(t) is a quasi-periodic function. In this case HA is isomorphic to a torus and (3)
can be identified with a first order partial differential equation on the torus.

In the same Section 6, we will show that the existence of solutions to (3), which are discon-
tinuous in some unavoidable way, prevents the existence of continuous ones. Hence, the proof
of Theorem 2 reduces to the construction of an almost periodic vector b(t), for which Eq. (3)
admits discontinuous solutions. This will be done in Section 7, by adapting to HA an argument
by Zhikov and Levitan on T2 (see [17, Section 8]). This is a main step in our approach, and the
needed abstraction process justifies a strategical choice we made all through the paper: instead of
dealing with the concrete group HA, we deal with an abstract compact, commutative topological
group. In Sections 3–5, we discuss some generalities of the theory of topological groups and
characters and its relationship with almost periodic functions. The reader who is familiar with
the theory of continuous groups will find that the results in these sections are either well known
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or easy exercises. However, they are a needed preparation for Section 8 and they could be of help
to the reader who is an expert in differential equations but is not familiar with groups.

Finally, in Section 8, we prove Theorem 2 and Corollary 3.
To finish this introduction we mention some other works related to Favard’s theory [2,4,12,

14,16].

Notations. Given a function f (t), by Tτf (t) we denote the translated function f (t + τ). More-
over, the hull of f (t) is the uniform closure (on all the real line) of the set {Tτf : τ ∈ R}. It
is denoted by Hf and, when a topology is considered on it, this is the one associated with the
uniform convergence.

2. Module containment property

The module mod(f ) of an almost periodic function f (t) is the least additive subgroup of the
real numbers containing the Fourier exponents of f (t) (see [1,10]). If g(t) is another almost
periodic function then the module containment property

mod(f ) ⊂ mod(g) (4)

can be characterized in several ways (see [7]). For periodic functions this inclusion just means
that the minimal period of g(t) is a multiple of the minimal period of f (t).

We are interested in finding linear equations of the type (1) for which all almost periodic
solutions satisfy

mod(x) ⊂ mod(A,b). (5)

In the periodic case (A and b have the same period) this happens if the Floquet multipliers of the
homogeneous equation do not lie on S1. The next proposition generalizes this fact. As previously
mentioned, it is inspired by [9].

Proposition 4. Assume that the trivial one is the unique almost periodic solution of the homoge-
neous equation associated to (1). Then every almost periodic solution x(t) to (1) has the module
containment property (5).

Proof. Assume by contradiction that x(t) is an almost periodic solution to (1) which does not
satisfy (5). Because of the characterizations of (4) previously mentioned, this implies the exis-
tence of a sequence (τn) such that

TτnA → A, Tτnb → b but Tτnx � x.

Here, the involved limits are uniform on the real line. On the other hand, up to subsequences
Tτnx → y, almost periodic solution to (1) with y �= x. Thus z = y − x should be a nontrivial
almost periodic solution to the homogeneous equation associated to (1). �

Next we discuss how condition (H0) is related to the module containment property. We recall
that this condition refers to the equations in the homogeneous hull of (1), namely:

ż = A∗(t)z, (6)
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where A∗ ∈ HA. It will be sufficient to impose a condition that is less restrictive than (H0),
namely:

(H′
0) For some A∗ ∈ HA, all the bounded solutions to (6) are homoclinic to zero.

Lemma 5. Assume (H′
0) holds true. Then, for every A∗ ∈ HA, the only almost periodic solution

to (6) is the trivial one.

Proof. By a contradiction argument assume that (6) has a nontrivial almost periodic solution for
some A∗ in HA. Then the same happens to every equation in the family (6). This is a well-known
fact in the theory of linear equations (see for instance [6]). Since almost periodic functions cannot
decay to zero, we find a situation that is not compatible with (H′

0). �
3. Topological groups and characters

The Greek letter Ω will always denote a topological group which is commutative, metrizable,
compact and connected. A generic element will be denoted by ω ∈ Ω and the notation will be
additive, so that the operation will be ‘+’ and the neutral element ‘0.’ The category of these
groups will be denoted by G, its morphisms being the continuous homomorphisms of groups.

An important topological group is the unit circle

S1 = {
z ∈ C: |z| = 1

}
.

This is a multiplicative group, but it is in the category G.
Given an topological group Ω , a character is a morphism Ω → S1. A classical result says that

nontrivial characters always exist as soon as Ω is a nontrivial compact group [15, p. 241]. The
set of all characters of Ω is usually called its dual group and denoted by Ω∗. It is itself a group.
For instance

(
S1)∗ = {

z �→ zn: n ∈ Z
}
.

Another important element of G is the d-torus Td . Here T = R/Z is an additive group isomorphic
to S1, and a generic element will be denoted by θ , where θ ∈ R. From the knowledge of the
characters of S1 it is easy to compute those of Td , obtaining

(
Td

)∗ = {
(θ1, . . . , θd) �→ e2πi(k1θ1+···+kdθd ): kj ∈ Z ∀j

}
.

As a last example, we will present the dual group of a noncompact topological group, namely
the additive group R of the real numbers:

R∗ = {
t �→ eiαt : α ∈ R

}
.

Given a nontrivial character σ ∈ Ω∗, we are interested in its kernel

ker(σ ) = {
ω ∈ Ω: σ(ω) = 1

}
.

It is a (closed and then) compact subgroup of Ω , and then is either discrete (and hence finite)
or perfect. For instance, when Ω = S1, it has to coincide with the n-roots of the unity for some
positive integer n. The next result says this is the only case we can have a finite set.
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Proposition 6. Let be Ω ∈ G and let σ be a nontrivial character. If Ω is not isomorphic to S1

(Ω �∼= S1) then ker(σ ) is perfect.

Proof. Since the image of σ is a compact and connected subgroup of S1, we deduce it has to
coincide with S1 [15, Section 36]. From the isomorphy theorems [15, Section 20] we then deduce
that the quotient group Ω/ker(σ ) is isomorphic to S1.

