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Abstract 

Stochastic models for gene frequencies can be viewed as probability-measure-valued pro- 
cesses. Fleming and Viot introduced a class of processes that arise as limits of genetic models 
as the population size and the number of possible genetic types tend to infinity. In general, 
the topology on the process values in which these limits exist is the topology of weak con- 
vergence; however, convergence in the weak topology is not strong enough for many genetic 
applications. A new topology on the space of finite measures is introduced in which convergence 
implies convergence of the sizes and locations of atoms, and conditions are given under which 
genetic models converge in this topology. As an application, Kingman’s Poisson-Dirichlet limit 
is extended to models with selection. 

Key words: Fleming-Viot process; Measure-valued diffusion; Convergence in distribution; Weak 
topology 

1. Introduction 

Consider a population of M individuals, each of which is assigned a “type” x from 

a set of types that we identify with a complete separable metric space (E,r). (The 

generality of the type space allows for a broad range of interpretations of the term 

“type”. See Ethier and Kurtz (1993) for a survey of examples.) At each of a discrete 

set of times we form a new “generation” of M individuals in the following manner. 

For each new individual, a pair of parents is selected from the current generation of M 

individuals with types XI, . . , x~ E E. The probability that the ith and jth individuals 

are selected as parents is 

WM(Xi,Xj) 

C&IWMM(w) ’ 
(1.1) 
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where wM(xi,xi) > 0 is symmetric and represents the “fitness” of the pair (xi,xj). 

Conditioned on the types of the parents, the probability distribution of the “tentative” 

type of the new individual is given by a transition function vM(xi,xj,r) from E x E 

to E. This tentative type z then “mutates” according to a transition function P,+,(z, I-) 

from E to E. Conditioned on the current generation (XI,. . . , x~)), the A4 types in the 

new generation are independent and identically distributed. 

For a genetic model of a diploid population (i.e., one in which chromosomes occur 

in pairs), M would be even, (XI,. . . , XM) would be the collection of gametic types 

in the population, and wM(xi,xj) would be the fitness of the diploid organism with 

genotype (Xi,Xj). 

Since the order in (XI, . . . , x,$f ) is not important, we now identify the population 

consisting of (XI,. . . , xM) E EM with the empirical measure 

(1.2) 

where .9(E) denotes the set of Bore1 probability measures on E, and we define the 

P(E)-valued process ZM by letting ZM(~) be the measure corresponding to generation 

[Mt]. Assume there exist a symmetric function cr E B(E x E), ct > 0, and a transition 

function q(x,y,Z) from E x E to E such that, for M sufficiently large, 

WM(X,Y) = 1 fMPa(x,y) (1.3) 

and 

(1.4) 

and define the operators QM and BM on B(E) by 

Q~f(x) = L f(Y)Pdx,dY)3 BM = M(QM - 1). (1.5) 

Under appropriate hypotheses on the type space E, the convergence of BM, and the 

continuity of y and 0, the sequence of measure-valued processes ZM converges in 

distribution as M + cc to a P(E)-valued Markov process Z of a type introduced by 

Fleming and Viot (1979). We define the generator &’ for a Fleming-Viot process as 

follows. 

For m > 2 and 1 < i < j < m, define the sampling operators @ii : 
B(E”) H B(E”-’ ) by letting @,,f be the function obtained from f by replacing 

xj by xi and renumbering the variables (e.g., for f( X1,X2,X3) E B(E3), @12f(X1,X2) = 

_~(XI>XI>X~), @13f(XI>X2) = f(Xl,X2>X1), and @23f(XlrX2) = f(X1>X2>X2)). The Sam- 

pling operators arise in the definition of & as the limit of the terms in the generator 

for ZM corresponding to the sampling from the previous generation. 

Let Lo be a closed subspace of C(E) that is separating. Suppose that B generates 

a strongly continuous positive conservative contraction semigroup {T(r)} on LO given 

by a transition function P(t,x,r), i.e., 

T(t)f(x) = 
J 

f(yY’(t~x>dy). 
E 

(1.6) 
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B will be called the mutation operator for the process and is the limit, in an appropriate 

sense, of the operators BM. For each m 2 1, define the semigroup {Tcm)(t)} on B(Em) 

by 

T(m)(t)j-(X,,...,Xm) = ‘.’ J J f(Yl,..., Y,)P(t,xl,dYl)...P(t,x,,dY,), (1.7) 
E E 

and let B@) denote its generator; note that @B(“‘)) is a subspace of B(Em). 

Let q(xt,xz, r) be a transition function from E x E to E. For m > 1 and i = 

1 , ..., m, define the recombination operators Hi, : B(Em) +-+ B(Em+‘) by 

Himf(xl, . ..tXrn+~)= 
1 

Ef(XIy . . ..Xi-l.Z,Xi+l, . . ..Xm)yI(Xi.X~+~,~), (1.8) 

and assume that Him : c(Em) H c(E”‘+’ ). For example, in a two-locus model (see 

Ethier and Griffiths (1990)), E = EI XEZ and ~((~I,zI),(Y~,zz);) = &Y,,Z2~+~G~Y2,z,). 
c1 2 0 will denote the recombination intensity. 

Given cr in B ,,(E x E), the set of symmetric functions in B(E x E), define 5 = 

SUP,,~,~ 10(x, y)-o(y,z)l, and for m 2 1 and i = 1, . . . , m, define the selection operators 

Kim : B(E”) H B(Emf2) by 

Kirnf(XI, . . ..x.+z)= 
~(xi,x~+l)-g(x~+l,x~+2)f(xl, ,,.,x,j, 

(1.9) 

where O/O = 0. a is called the selection intensity function. 

Unless otherwise specified, we will consider P(E) as a metric space with the 

Prohorov metric p, and .28(9(E)) = SJ(P(E),p) will denote the collection of Bore1 

subsets of P(E). For m > 1 and f E B(E”‘), define F E B(P(E)) by F(p) = 

(f ,N”) = JErn f W’, where pm denotes the m-fold product measure of p, and let 

Pm(E) c B(P(E)) be the collection of functions of this form. Note that LP(E) 

is a linear subspace of B(P(E)) closed under bounded pointwise convergence. For 

f E L@B@)), define dF E B(P(E)) by 

+xl$((H,mf,Icm+‘) - (f,P)) + ~L$(4,f.P”‘2j > 

or, more generally, let 2 c B(P(E)) x B(Y(E)) consist of all pairs 

(fvPm)7 C ((@ijf~~“-‘) - (f,P))+ (g9Pm) 
l<i<j<m 

(1.10) 

i=l i=l / 
(1.11) 

with (f,g) E BCrn) 
*Cm) 

and m > 1, where B IS the bounded pointwise closure of 

{(f, Bern) f) : f E S@B(“))}. Note that any solution of the martingale problem for 

& will be a solution for d. 

Existence of solutions of the martingale problem for d, continuous in the weak 

topology on P(E), has been proved under a variety of assumptions (e.g., Fleming 
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and Viot, 1979; Kurtz, 1981; Ethier and Kurtz, 1986, 1987). Uniqueness follows by a 

duality argument. The following theorem extends Theorem 2.3(b) of Ethier and Kurtz 

(1987) to the above model including recombination. The proof is essentially the same 

and is omitted. 

Theorem 1.1. (a) Let E be compact, let Lo = C(E), and let o E C,,,(E x E). 

Let ZM,BM, and B be as above, and let VM E 9(9(E)) denote the distribution of 

ZM(O). Suppose that v,+t + v E Y(.Y(E)) and that 

B C “M”-liEBM (1.12) 

(or equivalently efBM converges strongly to T(t) on C(E) for each t > 0; see Ethier 

and Kurtz, 1986, Chapter I). Then, under the above hypotheses on w~,o,n~,~(, and 

r], there exists a unique solution Z of the C, (P(~),p)[O, W) martingale problem for 

G’ with initial distribution v, and Z, + Z in D (B(~).p)[O,~), where p denotes the 

Prohorov metric on Y(E) (i.e., Y(E) is given the weak topology). 