Assume now that ker(σ ) is discrete, and let U be an open subset of Ω such that (U − U) ∩
ker(σ ) = {0}, where U − U = {ω1 − ω2: ω1,ω2 ∈ U}. The projection π :Ω → Ω/ker(σ ) is
open and so V = π(U) is open in the quotient group. It is now easy to prove that π : U → V

is a homeomorphism. Thus Ω and Ω/ker(σ ) are locally homeomorphic and, in particular, Ω is
locally arcwise connected. This is important in order to apply the theory of covering maps. Since

π−1(V ) =
⋃

ω∈ker(σ )

(ω + U),

and ω1 + U and ω2 + U are disjoint if ω1 �= ω2, we conclude that π is a covering map. Every
covering group of S1 must be isomorphic to R or S1 (see [15, Chapter 9]). Since Ω is compact
we conclude that Ω is isomorphic to S1. �

We shall be interested in topological groups having a one-parameter dense subgroup. More
precisely, we shall consider pairs (Ω,Ψ ) where Ω ∈ G and Ψ : R → Ω is a continuous homo-
morphism whose image is dense in Ω . These pairs will be the objects of a category denoted
by P .

The trivial group belongs to P , endowed by the trivial homomorphism t ∈ R �→ 0. The sim-
plest nontrivial element of P is given by S1, together with any nontrivial element of R∗. The next
lemma characterizes the elements of P having groups which are isomorphic to S1.

Lemma 7. Assume (Ω,Ψ ) ∈ P . Then Ω ∼= S1 if and only if Ψ is periodic and nonconstant.

Proof. Assume first Ω ∼= S1 in G, and let Φ be the isomorphism. We deduce that Φ ◦ Ψ is a
nontrivial element of R∗, and then periodic and nonconstant function. The same happens to Ψ .

Assume now Ψ is periodic and nonconstant, and let T > 0 be its minimal period. The kernel
of Ψ is composed by the multiples of T , ker(Ψ ) = T Z, while the image Ψ (R) = Ψ [0, T ] is at
the same time compact and dense in Ω . Thus Ψ is an epimorphism and the theorem of isomorphy
applies to conclude that Ω ∼= R/T Z ∼= S1. �

Another important element of P is the d-dimensional torus Td together with an homomor-
phism of the type

t ∈ R �→ (ν1t, . . . , νd t) ∈ Td .

Here the frequency vector (ν1, . . . , νd) is a vector of Rd , and the previous homomorphism may
be visualized as a winding on the torus. In order to satisfy the density assumption, its compo-
nents ν1, . . . , νd must be taken linearly independent over Z. These vectors are usually called
nonresonant.

We end the section by introducing the notion of morphism (Ω1,Ψ1) → (Ω2,Ψ2) between two
elements of P . This is a morphism Φ :Ω1 → Ω2 in the category G which preserves the dense



R. Ortega, M. Tarallo / Journal of Functional Analysis 237 (2006) 402–426 409
subgroups, namely such that

Φ ◦ Ψ1 = Ψ2.

Notice that every morphism of P has some extra properties, which are hidden in the definition
and which can be easily checked by means of standard density and compactness arguments:
between any two elements of P there is at most one morphism, and it is in fact an epimorphism.

In some sense, the class of the morphisms of P induces a partial order structure on P itself, up
to isomorphisms. As we will see in Section 5, this order structure plays a key role when handling
almost periodic functions. The next lemma is helpful in deciding when morphisms do exist.

Lemma 8. There exists a morphism (Ω1,Ψ1) → (Ω2,Ψ2) if and only if, for every sequence (τn),
Ψ1(τn) → 0 implies Ψ2(τn) → 0.

Proof. The necessity of the condition follows from the continuity of any morphism Φ . Concern-
ing the sufficiency, first define Φ on ImΨ1 by setting Φ(Ψ1(t)) = Ψ2(t). That this is well done,
and, in fact, defines a uniformly continuous map on ImΨ1, is a consequence of the following
property:

Ψ1(tn) − Ψ1(sn) → 0 implies Ψ2(tn) − Ψ2(sn) → 0,

which holds for every sequences (tn) and (sn). Thus Φ can be uniquely extended to a continuous
map on Ω1. Finally, an easy computation shows that Φ is a group homomorphism. �
4. Minimal flows and sections

Let us fix, from now on in this section, a pair (Ω,Ψ ) ∈ P . A flow may be defined on Ω by
means of

ω · t := ω + Ψ (t).

Since Ψ has dense image, the flow is minimal, i.e. it has no closed invariant subsets but the empty
set and Ω itself. Indeed, the equality

ω · R = ω + Ψ (R) = ω + Ψ (R) = Ω

holds for every ω ∈ Ω .
It is worthwhile to notice that the flow cannot have equilibria or periodic orbits unless Ω = 0

or Ω ∼= S1. This is a consequence of Lemma 7.
The problem we address in this section is how to construct a global section for the above

considered flow.
As an example, consider first the case Ω = Td , with Ψ the winding map associated to the

nonresonant vector (ν1, . . . , νd) ∈ Rd . This flow is induced by the differential equation

θ̇1 = ν1, . . . , θ̇d = νd,

and, due to the nonresonance condition, the frequencies must be nonzero. Choose for instance
ν1 �= 0. Then any flow line crosses infinitely many times the subset of Td described by the
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equation θ1 = 0 (mod 1), and consecutive intersections are separated by a time interval of length
1/ν1. Hence this set is a global section for the flow.

The question is how to do the same in the general case. To this aim notice that, in the previous
example, the section was in fact the kernel of the nontrivial character (θ1, . . . , θd) �→ ei2πθ1 .
Moreover, the kernel of any nontrivial character of Td plays exactly the same role. A kernel is
defined by the equation

k1θ1 + · · · + kdθd = 0 (mod 1)

for some suitable integers k1, . . . , kd . They cannot be all zero, because the character is nontrivial,
and from the nonresonance of the frequency vector we deduce that

k1ν1 + · · · + kdνd �= 0.

Denoted by 1/T the above number, it not difficult to see that any flow line crosses the kernel at
time intervals of length T .