(b) Let E be compact, let Lo = C(E), and let a E B,,,(E x E). Then, under 

the above assumptions on B, a, and n, and for each v E Y(Y(E)), existence and 

uniqueness of solutions of the C’~,++CE),~)[ 0, co) martingale problem for ,GI! with initial 

distribution v hold. 

As will be observed in Section 3, there are many situations in which this conver- 

gence result is not adequate. In particular, in the derivation of finite sampling formulas, 

one needs to know that the distribution of the sizes of the atoms of ZM converges, 

but convergence in the weak topology on 9(E) does not imply convergence of the 

sizes of the atoms. In Section 2, we introduce a new metric pa on the space of fi- 

nite Bore1 measures on E under which the sizes and locations of atoms become con- 

tinuous functions. We refer to the topology determined by this metric as the weak 

atomic topology. In Section 3, we give conditions that imply that the convergence 

in Theorem 1.1 is in Dc,~(E),~~)[O, 00). We also give similar convergence results for 

sequences of Fleming-Viot processes and stationary distributions. (We will see that 

g(Y(E),p,) = SJ(g(E),p), so that the notion of a Y(E)-valued random variable will 

not be ambiguous.) Section 4 is devoted to an extension to models with selection of 

Kingman’s (1975) limit theorem (as n + m) for the descending order statistics of the 

allele frequencies in the stationary neutral n-allele diffusion model. This result requires 

the use of the weak atomic topology introduced in Section 2. 

2. The weak atomic topology on the space of measures 

Let (E,r) be a complete separable metric space. For p in &f(E), the space of 

finite, positive, Bore1 measures on E with the weak topology, define p* to be the 

purely atomic measure given by p* = ~~({x})‘&. Note that p* is also given by 

p*(A) = inf cam, where the infimum is over all countable collections of Bore1 

sets {Ei} with A C UEi, and by 

p*(A) = lim C p(A n E!n))2 I 1 (2.1) 
n i 
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where {E,‘“‘}, II = 1,2,. . . , is a sequence of countable Bore1 partitions of E with the 

property that lim, supi diam(Ei(“)) = 0. 

Let p denote the Prohorov metric on &f(E), let Y : [0, CQ) H [0, l] be continuous 

and nonincreasing with Y(0) = 1 and Y( 1) = 0, and define 

Pa@9 VI = P(PL, VI + ,<c<,~s,s, y (y) p(h)p(dy) sup 
_ 

pa is easily seen to be a metric on k’,-(E). Note that 

(2.2) 

(2.3) 

The supremum in (2.2) could be restricted to rational E, and hence, for fixed v E 

&r(E), p,(p, v) is a g(Ar(E),p)-measurable function of p. It follows that @&r(E), 

pa) = a(k!‘f(E),p), and consequently, notation such as @&f(E)) is not ambiguous. 

Lemma 2.1. Let pn, p E Jf(E). Suppose pn + p. Then {p,‘} is relatively compact, 

and any limit point v E &f(E) satisfies v(A) < p*(A) for all A E B(E) (in particular, 

it is purely atomic), and v = ,u* if and only if v(E) = p*(E). Consequently, pL,i =+ p* 

if and only if p,*(E) + p*(E). 

Proof. A sequence in &f(E) is relatively compact if and only if it is bounded and 

tight. Since p;(E) < p,,(E)* and &(KC) 5 pn(KC)* f or all compact K c E, the relative 

compactness of {pn} implies the relative compactness of {&}. Assume, for simplicity, 

that pf + v. Then, for every g E C(E) with g > 0, 

J dxM&) = +mm s(xMi(h) 
E J E 

= J dx)P*(h) 3 (2.4) 
E 

which implies the desired inequality. Given v, q E J,-(E) satisfying v(A) < q(A) for 

all A E B(E), v = q if and only if v(E) = v](E). (Consider complements.) 0 

Lemma 2.2. Let p,,,p E &f(E). Then pa(,u,,,p) + 0 if and only if p,, + ,u and 

P,* =+ P*. 

Proof. By (2.3), if pa&p) 4 0, then p,+(E) + p*(E) and it follows from Lemma 

2.1 that ,u,* + p*. 

Assume now that pL, + p and p,* =+ p*. Let fn(~) and f(~) denote the integrals 

in the definition of pa&, p). We must show that f,, -+ f uniformly on (0, 11. We 
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know that for 0 < EO < l,fn + f uniformly on [EO, 11, so there exists a sequence 

E, + 0 sufficiently slowly that 

,,:I& Ifn(&) - f(E)1 + 0. 

On the other hand, 

(2.5) 

sup Ifn(e) - .!-(&)I 
O<E<En 

< sup Ifn(e) - fnW+)l + Ifn(O-t> - f@+)l + o;yz:p, m+> - f(&>I O<E& 
= Ifn(bI> - fn(O+>l + ISdO+) - m+)l + b-(0+) --_;(4 
5 Ifn(G> - f(Gl>l + 2lf(bl> - f(o+)l + wo+) - fn(O+>l> (2.6) 

where the equality uses the monotonicity of fn and f. On the right-hand side of (2.6), 

the first term tends to 0 by (2.5), the second term tends to 0 by definition, and the 

third term tends to 0 by the convergence of ,u; to ,u* (see (2.3)). Thus, the proof is 

complete. 0 

Recall that we are assuming that (E,r) is complete and separable. 

Lemma 2.3 (dt’f(E), pa) is complete and separable. 

Proof. Completeness follows from the completeness of (Jf(E),p). To check separa- 

bility, let {E,‘“‘}, IZ = 1, 2, . . . , be a sequence of countable Bore1 partitions of E with 

diam(E!“)) < l/n. Let x’J E EC”) and given p E &?‘f(E), define I I I) 

(2.7) 
i=l 

It follows easily that 11, + p and pL,* + p*, and hence p,& , p) + 0. Let D = {x: : 

i,n = 1,2,... }, and let JZ’O = {C~~,ajSxi : a; E Q+, xi E D, k 2 l}. (Note that 40 is 

countable.) Since p,, in (2.7) can be approximated arbitrarily closely in the pa metric 

by elements of MO, it follows that &O is dense in (Jt’f(E),p,). 0 

An examination of the proof of Lemma 2.2 immediately gives the following. 

Lemma 2.4. A collection of measures {pm} c Jf(E) is relatively compact in 

(&‘f(E),p,) if and only if it is relatively compact in (Jt’f(E),p) and 

/4h)pL,(dy) - ,4(E) 
> 

= 0. (2.8) 

In particular, if K is compact in (Mf(E),p) and {ok} is a positive sequence tending 

to 0, then 

R=(ptK:&(+)) p(dr)p(dy) - p*(E) < k for all k 2 1 (2.9) 

is compact in (Mf(E),p,). 
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The next lemma makes precise the sense in which sizes and locations of atoms are 

continuous in the weak atomic topology. 

Lemma 2.5. (a) Zf pa(un,u) + 0, then the sizes and locations of the atoms of n,, 

converge to the sizes and locations of the atoms of u in the sense that for each atom 

a& of u, there exists a sequence of atoms a,,6, of uL, such that lim,,, (a,,,~,,) = 

(a,~), and any sequence of atoms cr,&, of u(n satisfying inf, CI,, > 0 contains a 

subsequence converging to an atom of u. 

(b) Suppose that uL, + u. Let {al&;} be the set of atoms of u,, ordered so that 

CC; > cc; > .., and let {aiSxl} be the set of atoms of u with ~1 > ~12 2 . . . . Then 

pa(u,,,u) + 0 if and only if cry + cl; for each i. Zf pa(uL,,u) + 0 and @& > ak+l 

for some k > 1, then the set of locations {x? . . ., x1) converges to {xl,. . . , xk}. In 

particular, tf ~(1 > tl2 > . . . , then x1 + xi for each i > 1. 