Next proposition says this is the typical situation. To simplify the notations, from now on we
will assume that σ ∈ Ω∗ is a given nontrivial character (which, of course, implies Ω �= 0), and
we will define:

Σ = ker(σ ) = {
ω ∈ Ω: σ(ω) = 1

}
.

Proposition 9. There exists a T > 0 having the following property: for every ω ∈ Ω there exists
a unique τ(ω) ∈ [0, T ) such that ω · t ∈ Σ if and only if t ∈ τ(ω) + T Z.

Proof. By the construction of the flow, the equality

σ(ω · t) = σ(ω)σ
(
Ψ (t)

)

holds for every ω and t . Since σ ◦Ψ ∈ R∗, we deduce the existence of a (unique) real α such that

σ(ω · t) = σ(ω)eiαt ∀ω, t.

Since the flow is minimal and σ is nontrivial, the number α cannot be zero. Take T = 2π/|α|.
The thesis follows from the existence of a unique real number τ satisfying

σ(ω) = e−iατ

and, moreover, such that 0 � |α|τ < 2π . �
The flow induces the map

Σ × R → Ω, (ω, t) �→ ω · t.

The previous proposition implies that it is onto. The next lemma states an additional property.

Lemma 10. The map defined above is open.
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Proof. Fix ω̂0 ∈ Σ , τ0 ∈ R and define ω0 = ω̂0 · τ0. It is enough to prove that any point ω in Ω

which is close to ω0 can be expressed in the form ω = ω̂ · τ with ω̂ ∈ Σ close to ω̂0 and τ ∈ R

close to τ0. In the notations of the proof of Proposition 9, σ(ω0) = eiατ0 . For ω close to ω0 we
can find τ close to τ0 so that σ(ω) = eiατ . The proof is finished if we define ω̂ = ω · (−τ). �

To finish the section, let us show how to use the global section Σ to parametrize long and
thin strips of Ω along the flow. Take for instance the usual nonresonant flow on the torus. Let us
consider a single flow line: since it has not self-intersections, any finite portion may be enlarged
a little bit without overlapping. As we already noticed at the beginning of the section, the flow
has no self-intersections (equilibria or closed orbits) if Ω �∼= S1. The next statement says that, in
the general case, enlargement without overlapping is possible.

Lemma 11. Assume Ω �∼= S1. For every ω0 ∈ Σ and every bounded interval I ⊂ R, there exists
a U , neighborhood in Σ of ω0, such that the induced flow is injective on U × I .

Proof. Arguing by contradiction, assume the conclusion is false. There should exist pairs
(xn, tn) �= (yn, sn) in Σ × I with xn → ω0, yn → ω0 and such that

xn · tn = yn · sn ∀n.

Rewriting the above equality in the form

xn · (tn − sn) = yn (7)

we deduce that tn �= sn for every n. After extracting a subsequence we can assume tn − sn → τ

for some τ ∈ R and, passing to the limit in (7), we obtain

ω0 · τ = ω0.

This implies that τ = 0 because the flow has no periodic orbits. However, τ = 0 contradicts the
fact that Σ is a section for the flow. Indeed, in this case Eq. (7) says that, starting at xn ∈ Σ ,
we should be back at Σ after time intervals which become smaller and smaller with n. This
contradicts the conclusions of Proposition 9. �
5. Almost periodic functions and groups

Given a pair (Ω,Ψ ) ∈P and f ∈ C(Ω), the function

f (t) = f
(
Ψ (t)

)
(8)

is almost periodic. This can be easily checked because the group Ω is compact. We will say that
the function f (t) is representable over (Ω,Ψ ). By density arguments, it is clear that f ∈ C(Ω)

is unique. As an example consider the case Ω ∼= S1, then the formula (8) gives rise to periodic
functions. This is a consequence of Lemma 7.

An important and well-known point, is that any given almost periodic function f (t) may be
obtained in this way via the notion of hull. The hull Hf is a compact metric space (uniform
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convergence) which becomes an element of G with the operation obtained as the extension by
continuity of the rule

Tτf + Tsf = Tτ+sf ∀τ, s.

The neutral element is f . If we define

Ψf (τ) = Tτf,

the pair (Hf ,Ψf ) is in P . The representation formula (8) holds with

f(f∗) = f∗(0) ∀f∗ ∈ Hf . (9)

This function f is sometimes called the “extension by continuity” of the almost periodic function
f (t) to its hull Hf . All those are standard facts in the theory of almost periodic functions: for a
more detailed discussion see [13].

The next lemma proves that the canonical representation (Hf ,Ψf ) is minimal.

Lemma 12. The almost periodic function f (t) is representable over (Ω,Ψ ) ∈ P if and only if
there exists a morphism (Ω,Ψ ) → (Hf ,Ψf ).

Proof. If the morphism exists, the representation is trivially obtained by composition with the
canonical representation. Assume now f (t) is representable over the given pair, and (8) holds
for a suitable f ∈ C(Ω). By means of Lemma 8, to conclude the proof we have to show that
Ψ (τn) → 0 implies Tτnf → f uniformly. This is a consequence of the identity

Tτnf (t) = f (t + τn) = f
(
Ψ (t + τn)

) = f
(
Ψ (t) + Ψ (τn)

)

together with the uniform continuity of f(ω). �
It is worthwhile to notice what the representability is, in the case Ω is the hull of another

almost periodic function, say g(t). By definition, Ψg(τn) → 0 if and only if Tτng → g uniformly,
and the same holds for f (t). Hence f (t) is representable over (or extends by continuity to)
(Hg,Ψg) if and only if

mod(f ) ⊂ mod(g).

This can be easily checked using the previously mentioned characterizations of this inclusion.
To finish the section, let us consider the derivatives of almost periodic functions and their

representations. Given a function f :Ω → R let us first introduce a notion of derivative along the
flow, by means of

DΨ f(ω) = lim
1 {

f(ω · τ) − f(ω)
}
.

τ→0 τ



R. Ortega, M. Tarallo / Journal of Functional Analysis 237 (2006) 402–426 413
Notice that, if Ω = Td and the flow is associated to the nonresonant vector ν ∈ Rd , then the
previous derivative is in fact a directional derivative, namely:

DΨ = ∂

∂ν
=

d∑
i=1

νi

∂

∂θi

.