(c) Suppose that un + u and that ,u is purely atomic. Then p,(u,,,p) -+ 0 tf and 

only tfCila: - jI CI 4 0, where a: and cl; are as in part (b). 

Remark 2.6. Let & = CiayG,; and p* = Cia&. Let f E C(E x (0,~)) and 

suppose that for some E > 0, f (x,a) = 0 for all a I E and x E E. By part (a>, 

pa(pn, p) - 0 implies Cif (x:? a:) + C;f (Xi, ai 1. 

Proof. Let a:, xf, ai, and xi be as in the remark. If we show that for each i there 

exists a sequence {in} such that (ayn,xyn) + (ai,xi), the first conclusion of part (a) will 

follow. Fix i. By the definition of the Prohorov metric, we have 

a; = P*({Xi}) 5 CL,+({X E E : r(x,xi) 5 P(P,*,P*))) + P(P~*,P*) 

5 p*<{x E E : 4~) 5 ~P(P;,P*))) + 2p(ccG,p*) + aI. 

Hence 

(2.10) 

c aj” + ai . (2.11) 
W;,x, )I&;#*) 

It remains to show that max{aT : r(xy,xi) < p(pX,p*)} + ai. By standard properties 

of weak convergence 

lim sup C 
n-m i:r(x,“,x;Kp(&.P*) r 

a,” 

5 li;_~pu,({x E E : Y(x,xi) 5 P(PL,*,P*)}) 5 PL({xi}) = JZ. (2.12) 

Let j,, be the index of the largest value of a; with r(xJn,x, ) 5 p(u,*, n* ). Then, by 

(2.11) and (2.12), 

(2.13) 
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and it follows that u,:~ + ai, proving the first conclusion of part (a). 

As for the second conclusion of part (a), given a sequence of atoms cl,,&, of pn 

with inf, a, > 0, tightness implies that {X ,, : IZ > l} is relatively compact. Therefore, 

there exist CI > 0, x E E, and a subsequence {n’} along which (Q ,x,1 ) + (cI,x). 

Letting SE(x) = {y E E : r(y,x) < E}, we have z < lim supnl pnf(SE(x)) < p(&(x)) 

for every E > 0, hence ~({x}) 2 a. To complete the proof of part (a), we must show 

that this last inequality in an equality. Suppose not. Then ~({x}) = a > c(, so by the 

first conclusion of part (a), there exists a sequence of atoms PndYn of pL, such that 

(bn,yn) + (fi,x). But then c( + /? 5 lim supnl pII/( < p(S,(x)) for every E > 0, 

hence c( + /3 2 fi, a contradiction. 

The necessity in part (b) follows from part (a). If a: + ai for each i, then pi(E) = 

C;($Y2 --+ Ci(G2 = P.‘(E)> and the result follows by Lemmas 2.1 and 2.2. The last 

part of(b) follows from (a). 

Part (c) is left to the reader. Cl 

Example 2.7. Let n = (nt, . . . . Q) E Nd, n = nl f”+nd, and A, = {(xl, . . . . x,) E 

E”: 3y,, . . . . yd distinct in E with nk of the x; equal to yk for k = 1, . . , d}. Then 

the mapping (P,, : (CY(E),p,) H [0, l] given by cp&) = $‘(A,,) is continuous. Note 

that this would not be the case, in general, if pa were replaced by p. 

Lemma 2.8. Suppose x E D(,q(~).p)P, ~0) (req., C(./lf(~),~~j[O, 00)). If {x(t) : t I T) 
is relatively compact in (Mf(E),p,) for each T > 0, then x E D(.+(E),~~)[O,CO) (resp., 

%~(E),p,)[“>OO)). 

Proof. Since convergence in pa implies convergence in p, any pa-limit point of x(s) 

as s + t-t must be x(t). Consequently, limY++ p,(x(s),x(t)) = 0. A similar argument 

applies to left limits. q 

As noted earlier, 53(&f(E), pa) = ;B(r,&‘f(E), p), so we can speak of .Mr(E)-valued 

random variables without ambiguity. 

Lemma 2.9. Let {r,} be a collection of random variables with values in Mf(E). 

Suppose it is relatively compact as a collection of random variables in (&f(E), p). 

Then it is relatively compact in (,&f(E), pa) if and only if for every 6 > 0 there 

exists E > 0 such that 

i:fP{llY(“*‘) I’,(dx)I-,(dy) - l-,*(E) < 6 > 1 - 6. (2.14) 

Proof. By Prohorov’s theorem, given q > 0 we must show the existence of I’? compact 

in (.&‘f(E),p,) such that inf,P{T, E k} > 1 - n. Select K compact in (Jt’f(E),p) 

such that inf, P{rl E K} 2 1 - y/2 and a positive sequence {&k} tending to 0 such 

that 

il;fP{LlY(y) r,(dr)r,(dy) - r;(E) I k 
1 

2 1 ~ & (2.15) 

Then, if i is defined as in (2.9), inf, P{rl E k} > 1 - ye. 
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The converse is a consequence of Lemma 2.4. 0 

The following lemma gives simple conditions under which {r,} is relatively com- 

pact as a collection of random variables in (J!f(E),p). 

Lemma 2.10. Let {r,} be a collection of &f(E)- 1 d va ue random variables. For each 

CI, define the positive Bore1 measure pL, on E by p,(A) = E[T,(A)]. If {p%} C &f(E) 

and {pFcl} is relatively compact in (Af(E), p), then {r,} is relatively compact as 

a collection of (Af(E), p)-valued random variables. If the random variables rl are 

P(E)-valued, then the relative compactness of {pl} is necessary as well as sujicient 

for the relative compactness of {r,}. 

Proof. Recall that {pL1} is relatively compact in (&f(E), p) if and only if sup% pa(E) < 

CC and for every E > 0 there exists a compact K c E such that supa p&KC) < E. 

Noting that 

and that for each compact K c E and 6 > 0 

(2.16) 

(2.17) 

we see that for each E > 0 there exist c > 0 and compact sets KI c K2 C . . C E 

such that 

sup P({T,(E) > c} U U;{Ta(K,C) > 2-‘}) 5 E. 
1 

(2.18) 

Since k = {cl E Af(E) : p(E) < c, ,a(KF) < 2-‘, i = 1,2,...} is compact in 

(.k’f(E), p), and since (2.18) implies inf, P{rl E K} 2 1 -E, the relative compactness 

follows by Prohorov’s theorem. 

If {r,} is relatively compact, then for every 6 > 0 there exists a compact 

E such that supa P{T,(KC) > 6) < 6, and hence if the rz are Y(E)-valued, 

supz E[T,(K”)] 5 26. 0 

Kc 

then 

Let (H,ro) be a metric space, and suppose that ri is a second metric on H such 

that ro < rI and g(H,ro) = g(H,rl). A collection {ZG(} of H-valued processes with 

almost all sample paths in D(~,,)[o,co) satisfies the compact containment condition 

in (H, r1 ) if for each T > 0 and 6 > 0, there exists an ri-compact set KT,~ c H such 

that 

inf P{Z,(t) E K~,J, t < T} 2 1 - 6. (2.19) 
I 

See Ethier and Kurtz (1986, Chapter 3) for further discussion. If a single &f(E)-valued 

process Z with almost all sample paths in Dc,~~(E),~J[O,CX) (resp., Cc.+(~),~)[O,oo)) 

satisfies the compact containment condition in (&f(E), p,), then by Lemma 2.8 the pro- 

cess has almost all sample paths in Dt.ki-(~),pa)[O,m) (resp., C(_,+X~(E),~,)[~,CQ)). Lemmas 

2.1 and 2.2 give the following, perhaps simpler, criterion for sample path continuity. 