Assume now that an almost periodic function f (t) is representable over (Ω,Ψ ) and has a deriv-
ative f ′(t). If (8) holds then DΨ f exists on the points of the image of Ψ and we have

f ′(t) = DΨ f
(
Ψ (t)

) ∀t. (10)

The next result explores when this formula induces a representation for f ′(t).

Lemma 13. In the previous conditions for f (t), the derivative f ′(t) is almost periodic if and
only if DΨ f exists everywhere and belongs to C(Ω).

Proof. If DΨ f is continuous one can apply (10) to deduce that f ′(t) is almost periodic. Let us
now assume that f ′(t) is almost periodic and prove the converse. Since mod(f ′) = mod(f ),
Lemma 12 applies to show that f ′(t) is representable over (Ω,Ψ ). Assume

f ′(t) = g
(
Ψ (t)

)

for a suitable g ∈ C(Ω). Because of (10), the equality DΨ f = g holds on the image of Ψ . To show
that it holds on an arbitrary point ω of Ω we pick a sequence ωn = Ψ (τn) → ω and notice that
the following limits:

fωn(t) := f
(
Ψ (τn) + Ψ (t)

) → fω(t) := f
(
ω + Ψ (t)

)
,

f ′
ωn

(t) = f ′(t + τn) = g
(
Ψ (τn) + Ψ (t)

) → g
(
ω + Ψ (t)

)

are uniform on the real line. This implies that fω has derivative and f ′
ω(t) = g(ω · t). In conse-

quence DΨ f exists on the orbit passing through ω and one has:

DΨ f(ω · t) = g(ω · t) ∀t.

For arbitrary ω and t = 0 one deduces that DΨ f = g is continuous. �
6. An abstract partial differential equation

Assume that A is a square matrix of dimension N with coefficients in C(Ω) and b ∈
C(Ω,RN), and consider the equation

DΨ x = A(ω)x + b(ω). (11)

A solution of (11) is a function x : Ω → RN such that DΨ x exists on Ω and the previous identity
is satisfied for all ω ∈ Ω .
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Equation (11) is related to the family of ordinary differential equations

ẋ = A(ω · t)x + b(ω · t), (12)

where ω ∈ Ω acts as a parameter. For instance, if x is a solution of (11) then, for every ω ∈ Ω ,
the function

xω(t) = x(ω · t)

is a solution of (12). This follows from the definition of DΨ . Moreover, if x is continuous, then
xω is almost periodic for every ω ∈ Ω .

Concerning the converse, let us first consider the case where Ω = Td and Ψ (t) =
(ν1t, . . . , νd t), where ν = (ν1, . . . , νd) ∈ Rd is a nonresonant vector. Equation (11) becomes

∂

∂ν
x = A(ω)x + b(ω),

while (12) is a quasi-periodic equation. If this last ordinary equation admits a quasi-periodic
solution with the same frequencies as the coefficients, namely such that

x(t) = x(ω · t), x ∈ C
(
Td ,RN

)
,

then x is a solution of the partial differential equation. This is a standard fact in the theory of the
quasi-periodic equations: the next lemma extends it to the general case.

Lemma 14. Assume that, for a given ω∗ ∈ Ω , Eq. (12) has a solution x∗(t) = x(ω∗ · t) with
x ∈ C(Ω,RN). Then x is a solution to (11).

Proof. The proof is the same as for the quasi-periodic case; we give it hereafter just for the
convenience of the reader. It is clear that, for every τ ∈ R, the translated function Tτ x∗ is an
almost periodic solution to (12) with respect to ω∗ · τ . Fix now an ω ∈ Ω and choose τn such that
ω∗ · τn → ω. By the uniform continuity of x, we know that x(ω∗ · τn · t) → x(ω · t) uniformly on t .
On the other hand, standard arguments apply to show that the function x(t) = x(ω · t) solves the
limiting equation (12). Since

ẋ(t) = DΨ x(ω · t)

holds true, the thesis follows by taking t = 0 in (12). �
By summarizing the previous discussion, we showed that those almost periodic solutions

to (12) which are representable over (Ω,Ψ ), are in one-to-one correspondence with the contin-
uous solutions of (11). The next proposition is concerned with the discontinuous solutions to the
same equation.

Before stating the result, let us notice that the set of the continuity points of any solution
of (11) cannot be arbitrary: because of the uniqueness of the initial value problem associated
to (12), it has to be a subset of Ω which is invariant for the flow induced by Ψ . Moreover, let
us point out that we are interested in discontinuities which are in some sense unavoidable: if



R. Ortega, M. Tarallo / Journal of Functional Analysis 237 (2006) 402–426 415
y is a function on Ω , and C ⊂ Ω is the set where y is continuous, we will say that y has non-
removable discontinuities when it cannot be modified outside C, obtaining a continuous function.
For instance, this implies that C �= ∅.

The next result will show that, under certain circumstances, continuous and discontinuous
solutions to (11) cannot coexist. To this aim, consider the class of homogeneous ordinary differ-
ential equations

ż = A(ω · t)z (13)

with ω ∈ Ω , and rewrite condition (H′
0) as

(K′
0) For some ω ∈ Ω , all the bounded solutions to (13) are homoclinic to zero.

Proposition 15. Assume that (K′
0) holds. If (11) admits a bounded solution with non-removable

discontinuities, then it has no continuous solutions.

Proof. Let y be a bounded solution to (11) with non-removable discontinuities, and assume by
contradiction that x is a continuous solution of the same equation. Due to the compactness of Ω ,
x is also bounded. If ω∗ ∈ Ω denotes a point where (K′

0) is satisfied, we must have

y(ω∗ · t) − x(ω∗ · t) → 0 as |t | → +∞. (14)

Let now ω ∈ Ω be a continuity point of y. Since the flow on Ω is minimal, the ω-limit of ω∗
coincides with Ω . Hence there is a sequence tk → +∞ such that ω∗ · tk → ω. As a consequence
of (14) we have

y(ω) = lim
k

y(ω∗ · tk) = lim
k

x(ω∗ · tk) = x(ω).