10 S.N. Ethier. T. G. KurtzlStochastic Processes and their Applications 54 (1994) 1-27 

Lemma 2.11. Suppose Z is an Af(E)-valued process with almost all sample paths 

in C(.~~U,(~),~)[~,CO). If {Z*(t,E), t 2 0) has almost all sample paths in C~~,,,[o,co), 

then Z has almost all sample paths in CC.~~~(E),~,)[O, 00). 

Theorem 2.12. Suppose that a collection {Za} of &f(E)-valuedprocesses is relatively 

compact in Dc,~~(E),~)[O,W). Then it is relatively compact in Dc~~AL~(E),~~)[O,CO) (in 

particular, each Z, has almost all sample paths in Dc,~~(E),~~J[O, 00)) if and only iJ 

the compact containment condition holds in (.Mf(E),pa). 

Remark 2.13. (a) By the argument used to prove Lemma 2.9, assuming relative 

compactness of {a} in D(.+(E),~)[~,co), the compact containment condition will hold 

in (Af(E),p,) if and only if for each T > 0 and 6 > 0, there exists an E > 0 such 

that 

Z,(t,dx)Z,(t,dy) - Z,*(t,E) I 6 ) } 2 1 - 6. 

(2.20) 

(b) As a consequence of Theorem 2.12 and Remark 2.13(a), a sequence {Zn} of pro- 

cesses with sample paths in Dc~~A~~(E),~~)[O,~) is relatively compact in Dc.~~(Q,~)[O, m) 

if and only if it is relatively compact in Dc.~~(E),~)[O,W) and for each T > 0 and 

6 > 0, there exists an E > 0 such that 

Z,(t,dx)Z,(t,dy) - Z,“(t,E) 5 6 ) } 2 1 - 6. 

Proof. The necessity of the compact 

theorem. To see that it is sufficient in 

{Z,,} that converges in distribution to 

the continuous mapping theorem, 

(2.21) 

containment condition follows from Prohorov’s 

this setting, it is enough to consider a sequence 

a process Z in D~,A/f(~),p)[O,~). Let E > 0. By 

U,E = s,L Y (+)) Z,,(.,dx)Z,,(.,dy) 

Z(.,dx)Z(.,dy) = UE : (2.22) 

and in fact (Z,,, U,E) + (Z, UC) in Dc~~A~~(E),~J~R[O, 00). The relative compactness of { Uj} 

and (2.2 1) imply the relative compactness of {U,“} (U,” = Z,“(., E)), and in fact the 

relative compactness of {(Zn, Uj)} in Dc.~~(Q~)~R[O, co) implies the relative compact- 

ness of {(Zn, U,“)}. This assertion follows from Ethier and Kurtz (1986, Theorem 3.2.2; 

see also Problem 3.18). Since 

lim SUP PO(P,;, PuO ) 5 lim SUP{ PO(P,~, Pu; ) + PO(PU;, PUE ) + po(Pu~, Puo I> 
n-C-Z n-D.3 

< 6+eeT + Po(Pw 3 PfJo > 9 (2.23) 
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where po denotes the Prohorov metric on DR[~,co), Pu denotes the distribution of 

U, and E, 6, and T are as in (2.21), it follows that (Z,, U,“) + (Z, U’). By Lemma 

2.1, the mapping &p*(E)) H p from (Aff(E),p) x R to (A’r(E),pa) is continuous. 

Therefore, Z,, =+ Z in Dc.~~(E),~~)[ 0,oo) by the continuous mapping theorem. 0 

3. Convergence to Fleming-Viot processes 

In Ethier and Kurtz (1987, Theorem 2.4), it was shown that Fleming-Viot processes 

with bounded mutation operators take values in p,(E), the set of purely atomic Bore1 

probability measures on E. That paper did not consider models with recombination; 

however, the extension of the result to include recombination operators of the form 

described above follows by the same proof. In particular, if B is of the form 

(3.1) 

where I3 is a positive constant and A is nonatomic, and if r~ in the recombination 

operator is also nonatomic, then the R” -valued process obtained from the Fleming- 

Viot process Z by taking the sequence of descending order statistics of the sizes of the 

atoms of Z is an infinitely-many-alleles diffusion of the type considered in Ethier and 

Kurtz ( 198 1) with “mutation” intensity i 8 + ~1. (Of course, the recombination operators 

of primary interest involve purely atomic r]; however, the original process with type 

space E can be replaced by a new process with type space E x [0, l] and nonatomic 

“recombination” in such a way that the projection of the new process onto E is a 

version of the original process.) 

Lemma 2.11 allows one to conclude that these processes have continuous sample 

paths in the weak atomic topology. (Shiga (1990) has obtained stronger results.) 

Theorem 3.1. Let Z be a Fleming-Viot process with bounded mutation operator B. 

If Z has almost all sample paths in C~~O(Q,)[O,CO), then Z has almost all sample 

paths in C(~(E),&O, 00). 

Proof. For m > 1, f E C(Em), and F(p) = (f,p”), 

s f F(Z(t)) - dF(Z(s)) ds 
0 

(3.2) 

is an as. continuous martingale. It follows from the boundedness of B that the collection 

off E B(E”‘) for which (3.2) is an a.s. continuous martingale is closed under bounded 

pointwise convergence, and hence is all of B(E”‘). Taking m = 2 and f = ID with 

D = {(x,y) E E2 : x = y}, we see that Z*(t,E) = F(Z(t)) is a.s. continuous in t, and 

the theorem follows by Lemma 2.11. 0 

The fact that Z is purely atomic for bounded mutation operators is fundamental 

to the derivation of a variety of sampling distributions. (See for example Ethier and 

Kurtz, 1986, Theorem 10.4.7). Since, however, Fleming-Viot processes are of interest 
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as approximations to finite-population models, it is necessary to justify the validity of 

the sampling distributions derived from Fleming-Viot processes as approximations to 

the sampling distributions based on the finite-population models. This justification was 

done in Ethier and Kurtz (1986, Theorem 10.4.6), for the stationary distribution of 

a particular neutral model. It should be emphasized, however, that previously proved 

weak-approximation theorems (e.g., Fleming and Viot, 1979; Kurtz, 1981; Ethier and 

Kurtz, 1986, 1987) that take the weak topology on the state space Y(E) do not imply 

convergence of the corresponding sampling distributions since the latter depend on the 

distributions of the sizes of the atoms (cf. Example 2.7). We have introduced the weak 

atomic topology precisely because it does imply convergence of the sizes of the atoms, 

and we can verify convergence of the sampling distributions by verifying convergence 

in distribution of the processes in D(fl(~),p,)[O,oo). 

Theorem 3.2. Let QM,~M, R,~,WM,CT, and ZM be us in the Introduction, and let E 
be compact. Suppose that 

for A4 suficiently large, where 0~ E B(E) is nonnegative and ilk is a transition 
function on E, and that 

sup sup Q,(x) < co ) 
M x 

(3.4) 

lim lim sup Sup 0~(x)&f(X,&(.Y)) = 0, 
c-0 M--OS x.y 

where S,(y) = {z E E : ~(z,Y) < &}, 

(3.5) 

(3.6) 

and (as we have already assumed) 

sup I4%Y)l < m. 
I, P 

(3.7) 

Jf in addjt~on (ZM(O)} is rel~tiuely compact in (9(E), p,), then (2~) is relatil~ely 

compact in &(E),pa ) [of 02 >. 

Remark 3.3. The assumption that E is compact can be replaced by the assumption 

that {ZM} is relatively compact in D~.~~~).p)[O,~), the compact containment condition 

then taking the place of the compactness of E. See, for example, Remark 3.7.3 in 

Ethier and Kurtz (1986). 