This is impossible for y. �
7. Construction of discontinuous solutions

Assume that A is an N × N matrix with coefficients in C(Ω), and consider the following
condition:

(K′′
0) For some ω ∈ Ω , Eq. (13) admits a nontrivial solution homoclinic to zero.

The aim of this section is to prove the proposition.

Proposition 16. If (K′′
0) holds, then there exists a term b ∈ C(Ω,RN), for which Eq. (11) has a

bounded solution with non-removable discontinuities.

From now on, we will assume that condition (K′′
0) is satisfied. In the remaining part of the

section, we will prove the previous proposition.
The next lemma is a first step in this direction.
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Lemma 17. Assume that condition (K′′
0) holds. Then Ω is nontrivial and, moreover, we have

Ω �∼= S1.

Proof. Due to Lemma 7, we have to prove that Ψ is aperiodic. By contradiction assume it is
periodic. Then Eq. (13) is periodic for every ω ∈ Ω . Then, as a consequence of the Floquet
theory, its bounded solutions must be almost periodic. In particular, they must be separated from
zero (see for instance [7, Theorem 5.7]). This is impossible for the ω’s which condition (K′′

0)

refers to. �
From now on, let ϕ(t) be a nontrivial solution to

ż = A(ω∗ · t)z (15)

satisfying

lim|t |→+∞ϕ(t) = 0. (16)

Then, define on Ω the following function:

z(ω) =
{

ϕ(t) if ω = ω∗ · t , t ∈ R,
0 otherwise.

Since the flow on Ω is aperiodic, z(ω) is well defined for every ω ∈ Ω . Moreover, by construc-
tion, it is a bounded solution to the homogeneous equation

DΨ z = A(ω)z. (17)

Concerning its continuity properties: because ϕ(t) �= 0 for every t , it is discontinuous at any point
of ω∗ · R while, because of (16), it is continuous on Ω \ ω∗ · R.

Summing up, z is a bounded and discontinuous solution to (17). Unfortunately, however,
the discontinuities are removable: indeed, it may be extended to the trivial solution, which on
Ω \ ω∗ · R coincides with z.

To overcome the problem, we will modify the function z on a suitable enlargement of the flow
line ω∗ · R, in such a way that ϕ(t) will be the jump one has by crossing that line. This was done
by Zhikov and Levitan in [17, Section 8, p. 159]), in the particular case where Ω = T2, N = 1
and ϕ(t) is integrable on R.

To start with, let us rewrite ϕ(t) in a more convenient way, as a sum

ϕ(t) =
∑
n∈Z

ϕn(t) (18)

of compactly supported functions. To this aim, chose a sequence {αn}n∈Z of strictly positive real
numbers satisfying

α0 � ‖ϕ‖∞, α−n = αn and
∑

αn < +∞. (19)

n�=0
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Then cover R with a sequence of open and bounded intervals {In}n∈Z, in such a way that each
one has length

|In| > 4 ∀n, (20)

the (n + 1)th interval stays on the right of In, but overlaps it by a fixed length

|In+1 ∩ In| = 2 ∀n, (21)

and finally the following estimate holds:

∣∣ϕ(t)
∣∣ � αn ∀t ∈ In.

Notice that, because of conditions (20) and (21), the covering is locally finite: indeed, each point
has a neighborhood which intersect at most two consecutive intervals.

To construct the covering, one can for instance choose I0 = (a0, b0) such that b0 − a0 > 4 and
a0 < 0 < b0, and so long that |ϕ(t)| � α1 holds outside [a0 +2, b0 −2]. Then define b−1 = a0 +2
and a1 = b0 − 2, and choose I−1 = (a−1, b−1) and I1 = (a1, b1) so long that |ϕ(t)| � α2 outside
[a−1 + 2, b1 − 2]. By repeating the previous process, we obtain the searched intervals. This
construction is possible because of (16), and because each In can be taken arbitrarily large.

Once the covering {In}n∈Z is given, let us consider a C1 partition of unity subordinated to it.
This means to consider a sequence of C1 maps χn : R → [0,1] which satisfy

supp(χn) ⊂ In ∀n

and, moreover:

∑
n∈Z

χn(t) = 1 ∀t.

Notice that, if t /∈ In, then χn(t) ≡ 0 in a neighborhood of t . Hence, if we define

Zt = {n ∈ Z: t ∈ In}

then we have

∑
n∈Zt

χn(t) = 1 and
∑
n∈Zt

χ̇n(t) = 0. (22)

The set Zt will contain one or two elements. Moreover, again due to (20) and (21), the partition
can be chosen so that the derivative of χn satisfies

β1 := sup
n

‖χ̇n‖∞ < +∞.

Finally, we are ready to define

ϕn(t) = χn(t)ϕ(t) ∀n, t.
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The identity (18) holds by construction. Moreover, supp(ϕn) ⊂ In, and the estimates

‖ϕn‖∞ � αn, ‖ϕ̇n‖∞ �
(
β1 + ‖A‖∞

)
αn (23)

trivially hold for every n. The second one depends on the identity

ϕ̇n(t) = χ̇n(t)ϕ(t) + A(ω∗ · t)ϕn(t).

The idea is now the following: for every given n, to interpret ϕn as a function defined on the flow
line segment ω∗ · In, and to extend it to a function un : Ω → RN which has its support in a thin
strip around that segment.

To this aim, from now on let us fix a nontrivial character σ ∈ Ω∗, and denote by

Σ = {
ω ∈ Ω: σ(ω) = 1

}

its kernel. The condition (K′′
0) is invariant by the flow and we prove in Section 4 that Σ is a

global section for the flow on Ω , so it is not restrictive to assume that

ω∗ ∈ Σ.