Proof of Theorem 3.2. Let F(p) = (f,@‘?), where f E &Em) and m > 1. For each 

A4 let PM(E) be the collection of all Bore1 probability measures on E of the form 

(1.2). For p E .P,&E), define 

d~F(lc) = ~EE(S,ZM(~/~)“‘) -- (f,P)l&(O) = ~1. (3.8) 
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The measure z~(l/M) can be written 

(3.9) 

where, conditioned on ZM(O) = p, the random variables Yt , . . . , Y, are independent 

and identically distributed with 

J%(Yk)IZM(O) = PI 

= (CL,4 +M-‘{(BMg>PL) + a((fhw2) - (CLP)) + ~(hLP3)) + o(M-2) 
(3.10) 

for each g E B(E), and it follows as in the proof of Theorem 10.4.1 of Ethier and 

Kurtz ( 1986) that 

a(f~zM(wYwM(o) = PI 

= c yM -“m!+ l)! E[@ijf(Yl, . . .T Ym-I )IZM(O) = PI 
I <i<.jQn 

lbf! +o(M-2) + MyM _ m)! w-(Yl, .‘.> ym)l.&(o) = PI > (3.11) 

and hence that 

dMF(P) = C ((@ijft Pm-‘) - (f, Pm)) + (BMf, Pm) 
I<i-cj$m 

+$ (z&f, prnf2) + O(M_’ > , (3.12) 
i=l 

where BM, like B below (1.7), is extended from B(E) to B(E”). Noting that 

SUP, suppEpM(Ej IdMF(p)I < cm for each f E B(F), we have relative compact- 
ness of {ZM} in D (p(~),~)[O,co) by Theorems 3.9.1 and 3.9.4 of Ethier and Kurtz 
(1986). 

To complete the proof of the theorem we need only verify (2.21). Fix E > 0, 
and let 

fE(X,Y) = Y y ( > - ~{O>W~Y)) 

Then, setting 0 = infM inf, e,(x), we have for FE(~) = (f,,~‘), 

+2a JJJ rlk Y, Uz))/4~MdyM~) 
E E E 

(3.13) 

+(25 - 1 - 26 - 2a)F,(p) + O(M-I) (3.14) 
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Let c > 26 - 1 - 2@ - 2a and note that for M > Ic( 

U/W(t) = & ( > 
Ml 

(fC>ZMW2) 

_I’“” (MA4J”“+’ 
(~MFE(&(S)) - c(fo -afW2) > ds (3.15) 

is a martingale. Given 6 > 0, by (3.5) and (3.6), E can be selected sufficiently small 

and M, depending on E, sufficiently large so that &MF,(ZM(.S)) - c(fE,Z~(s)*) I d2. 

It follows that for fixed E and A4 sufficiently large, 

V&f(t) = &f(t) + a2c-’ (1 - (Gk)‘“““) (3.16) 

is a nonnegative submartingale that bounds e-(CVo)‘(f,,Z~(t)2), and hence 

sup (f,,zM(q2) > be(cVo)T 
t<T 

5 6-'(E[(f,,Z~(0)~)] + d2Te-(cAo)T). (3.17) 

Letting A4 + 00 and then E + 0, we see that (3.17) implies (2.21). 0 

The proof of the following is essentially the same as the proof of Theorem 3.2. 

Theorem 3.4. For euch n > 1, let Z,, be a Fleming-Viot process with type space E, 

mutation operator B,, recombination determined by a, und q,, and selection intensity 

function cn, and assume that {Z,,} is relatively compact in Dc~(Q,~)[O,CO). Suppose 

that for each n > 1, 

&f(x) = ‘A(x) /(f (y> - f (x))W>dy) > 

E 

(3.18) 

where 8, E B(E) is nonnegative and A., is a transition function on E, and that 

sup sup d,(x) < CC ) 
” X 

(3.19) 

lim lim sup sup 0,(x)&(x,&(y)) = 0, 
E+O n-33 *.y 

(3.20) 

lim lim sup sup cI,q,(x, y, SE(z)) = 0 , 
6’0 n-m x,y,z 

(3.21) 

and 

sup sup lo&, Y)l < m (3.22) 
n x.v 

If in addition {Z,,(O)} is relatively compact in (P(E),p,), then {Z,,} is relatively 

compact in D(PcE),~,) LO, 00). 
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The estimates on &M given above also yield the corresponding results for stationary 

distributions. 

Theorem 3.5. Under the assumptions of Theorem 3.2 (namely, (3.3)-(3.7)), let {Zl,} 

be a corresponding sequence of stationary distributions and assumes that it is rela- 

tively compact in the weak topology on LP(P(E), p). Zf 26 < 1+28+2cr, then {ZZ,} 

is relatively compact in the weak topology on 9(.CY(E),p,). 

Remark 3.6. Of course if E is compact, then (.Y(E),p) is compact and any collection 

of distributions on (P(E), p) is relatively compact in the weak topology. More gener- 

ally, define 71~ E 9(E) by rr~(T) = ~‘~(T)ZI~(d~). If {rc~} is relatively compact 

in (Y(E),p), then {IZ,} is relatively compact in the weak topology on Y(Y(E),p). 

If g = 0 and a = 0, then XM is a stationary distribution for the mutation process, i.e., 

J h_l-(xh(~> = 0, f E B(E). (3.23) 
E 

Consequently, in this case, relative compactness for the stationary distributions for the 

mutation processes implies relative compactness (using p) for the stationary distribu- 

tions for the Fleming-Viot processes. 

Proof of Theorem 3.5. Let F, be as in the proof of Theorem 3.2. Then 

5L.,,, C2s,s, e,(x)n,(x,S,(~))~l(dx)~(dy) 

+2a J/J rlk Y> &(z))~(~)~(dy)~(~) 
E E E 

-( 1 + 2e + 2~ - 26)F&) 
> 

flM(dp) + O(M-‘), (3.24) 

and hence for 6 > 0, there exist EO and ME such that E < EO and A4 > ME imply 

(1 + 28 + 2cr - 25) J F&L)fldd~) P(E) 

Letting rM have distribution fl,, then 

and the relative compactness of {II,} follows by Lemma 2.9. 0 

(3.25) 

(3.26) 
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The proof of the following theorem is essentially the same as that of Theorem 3.5. 

Theorem 3.7. Let {e,,}, {An}, {xn}, {q,,}, and (0,) be as in Theorem 3.4, and suppose 

that sup,, c(,, < 03. Let {Ii’,} b e a corresponding sequence of stationary distributions 

and assume that it is relatively compact in the weak topology on P(.P(E),p). If 

26 < 1 + 20 + 2c(, where sl = inf, CC,,, then {Ill,,} is relatively compact in the weak 

topology on 9(9(E), pa). 

Remark 3.8. In Theorems 1.1, 3.2-3.5, and 3.7, the fixed type space E can be replaced 

by a sequence of type spaces {E,} (or {EM}) with E,, c E asymptotically dense in E. 

Finally, we note that the conditions of the previous theorem imply a strengthening 

of the usual ergodic theorem for Fleming-Viot processes. 

Theorem 3.9. Let Z be a Fleming-Viot process with mutation operator 

Bf(x) = Rx) 
J 

(f(y) - f(x)P(x,dy) 3 

E 

where 0 E B(E) is nonnegative and 1. is a transition function on E, recombination 

is determined by CI and 9, and the selection intensity function is G E B,,,(E x E). 

Suppose 

;imO “x”, ~(x)~G,S,(y)) = 0 (3.28) 
,_ ’ 

and 

lim sup y(x, y,&(z)) = 0. (3.29) 
E'O X,Y,Z 

Suppose jitrther that Z(t) converges in distribution in (Y(E),p) as t + CQ If 25 < 

1 + 2e + 2c(, then Z(t) converges in distribution in (P(E), pa). 