Next we construct a sequence {Un}n∈Z of open neighborhoods of ω∗ in Σ satisfying that for
each n � 0 (respectively n � 0): Un+1 ⊂ Un [respectively Un−1 ⊂ Un] and the flow is injective
on Un × (In ∪ In+1) (respectively Un × (In ∪ In−1)). The existence of these neighborhoods is
guaranteed by Lemmas 11 and 17. Let Ωn be the image by the flow of Un × In, that is

Ωn = {η · t : η ∈ Un, t ∈ In}.
We know by Lemma 10 that Ωn is open in Ω and the flow (η, t) �→ η · t describes a home-
omorphism between Un × In and Ωn for every n ∈ Z. This fact will be implicitly used sev-
eral times. Another property that can be easily checked and will be useful in the proof of
Lemma 19 is the following: for every n ∈ Z, the flow also describes an homeomorphism be-
tween [Un ∩ Un+1] × [In ∩ In+1] and Ωn ∩ Ωn+1.

Define:

un(ω) =
{

sn(η)ϕn(t) if ω = η · t , η ∈ Un, t ∈ In,

0 otherwise.

Here {sn}n∈Z is a sequence of functions Σ → [0,1], whose definition will be responsible for the
continuity properties of the un’s. To construct them, let us start by fixing two sequences {xk} and
{yk} such that

xk, yk ∈ Σ \ (ω∗ · R), xk, yk → ω∗, xk �= yh ∀h, k.

To justify the existence of these sequences notice that Σ is compact and perfect (Lemma 17 and
Proposition 6) while Γ = Σ ∩ (ω∗ ·R) is countable (Proposition 9). Thus, Baire theorem implies
that Σ \ Γ is dense in Σ . Once we have these sequences we fix a function s : Σ → [0,1], such
that

s ∈ C
(
Σ \ {ω∗}

)
, (24)
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and

s(xk) → 0, s(yk) → 1.

See Appendix A for an explicit construction. Let us point out that the value s(ω∗) will be imma-
terial for the arguments below. Then, localize this function inside each Un, by defining

sn(η) = γn(η)s(η),

where:

(i) γn is continuous on Σ ;
(ii) the support of γn is contained in Un;

(iii) γn ≡ 1 on a neighborhood of ω∗.

Again, see Appendix A for a concrete construction of these functions.
Let us now look at the consequences on the maps un’s. Because of condition (ii), the inclusion

supp(un) ⊂ Ωn (25)

holds true. In particular, un is continuous on every point ω ∈ Ω \ Ωn. Inside Ωn, one can use
condition (i) and (24) to show that un is continuous at points in Ωn \ ω∗ · In.

Summing up, un is continuous outside the flow line segment ω∗ · In, while we expect some
discontinuity here, because of condition (24).

Again distinguishing between the inside and the outside of Ωn, one can easily check that the
derivative of un along the flow exists everywhere in Ω , and equals

DΨ un(ω) =
{

sn(η)ϕ̇n(t) if ω = η · t , η ∈ Un, t ∈ In,

0 otherwise.

Then, by the same arguments used for un, also DΨ un is continuous at the points outside ω∗ · In.
Finally notice that, due to (23), each un is bounded on Ω together with its derivative, namely:

‖un‖∞ � αn, ‖DΨ un‖∞ �
(
β1 + ‖A‖∞

)
αn. (26)

We are now ready to define:

u(ω) =
∑
n∈Z

un(ω) ∀ω ∈ Ω. (27)

Because of (26) and (19), the previous sum is uniformly convergent on Ω , and the same hap-
pens to the sum of the derivatives. Hence, elementary arguments apply to show that DΨ u exists
everywhere, and equals

DΨ u(ω) =
∑

DΨ un(ω) ∀ω ∈ Ω.
n∈Z
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If we define

b(ω) = DΨ u(ω) − A(ω)u(ω), ω ∈ Ω, (28)

then clearly u is a bounded solution to the partial differential equation

DΨ x = A(ω)x + b(ω).

To prove Proposition 16, we have to show that b is continuous on Ω , while u has non-removable
discontinuities. This is the content of the next two lemmas.

Lemma 18. The function u, as defined by (27), has non-removable discontinuities.

Proof. Since each un is continuous outside ω∗ · R, the same happens to u. Next we will prove
that u has a non-removable discontinuity at any point of the flow line ω∗ · R.

Let us fix a t ∈ R, and study the behaviour of u around ω∗ · t . Consider the set of indexes:

Zt = {n ∈ Z: t ∈ In}.

If n /∈ Zt then ω∗ · t /∈ ω∗ · In, for otherwise the flow should be periodic. Hence un is continuous
at ω∗ · t , and the same happens to the sum

∑
n/∈Zt

un. It remains to show that the function

û =
∑
n∈Zt

un

has a non-removable discontinuity at the point ω∗ · t . To this aim, consider the sequences xk and
yk that we have fixed in the construction. We claim that

û(yk · t) − û(xk · t) → ϕ(t).

Notice that, if this is true, then the same jump occurs for u and the proof is complete. Indeed, we
know that ϕ(t) �= 0 for every t (by the uniqueness of the initial value problem), and all the points
xk · t and yk · t live in the region where u is continuous.

Next we compute the limit of û(yk · t). Take n ∈ Zt , so that t ∈ In. Since yk → ω∗, then also
yk ∈ Un eventually holds as k → +∞. Hence eventually we may compute:

un(yk · t) = ϕn(t)γn(yk)s(yk) = ϕn(t)s(yk),

where condition (iii) has been used. Making the sum over n ∈ Zt , and using (22), we then obtain

û(yk · t) = s(yk)
∑
n∈Zt

ϕn(t) = s(yk)ϕ(t).

Until now, we only used that yk → ω∗. Considering the full information about yk we may con-
clude that

û(yk · t) → ϕ(t).



R. Ortega, M. Tarallo / Journal of Functional Analysis 237 (2006) 402–426 421
On the other hand, if the sequence û(xk · t) is now considered, then the same arguments apply to
show that

un(xk · t) = ϕn(t)γn(xk)s(xk) → 0

holds for every n ∈ Zt . Hence û(xk · t) → 0, so proving the claim and the lemma. �
Lemma 19. The function b, as defined by (28), is continuous on Ω .

Proof. We follow the line of the proof of Lemma 18, using the same notations.
First of all notice that b may be written as a uniform convergent sum:

b(ω) =
∑
n∈Z

bn(ω), ω ∈ Ω,

where we defined

bn(ω) =
{

sn(η){ϕ̇n(t) − A(η · t)ϕn(t)} if ω = η · t , η ∈ Un, t ∈ In,

0 otherwise.

The same arguments as in the proof of Lemma 18 apply to show that b is continuous outside
ω∗ · R and that, if we fix t ∈ R, the sum

∑
n/∈Zt

bn is continuous at ω∗ · t .
The only delicate point is the continuity at ω∗ · t of

b̂ =
∑
n∈Zt

bn.

Notice that, as a consequence of (22) we have

∑
n∈Zt

ϕ̇n(t) =
[ ∑

n∈Zt

χ̇n(t)

]
ϕ(t) +

[ ∑
n∈Zt

χn(t)

]
ϕ̇(t) = ϕ̇(t).

Hence we may compute:

b̂(ω∗ · t) = s(ω∗)
∑
n∈Zt

{
ϕ̇n(t) − A(ω∗ · t)ϕn(t)

}

= s(ω∗)
{
ϕ̇(t) − A(ω∗ · t)ϕ(t)

} = 0.

Take now a sequence ωk → ω∗ · t in Ω , and let us show that b̂(ωk) → 0 as k → +∞, possibly
up to subsequences. This is enough to show the continuity at ω∗ · t . To compute b̂(ωk) explicitly,
notice that

ωk ∈
⋂

Ωn
n∈Zt
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eventually holds as k → +∞, for this set is an open neighborhood of ω∗ · t . After the construction
of the neighborhoods Un we mentioned a couple of properties of the sets Ωn. They imply that,
whatever Zt is, the flow describes an homeomorphism

Ωn ∩ Ωn+1 ∼=
[ ⋂

n∈Zt

Un

]
×

[ ⋂
n∈Zt

In

]
.

Write ωk = ηk · tk where ηk ∈ ⋂
n∈Zt

Un and tk ∈ ⋂
n∈Zt

In. Since ωk → ω∗ · t ∈ ⋂
n∈Zt

Ωn, then
we must have ηk → ω∗ and tk → t . As a consequence, for large k’s we may compute:

b̂(ωk) =
∑
n∈Zt

γn(ηk)s(ηk)
{
ϕ̇n(tk) − A(ηk · tk)ϕn(tk)

}

= s(ηk)
∑
n∈Zt

{
ϕ̇n(tk) − A(ηk · tk)ϕn(tk)

}
.

Now, since the sequence s(ηk) is bounded, we may assume that

s(ηk) → θ

holds true for some θ ∈ [0,1], possibly up to subsequences. Hence, we obtain again

b̂(ωk) → θ
∑
n∈Zt

{
ϕ̇n(t) − A(ω∗ · t)ϕn(t)

}

= θ
{
ϕ̇(t) − A(ω∗ · t)ϕ(t)

} = 0

which concludes the proof. �
The next proposition is concerned with the regularity of the term b, namely with the existence

and continuity of its derivatives along the flow. To this aim, we need some further regularity of
the partition of unity we considered. From now on, it will be assumed that we deal with a C∞
partition of unity and that

βr := sup
n

∥∥χ(r)
n

∥∥∞ < +∞ ∀r.

This is again possible because of conditions (20) and (21).

Proposition 20. Assume that, for some k � 1, the first k derivatives along the flow of A (Dr
Ψ A,

r � k) exist and are continuous on Ω . Then the same happens to b, as defined by (28).

Proof. We will first show the existence of the derivatives of b and then, following the proof of
Lemma 19, their continuity. The notations will be the same of that proof.

Since DrA exists for r � k, then the map t �→ A(ω∗ · t) is of class Ck , and hence ϕ ∈ Ck+1.
As a consequence, each bn is k-times derivable along the flow, and for every j � k we have

D
j
Ψ bn(ω) =

{
sn(η) dj

dtj
{ϕ̇n − A(η · t)ϕn}(t) if ω = η · t , η ∈ Un, t ∈ In,
0 otherwise.
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Moreover, using the chain rule it is not difficult to check that

∥∥D
j
Ψ bn

∥∥∞ � cjαn

holds for every j � k, where cj depends only on the constants β1, . . . , βj+1 and ‖A‖∞, . . . ,

‖Dj
Ψ A‖∞. Standard arguments of uniform convergence then apply to show that D

j
Ψ b exists for

j � k and equals:

D
j
Ψ b =

∑
n∈Z

D
j
Ψ bn.

To complete the proof, we have to show they are in fact continuous. Using that D
j
Ψ A ∈ C(Ω)

for every j � k, everything works fine outside ω∗ · R. Moreover, at a given point ω∗ · t , the only
delicate part is to show the continuity of the sum

̂
D

j
Ψ b =

∑
n∈Zt

D
j
Ψ bn.

This can be done exactly as in the proof of Lemma 19. The only difference is that here we have
to use the identity

∑
n∈Zt

dj

dtj

{
ϕ̇n(t) − A(ω∗ · t)ϕn(t)

} = 0. (29)

This can be obtained by differentiating, with respect to s, the identity

∑
n∈Zt

{
ϕ̇n(s) − A(ω∗ · s)ϕn(s)

} = 0,

which holds for s close to t . �
8. Conclusions

In this section we put together what we obtained in the last sections, in order to prove the
results stated in the introduction.

To this aim, consider the homogeneous almost periodic differential equation

ż = A(t)z,

where A(t) satisfies condition (H0).
If we take:

(Ω,Ψ ) = (HA,ΨA)

then both the abstract conditions (K′
0) and (K′′

0) are satisfied, in correspondence to the same point
ω = A∗. Indeed, if A ∈ C(HA) is the canonical representation of A(t) (see (9)), then

A(ω · t) = A(A∗ + TtA) = TtA∗(0) = A∗(t).
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This depends on the definition of the addition in HA (see Section 5).
As a consequence of Proposition 16, there exists a b ∈ C(HA) such that Eq. (11) admits a

bounded solutions with non-removable discontinuities. Hence, Proposition 15 applies to show
that the same equations cannot have continuous solutions. If we define:

b(t) = b(TtA),

this means that the inhomogeneous equation

ẋ = A(t)x + b(t)

has bounded solutions and cannot have almost periodic solutions satisfying mod(x) ⊂ mod(A).
This is a consequence of the discussions after Lemmas 12 and 14. On the other hand, Proposi-
tion 4 applies (via Lemma 5) to show they are the unique admissible almost periodic solutions.
This proves Theorem 2.