Remark 3.10. Note that if E is compact and 1(x, .) is nonatomic for all x and weakly 

continuous in x, then (3.28) holds. 

Proof of Theorem 3.9. Let 0 > c > 26 - 1 - 26 - 2~. Then, arguing as in the proof 

of Theorem 3.2, we have for E sufficiently small, 

1 _ ,-ct 
E[(f,,Z(t)*)e-“I 5 E[(f,,Z(O)*)l + 6*- , t 2 0, 

and hence 

sup E[(fJ(t)2)1 5 E[(fJW2)1 + 6 3 

t 

(3.30) 

(3.3 1) 

which implies (2.14). 0 

Example 3.11. Let E = [0, l] x [O,l], CI = 0, cr = 0, and 

Bf(x>y) = J” UC? Y) - ./-(x3 Y)) dz + + 1 ?f(X>Z)--f(&Y)W (3.32) 
0 
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where the second term is taken to be zero for y = 0. Then B is a bounded operator and 

is the generator of a Feller process on a compact state space. Ergodicity in (Y(E),p) 

follows by duality (see, for example, Ethier and Kurtz, 1994) since the unique station- 

ary distribution for B is given by linear Lebesgue measure on [0, l] x (0). Ergodicity 

does not hold in (Y(E),p,). In fact, if the initial distribution of 2 is supported on 

[0, l] x (0, 11, then the sequence of descending order statistics of the sizes of the atoms 

of Z(t) converges in distribution to the Poisson-Dirichlet distribution with parameter 

4, while the stationary distribution has atoms giving a Poisson-Dirichlet distribution 

with parameter 2. 

Note that the jump distribution giving B is nonatomic, but that it does not satisfy 

(3.28). The jump intensity is, however, discontinuous. 

4. Kingman’s Poisson-Dirichlet limit with selection 

We begin with two lemmas that rely on the symmetry-preserving transformation of 

Fukushima and Stroock (1986); however, in the case of the second lemma, the hypothe- 

ses in the latter paper are not satisfied, so we first isolate the identity of Fukushima 

and Stroock that we need here. 

Let L be a linear operator on B(E) whose domain s(L) is an algebra that is closed 

under exponentiation (h E g(L) implies eh E g(L)). Define 

Fix h E C@(L). Suppose 

[f, ehlL = [f, hlLeh , f E W), (4.2) 

and define the linear operator Lh on B(E) by 

Lhf = Lf + [f,h]L, %Lh) = s(L). (4.3) 

Then it is immediate that 

(fLhg - gLhf)e2h = fehL(geh) - gehL(feh), f, g E g(Lh). (4.4) 

In particular, if p E P(E) satisfies 

~fW~=&fd~> fists, 

then 

(4.5) 

J fb&ldPh = J &hf dPh, f,Cl E s(Lh), 
E E 

(4.6) 

(4.7) dllh = e2h dp/ J e2h dp . 
E 
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In other words, assuming (4.2), if L is symmetric with respect to /*, then Lh is sym- 

metric with respect to ph. 

For n > 2 define 

A,,= x=(x ,,..., x,):x]>0 ,..., x,>O,=&=l 
1 > 

(4.8) 
i=l 

The following lemma gives Wright’s formula (Wright, 1949; Watterson, 1977) (cf. 

Problem 10.2 of Ethier and Kurtz, 1986). 

Lemma 4.1. Fix n > 2. Let y1 > 0, . . . . y,, > 0 and let (o(j) be a real, symmetric, 

n x n matrix. Then the distribution p E P(A,,), de$ned for the appropriate constant 

C by 

p(&) = cq-1 . .$-1 exp 

is the unique stationary distribution for the d$tiision in A,, with generator 

where 

hi(x) = i {Yl - (Yl + . + Yn)Xi} + Xi 
L 

Moreover, p is reversible. 

Proof. The neutral case (aij = 0 for i, j = 1, . . . , n) is Lemma 4.1 and Remark 4.2(b) 

of Ethier and Kurtz (1981). Denote the generator A in that case by A’. Then 

n 
[f,hlAO(X) = C fx,(X)x;(h, -xj)hx,(x), f, h E g(AO), 

i,j=l 

(4.12) 

(4.9) 

(4.10) 

(4.11) 

SO (4.2) holds. If h(x) = iC:J=lOiiXiXj, th en ” ” using the symmetry of (Oij), we have 

[f, hIA = Af - A0 f. Letting p” E c Y( A,) denote the Dirichlet distribution 

I . . .x 7n-‘&q n . ..&._,) (4.13) PO@4 = QYI f. ‘. + Yn) 7, 

ml) . nYn) x’ 
we know that 

s 
fA”gdpo = 

s 
gA”f dp”, f,s E %A’). 

A, Ai7 

Therefore, by (4.6), 

s 
fAgG = 

J’ 
gAf GL, f,g E WA). 

An An 

(4.14) 

(4.15) 
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Since the closure of A generates a Feller semigroup on C(d,) (Ethier, 1976), (4.15) 

implies the reversibility (hence stationarity) of p. The uniqueness of stationary distri- 

butions is a result of Shiga (198 1). 0 

Lemma 4.2. Let E be compact, let b’ > 0 and v E 9’(E), and dejine the linear 

operator B on B(E) by Bf = ig((f,v) -f). 

(a) Let ((I,&,...) h ave the Poisson-Dirichlet distribution with parameter 0, and 

let V,,V2,... be a sequence of E-valued random variables that are i.i.d. v and inde- 

pendent of (51,(2,.. .). Dejine Ilo E 9(9(E)) to be the distribution of the random 

measure u = Crt&Sr,. Then Ilo is the unique stationary distribution for the neu- 

tral FleminggViot process with type space E and mutation operator B, and Ilo is 

reversible. 

(b) Let o E Bsym(E2). Then Il E 9(9(E)), defined for the appropriate constant 

C by 

ZZ(dp) = Ce(“~P2)no(d~), (4.16) 

is the unique stationary distribution for the Fleming-Viot process with type space E, 

mutation operator B, and selection intensity function o. Moreover, 17 is reversible; in 

fact, if & is the corresponding generator, then Ll is the unique F E 9(9(E)) such 

that 

s 
(p&$ dT = $dq dr > cPYtiEW4. (4.17) 

.P(E ) s p(E) 

Remark 4.3. We cannot prove that L’ is the unique r E 9(9(E)) such that 

J dcpdr=o, lpE9(d). 
P(E) 

(4.18) 

But if G were continuous, then this would follow from Echevarria’s theorem (see, for 

example, Ethier and Kurtz, 1986, Theorem 4.9.17). 

Proof of Lemma 4.2. (a) For 1 5 d < n, let n(n,d) be the collection of partitions j3 of 

(1, ..., n} into d nonempty subsets /It, . . . , ljd labeled so that min 81 < . . . < min /?d, 

and for /I E x(n,d) define 

Then, for each n > 1 and f ,, . . . , f,, E C(E), 

J (fl,~L)‘.‘(fn,~L)nO(d~) 
NE) 

(4.19) 
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where 0’1, . , j,) N p means that jk = jl if and only if k and I belong to the same pi; 

the last equality follows from the relationship between the Poisson-Dirichlet distribution 

and the Ewens sampling formula (Kingman, 1977). It is known (Ethier, 1990) that the 

stationary distribution satisfies the same identity (i.e., the left-hand side of (4.20) equals 

the right-hand side) and does so uniquely. Hence II0 is the stationary distribution. (See 

Theorem 10.4.6 of Ethier and Kurtz (1986) for a somewhat more complicated proof in 

the special case E = [0, 11, v = Lebesgue measure.) The reversibility of the stationary 

distribution was proved by Ethier (1990). 

(b) Let Cd’ be the generator for the neutral Fleming-Viot process. From the latter 

reference, 

J (pd”$ dn” = J $d”cp duo, cp, l/b E L2qEP) . (4.21) 
J”(E) :P(E) 

As in the proof of Lemma 4.1, we now want to apply (4.6) with h(p) = i(o,p2). 

First, however, we need to extend .d” to an algebra closed under exponentiation and 

containing h; note that h is not necessarily continuous. Thus, for 

cp(P) =F((f,,PL ...’ (fd>P))? (4.22) 

where d > 1, F E C2(Rd), nl, . . . . nd 2 1, and fk E B(E”k) for k = 1, . . . . d, we 

define 

+ 5 5 (Bkf i~P)Fx, ) 

i=l k=l 

(4.23) 

where yk/(fi, fj) is the function in B(E”‘+“I~’ ) obtained from f i(x)fj(y) by replacing 

y/ by xk and renumbering the variables, @k[ f i is as in Section 1, and Bk f is B acting 

on f as a function of its kth variable. The partial derivatives of F have the same 

arguments as F itself in (4.22). We define B(Jz?‘) to be the space of all such cp. 

Approximating F by polynomials, we can easily check that 

{(~,d”~) : cp E 9(C$o)} c bp-closure{(cp,&‘q) : cp E 9(d”)} . (4.24) 
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It follows from (4.21) that 

J cp&~“tjd170 = 
p(E) J t,hzi'cp dIIO, cp, ICI 6 w2°) 

g%V 
(4.25) 

By (4.23) (using the notation (4.1)), 

[F((fl,P), . ..> (fd,~~d)),G((gl,~m’), . ..> (gc,P’))l~o 

= 5 2 2 ~((y,,(~i,Y,),Ic”“m’-l) - (fi,~c”‘)(Sj,~Lm’))F,iG, > 
i=, j=l k=l [=I 

(4.26) 

hence (4.2) holds. Let (p(p) = (f,~“), where n > 1 and f E B(P), and let h(p) = 

i(c,p2). Then, by (4.26) and the symmetry of CT, [cp,h],,-o = dq - d’cp, so by (4.6) 

we have 

(4.27) 

We claim that II is reversible. For continuous 0, this follows from Fukushima and 

Stroock (1986). To see that it holds in general, let {T,(t)} be the Markov semigroup 

on B(P(E)) corresponding to the Fleming-Viot process with type space E, mutation 

operator B, and selection intensity function C, and temporarily denote II by II,. Let 

C = {CJ E Bsy,(E2) : Z7, is reversible} . 

If (0,) c C and bp-lim,,, on = coo exists, then 

(4.28) 

J ~T,,(t)ll/dII,, = lim J cpTnt(t)$dno, p(E) '-03 P(E) 

= lim J @'~,(~)cpd~o, n-m kP(E) 
=.I ti~o,(t)cpd&, s(E) (4.29) 

for all cp, $ E C(P(E)) and t > 0, where the first and third equalities follow by 

coupling the dual processes as in Theorem 3.1(a) (especially, Eq. (3.3)) of Ethier 

and Kurtz (1987) and by (4.16). We conclude that 6, E C, so C is bp-closed. As 

noted above, Z contains the continuous symmetric functions, hence C = B,,,(E’). 

We conclude that ZZ (given by (4.16)) is reversible, hence stationary. Uniqueness of 

stationary distributions is a consequence of results in Ethier and Kurtz (1994). 

Finally, suppose r E sP(P(E)) satisfies (4.17). We begin by extending & as in 

(4.23). For cp as in (4.22) define 

(4.30) 

and let a(d) = g(2’). Then, by (4.17) 
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Noting that (4.26) holds with d in place of JZ?‘, we again apply (4.6) now with 

II(,U) = - f (CT, p’), to conclude that 

Take $ s 1 and apply Echeverria’s theorem to conclude that C-1e-(“~~2)T(d~) = 

I7’(dp) for some C > 0, hence r = IZ. 0 

Let 

VW = 
{ 

(x1,x2,...): x, 2x2 > .” > 0, -& = 1 
i=l 1 (4.33) 

be the infinite-dimensional ordered simplex (topologized as a subset of [0, IIN), and 

define [,, : A,, ++ 0, for each n > 2 in terms of the descending order statistics 

X(l) > X(2) L . . . > +I) of the coordinates XI, . . , x, of vectors x E A,,: 

in(x) = (X(l), . > X(n), o,o,. . .> . (4.34) 

We can now state the main result of this section. 

Theorem 4.4. For each n > 2, let yy) > 0,. . . ,y?’ > 0, and let (a:‘) be a real, 

symmetric, n x n matrix. Let 0 > 0 and assume 

Dejine 

p + . . + p’ 
p = 1 

I 
p + . . + y ;c i= l,...,n, n>2, 

I n 

(4.35) 

(4.36) 

and suppose there exists o E Bsym([O, 112) such that 0 is continuous ,12-a.e. (2 = 

Lebesgue measure on [0, l]), the function ~0 E B([O, I]) given by Q(X) = o(x,x) is 

continuous i-a. e., and 

lim max Ia:’ 
n+cc 1 <i.j<n 

- o@, @‘)I = 0 

For each n > 2 dejine pn E 9(A,) for the appropriate constant C, by 

(4.37) 

A”)-, 
p,(h) = C,xI’ . . . xlp’-1 eXp { ,f:Iy’X$j} d_Xl . ..dX._l . 

Then there exists pm E 9’( V7,) such that p,,<; ’ + p, on V,. In fact, 

(4.39) 
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for all A E &I( V,), where the V,-valued random variable ((1, &, . . .) is Poisson- 

Dirichlet with parameter 0, and UI, U2,. . . are independent uniform [0, l] random 

variables, independent of (51, (2,. . .). 

Proof. Theorem 3.1(b) of Ethier and Kurtz (1987) is a limit theorem for a sequence 

of Fleming-Viot processes with different type spaces (cf. Remark 3.8 above). Here we 

need a uniform estimate on the rate of convergence of their generators. 

For each n, let E, and E be compact metric spaces; let qn : E, H E be Bore1 

measurable and define rj, : 9(E,,) H Y(E) by i,(p) = pq;‘; let B, and B generate 

Feller semigroups on C(E,) and C(E); let o‘n E Bsym(Ez) and G E B,,,(E2); and let 

&‘, and d be the generators of the Fleming-Viot processes associated with E,,, B,, CJ~ 

and E, B, o, respectively. Assume that if f E 9(B), then f o Q, E 9(B,). Fix m > 1 

and fl, . , f,,, E 9(B), and define cp E g(d) by cp(p) = (fr, 11) . (fm,p). Then it 

is easily verified that cp o ?jn E g(&,) and 

II~n(~o~n)-(~~)orinII 5 ,~IIB~(fio~.,)-(B/i)o~~Il~~,llf~lI I 

+2m sup IG(x~Y) - ~(~.(~),~~(~))l,~lI/,ll 
(x,.vEe,2 

for each n. 

In what follows we take 

(4.40) 

E, = {p\“‘, . . . . ,” , /I’ ‘} E = [0 l] , , (4.41) 

B,f = ;On((f>~vJ - f>t Bf = $WJ) - f 1, (4.42) 

where 

(4.43) 

and ~n(j?!n’,$‘) = crt) (i,j = 1, . . , n) and 0 is as given; also, v],, is the inclusion 

map. Noting that 

IlKdf ovn> -(Bf)ovnll I ;lQdf oylm&J - O(f>4l + $4 - 01 llfll 

for all f E C([O, l]), where W/ denotes the modulus of continuity of f, we see from 

(4.40) that (4.35) and (4.37) imply that 

.‘&& ll~n((Po%l-(~cp)o17^,ll =o. (4.45) 

For each n > 2, define TC,, : A,, H Y(E,,) by z,(x) = C yzlXiGp(n), and let 

fl, = P”Z,‘> where ,u, is given by (4.38). It follows from Lemma 4.1 that II,, is the 

unique stationary distribution of the Fleming-Viot process with type space E,,, mutation 
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operator B,, and selection intensity function g,,. Consequently, given cp,$ E S:(d) of 

the form 

cp(P) = *!j Vi> P)? t/U) = ic, (Sk P) 3 (4.46) 

where m 1 1 and f~, . . . , fm, 91, . . . , g,,, E C([O, l]), we have 

for all n 2 2. Hence, by (4.4.5), 

J (p&$dR,,f,’ - J t+M(p d&f;’ 4 0 (4.48) 
.+mll) :+Y[O.Il) 

as n + co. 