Concerning Corollary 3, assume now that the coefficients of A are in AP∞, and prove that
also those of b are in AP∞.

From Lemma 13, the derivatives along the flow Dk
Ψ A exists everywhere in Ω and the co-

efficients of Dk
Ψ A belong to C(HA) for every k. Thus, Proposition 20 guarantees that Dk

Ψ b ∈
C(HA,RN) for every k, and we may conclude that the coefficients of b are in AP∞.

Appendix A

A.1. Discontinuous functions on metric spaces

Let X be a metric space, and denote by d its metric. Moreover, assume that p ∈ X is an
accumulation point for X itself.

First we will show the existence of a function s :X → [0,1] such that the following conditions
are satisfied:

s ∈ C
(
X \ {p}), lim inf

x→p
s(x) = 0, lim sup

x→p
s(x) = 1. (A.1)

To this aim, use that p is an accumulation point to construct two sequences {yk}k∈N and {zk}k∈N

in X such that:

yk, zk �= p ∀k,

yk, zk → p as k → +∞,

yh �= zk ∀h, k.

Then define s(p) arbitrarily in [0,1], and

s(x) = d(x,Y )

d(x,Y ) + d(x,Z)
∀p �= x,

where Y = {yk: k ∈ N} and Z = {zk: k ∈ N}. Since Ȳ ∩ Z̄ = {p}, the denominator vanishes
only at p. Hence the function is well defined and continuous outside p. On the other hand,
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d(yk,Y ) = d(zk,Z) = 0. Thus

s(yk) = 0, s(xk) = 1

hold true for every k, so proving (A.1).
To conclude the discussion, let us show how to localize the previous function around p. If we

choose two open neighborhoods U and V of p such that

V̄ ⊂ U

this can be done by considering the product map x ∈ X �→ γ (x)s(x), where γ :X → [0,1]
satisfies the following three conditions:

γ ∈ C(X), supp(γ ) ⊂ Ū , γ ≡ 1 on V. (A.2)

An explicit realization is γ ≡ 1, when U = X, and

γ (x) = d(x,UC)

d(x,V ) + d(x,UC)

in all the other cases. Notice that, since V̄ ∩ UC = ∅, the function γ is indeed well defined and
continuous on X. The remaining two conditions in (A.2) can be checked easily.

A.2. An example referred to Corollary 3

We construct a function A(t) in AP∞ such that (H0) holds with A = A∗. We deal with scalar
equations (N = 1) and so it is enough to prove that the primitive A(t) = ∫ t

0 A(s) ds satisfies

A(t) → −∞ as |t | → ∞.

Define A = −f with

f (t) =
∞∑

n=0

an sin
(
bnt

)
, 0 < b < a < 1.

It is easy to check that f is in AP∞ and the primitive F(t) is given by

F(t) = 2
∞∑

n=0

(
a

b

)n

sin2
(

bnt

2

)
.

Define N(t) = min{n: bn|t | � π}. The inequality

|sin θ | � 2 |θ | if θ ∈ [−π/2,π/2]

π
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implies that

F(t) � 2

(
t

π

)2 ∑
n�N(t)

(ab)n = 2

(
t

π

)2
(ab)N(t)

1 − ab
.

Some computations, valid for large |t |, show that

N(t) � log(|t |/π)

| logb| + 1 and

F(t) � (constant)|t |1−|loga/ logb| → +∞ as |t | → ∞.

This fact was already observed by Haraux in [8, p. 110].

References

[1] A.S. Besicovitch, Almost Periodic Functions, Dover, 1954.
[2] P. Cieutat, A. Haraux, Exponential decay existence of almost periodic solutions for some linear forced differential

equations, Port. Math. (N.S.) 59 (2002) 141–159.
[3] C.C. Conley, R.K. Miller, Asymptotic stability without uniform stability: Almost periodic coefficients, J. Differen-

tial Equations 1 (1965) 333–336.
[4] A.K. Demenchuk, Quasiperiodic solutions of linear nonhomogeneous differential equations, Differ. Equ. 37 (2001)

763–767.
[5] J. Favard, Sur les equations différentielles linéaires à coefficients presque-périodiques, Acta Math. 51 (1927) 31–81.
[6] J. Favard, Sur certains systèmes différentielles scalaires linéaires et homogènes à coefficients presque-périodiques,

Ann. Mat. Pura Appl. 61 (1963) 297–316.
[7] A.M. Fink, Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, 1974.
[8] A. Haraux, Systèmes dynamiques dissipatifs et applications, Masson, 1991.
[9] R.A. Johnson, A linear almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc. 82

(1981) 199–205.
[10] B.M. Levitan, V.V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, 1982.
[11] N.G. Moshchevitin, Recurrence of the integral of a smooth conditionally periodic function, Math. Notes 63 (1998)

648–657.
[12] F. Nakajima, Separation conditions and stability properties in almost periodic systems, Tohoku Math. J. 26 (1974)

305–314.
[13] V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, 1960.
[14] K.J. Palmer, On bounded solutions of almost periodic linear differential systems, J. Math. Anal. Appl. 103 (1984)

16–25.
[15] L.S. Pontryagin, Topological Groups, Gordon & Breach, 1966.
[16] T. Yoshizawa, Favard’s condition in linear almost periodic systems, in: H.A. Antosiewicz (Ed.), International Con-

ference on Differential Equations, Academic Press, 1975, pp. 787–799.
[17] V.V. Zhikov, B.M. Levitan, Favard theory, Russian Math. Surveys 32 (1977) 129–180.