Let no E P(P([O, 11)) be as in Lemma 4.2(a) (with E = [0, I] and v = 2). We 

defer for the moment the proofs of the following three assertions: 

(4.49) {n,;i,‘} is relatively compact in .Y(P([O, l]), p,). 

(4.50) Every subsequential limit r E Y(.T([O, 11)) of {n,f,‘} satisfies r < II0 (and 

hence is concentrated on Pa([O, l]), the space of purely atomic Bore1 probability 

measures on [0, 11). 

(4.51) &q is no-as. continuous on (Ya([O, l]),p,). 

Granting these results, the proof is easily completed. Suppose n,,$,’ =S r on 

(Y([O, l]),~~); then the convergence holds on (Yp,([O, l]),p,) since by (4.50) all mea- 

sures are concentrated on g,([O, 11). By (4.51) cpdll/ - $&cp is ITo-a.s., hence by 

(4.50) T-as., continuous on (Ypa([O, l]),p,). It follows from (4.48) that 

J cpd$ dr - 
.~([0,11) J $,d(pdT = 0, (4.52) 

.4o.ll) 

and this holds for all cp and $ of the form (4.46). We conclude from Lemma 4.2(b) 

that r = n. Hence Z7,t;’ + II on (.Pp,([O, l]),~~). For each i > 1 define s; : 

Y,([O, 11) H [0, l] by letting si(p) be the size of the ith largest atom of p if p has 

at least i atoms, and 0 otherwise. By Lemma 2.5, (sI,s~, . .) is a continuous function 

from (Pp,([O, l]),p,) into G’oo. Hence n,i,‘(sl,.s2 ,... ))’ + n(s,,s, ,... )-’ on Vx. 

But this amounts to p,,[,’ + pot on Vm, where 

for all A E g(V,) by Lemma 4.2(b), and the right-hand side of (4.53) equals the 

right-hand side of (4.39) by Lemma 4.2(a). 

We turn to (4.49)-(4.51). Relative compactness of {n,f,‘} in ~~(~([O, l]),p) is 

automatic, so by Lemma 2.9, (4.49) will hold if for every 6 > 0 there exists & > 0 

such that 

inf pn x E A, : (4.54) 
,1 
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or if 

25 

(4.55) 

We can replace ,u,, by the Dirichlet distribution & (cf. (4.13)) in (4.55) since pLn(A) 5 

p,O(A) exp{max 0:’ - min ot’}. But then (4.55) becomes 

(4.56) 

which by Lemma 2.4 holds if and only if {&} is relatively compact in (P([O, l]), pa). 

But An + 1, and 

~*,“(P, 11) = .&yl”‘/en)2 5 ,‘=,“<“, Yj”‘/& --+ 0 = A*([o, 11). (4.57) 
i=l 

Hence in + A in (.Y([O, l]),p,) by Lemmas 2.1 and 2.2. Thus, we have (4.49). 

Next, suppose II,,/ ts ’ + r on (S”([O, l]), pa). Then, for every nonnegative function 

cp E C(P(]O> ll),Ph 

= $“p a-inf cl 

s 
duo > (4.58) 

.~(WJl) 

where II: = &rc;‘, and hence we have (4.50). 

To verify (4.51) it is sufficient to consider (of, p2), where f E C([O, 11). If 

P = C&ax, t where c(i > ~2 > ..., this is 

;,~,~(Xi;Xj)f(Xi)~i~j = ~cO(xi)f(Xi)lf + ~,dXi9Ji)f(Xi)ai~j~ 

By Lemma 2.5, the first term is continuous on (Pa([O, l]),pa) at ~1 if CII > ~(2 > 

and each xi belongs to the continuity set of CJO. On the other hand, 

5 211011 IlfllCI$ - UiI + CI4$3X~)f<X~) - 4Xi3X,)f(Xi)l&~j~ (4.60) 
i i#j 

so Lemma 2.5 implies that the second term on the right-hand side of (4.59) is con- 

tinuous on (.Ypa([O, l]),pa) at /.I if ~(1 > CQ > . . and each pair (xi,Xj) with i # j 
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belongs to the continuity set of 0. But by Lemma 4.2(a), these requirements are satis- 

fied n’(dp))-a.s. under the assumptions on rr and by properties of the Poisson-Dirichlet 

distribution. This establishes (4.51) and completes the proof. 0 

We conclude by showing that pm, given by (4.39) has a simpler representation 

for an important class of selection intensity functions fr. 

Let 01 > 0, . . ., 0d > 0, and 0 = 13, + . . + t&. Write 

[O,i]=J~U~~~UJ~=[O,~~/~)U~~~U[(~~+~~~+~~_~)/~,i], (4.61) 

and suppose that c E &,([O, 112) is given by 

where (gk[) is a real, symmetric d x d matrix. Let (c”;, $, . . .), k = 1, ., d, be d in- 

dependent Poisson-Dirichlet random variables with parameters 81, . . , tld, respectively, 

independent of (yi, , yd), a Ad-valued random variable whose distribution p is de- 

fined for the appropriate constant C by 

k,l= I 

Proposition 4.5. Under the above assumptions, the V,-valued random variable ob- 

tained by giving a common ordering to the d sequences (y1<i]),z,, . ., (yd$),z, has 

distribution pm. 

Remark 4.6. poo is the distribution of allele frequencies in the stationary infinitely- 

many-alleles diffusion model in the situation where there are d classes of alleles; mu- 

tation to an allele in class k occurs with intensity +8k; and the selection intensity 

of a genotype consisting of alleles in class k and class 1 is ok/. Two models of Li 

(1978) one for genie selection and one for recessive selection, fit into this framework. 

The result says that the class frequencies ;‘I, , yd are distributed according to (4.63) 

(cf. Lemma 4.1) and the within-class relative allele frequencies are Poisson-Dirichlet 

and independent of the class frequencies. In the special case of genie selection (i.e., 

ok/ = ok + 01) this result is due to Griffiths (1983). 

Proof of Proposition 4.5. Let zi > z2 > . . be the points of an inhomogeneous 

Poisson point process on (0, co) with intensity function Ou~‘e--“. Ifs = zi +z2+. . ., then 

Kingman (1975) has shown that (zi /s,zl/s, . . .) is Poisson-Dirichlet with parameter 0. 

Let Ui, Uz, . be i.i.d. uniform [0, 11, independent of zi > z2 > . . For k = 1, . , d, 

let z” be the ith largest z, for which Uj E Jk and put sk = CiZf; let r,$ = z,“/sk and 

bk = Sk/s. Then, by (4.39) 

Pm(~> = 

EIJA(i((Bl Ilf >i> 13 . ‘3 (ljd~~)i~l))exp{C~,r=,~k[ljkBI}l 

E[exp{C%,=,akr8kB,}l 

(4.64) 

where < is the function that gives a common ordering to d sequences, and the result 

follows from the easily verified facts that ($, ~5,. . .), k = 1, . . , d, are independent 
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Poisson-Dirichlets with parameters Or, . , t3d, respectively, and (/?I, . . . , Pd) is Dirich- 

let with parameters 81, . . . , tld, independent of the I$‘s. (Cf. Donnelly and Tavart, 

1987, Section 3.) q 
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