

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 2115-2117

Note

www.elsevier.com/locate/disc

MATHEMATICS

DISCRETE

Collapsible biclaw-free graphs

Hong-Jian Lai^{a,c}, Xiangjuan Yao^{b,*}

^aDepartment of Mathematics, West Virginia University, Morgantown, WV 26506, USA ^bCollege of Sciences, China University of Mining and Technology, Jiangsu, Xuzhou 221008, PR China ^cCollege of Science, Chongqing Technology and Business University, Chongqing 400067, PR China

Received 20 October 2005; received in revised form 24 February 2006; accepted 28 March 2006 Available online 11 July 2006

Abstract

A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if *G* is a connected bipartite biclaw-free graph with $\delta(G) \ge 5$, then *G* is collapsible, and of course superculerian. This bound is best possible. © 2006 Elsevier B.V. All rights reserved.

Keywords: Supereulerian graphs; Collapsible graphs; Biclaw-free graphs

1. Introduction

Graphs in this paper are finite and simple. Undefined terms and notations are from [2]. For a graph G, let O(G) denote the set of odd degree vertices of G. A graph G is *eulerian* if G is connected with $O(G) = \emptyset$, and is *supereulerian* if G has a spanning eulerian subgraph. Since a spanning eulerian subgraph H with maximum degree $\Delta(H) = 2$ is a hamiltonian cycle, supereulerian graphs are viewed as a relaxed version of hamiltonian graphs. Boesch et al. in [1] indicated that the problem of characterizing supereulerian graphs might be very difficult. In 1979, Pulleyblank [9] showed that determining if a graph is supereulerian is NP-complete.

Catlin [3] introduced the concept of collapsible graphs. A graph *G* is *collapsible* if for any subset $R \subseteq V(G)$ with $|R| \equiv 0 \pmod{2}$, *G* has a spanning connected subgraph Γ_R such that $O(\Gamma_R) = R$. For example, K_1 and cycles of length less than 4 are collapsible, but C_4 is not. Note that when $R = \emptyset$, a spanning connected subgraph Γ_R of *G* is a spanning eulerian subgraph of *G*, and so collapsible graphs must be supereulerian. For more in the literature, please see the survey paper of Catlin [4] and its update [5].

A *claw* is a graph isomorphic to the complete bipartite graph $K_{1,3}$. A *bilcaw* is defined as the graph obtained from two vertex disjoint claws by adding an edge between the two vertices of degree 3 in each of the claws (see Fig. 1).

A graph is called *biclaw-free* if it does not have a biclaw as an induced subgraph. In 1992, Li conjectured that high minimum degree may assure a biclaw-free graph to be hamiltonian.

Conjecture 1.1 (*Li*, *Conjecture 2b.32 of Faudree et al.* [6], see also *Li* [8]). There exists a constant *c* such that every connected bipartite biclaw-free graph *G* with $\delta(G) \ge c$ is hamiltonian.

* Corresponding author.

E-mail address: yxjcumt@126.com (X. Yao).

⁰⁰¹²⁻³⁶⁵X/ $\$ - see front matter $\$ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.03.069

Fig. 2. One section of graph G.

A bipartite graph *G* with bipartition $\{A, B\}$ is *balanced* if |A| = |B|. If a bipartite graph *G* is hamiltonian, then *G* must be balanced. For any integer c > 0, the complete bipartite graph $K_{c,c+1}$ is clearly biclaw-free, has minimum degree *c*, but is not hamiltonian. Therefore, Conjecture 1.1 should be rephrased as that there exists a constant *c* such that every connected balanced bipartite biclaw-free graph *G* with $\delta(G) \ge c$ is hamiltonian. While this conjecture is still open, we in this note will prove the following.

Theorem 1.2. Every connected bipartite biclaw-free graph G with $\delta(G) \ge 5$ is supereulerian.

The proof of this theorem will be given in the next section. We shall also show that the bound $\delta(G) \ge 5$ is best possible.

2. Proof of the main result

We shall prove the following stronger result, which implies Theorem 1.2.

Theorem 2.1. Every connected bipartite biclaw-free graph G with $\delta(G) \ge 5$ is collapsible.

We start with some lemmas.

Lemma 2.2. Let *G* be a bipartite biclaw-free graph with $\delta(G) = \delta \ge 4$. Then for any two adjacent vertices *u* and *v* in *G*, there are at least $\delta - 3$ internally disjoint (u, v)-paths of length 3.

Proof. By contradiction. Suppose that there exist two adjacent vertices *u* and *v*, but there are only $t \le \delta - 4$ internally disjoint (u, v)-paths of length 3 (which are denoted by P_1, P_2, \ldots, P_t , see Fig. 2).

Then in the graph $G - \bigcup_{i=1}^{t} E(P_i)$, there must be three edges e_1, e_2, e_3 that are incident with u, and other three edges e'_1, e'_2, e'_3 that are incident with v. By bipartiteness and the contradiction assumption, e_i (i = 1, 2, 3) and e'_j (j = 1, 2, 3) cannot be joined by any edge except uv. But then $G[uv, e_1, e_2, e_3, e'_1, e'_2, e'_3]$ will be an induced biclaw of G, contrary to the assumption that G is biclaw-free. \Box

This lemma has a few corollaries.

Corollary 2.3. Let G be a bipartite biclaw-free graph with $\delta \ge 4$. Then every edge $e \in E(G)$ lies in a 4-cycle of G.

This can be easily deduced from Lemma 2.2.

Fig. 3. (a) *H* and (b) $K_{2,2t+1}(H)$.

Corollary 2.4. Let G be a bipartite biclaw-free graph with $\delta(G) = \delta \ge 4$, then $\kappa'(G) \ge \delta - 2$, where $\kappa'(G)$ represents edge connectivity.

Proof. For an arbitrary edge cut X of G, let u and v be two vertices that are adjacent in G but belong to different components in G - X. By Lemma 2.2, there are at least $\delta - 2$ internally disjoint (u, v)-paths (include the edge uv), so X should include at least $\delta - 2$ edges. By the arbitrariness of X, $\kappa'(G) \ge \delta - 2$.

Lemma 2.5 (*Theorem 1 of Lai* [7]). If $\kappa'(G) \ge 2, \delta(G) \ge 3$, and if every edge of G lies in a 4-cycle, then G is collapsible.

Corollary 2.6. If $\kappa'(G) \ge 3$ and if every edge of G lies in a cycle of length at most 4, then G is collapsible.

Proof. Every block of G satisfies the hypothesis of Lemma 2.5. \Box

Proof of Theorem 2.1. Let *G* be a connected bipartite biclaw-free graph with $\delta(G) = \delta \ge 5$. By Corollary 2.4, $\kappa'(G) \ge \delta - 2 \ge 3$. By Corollary 2.3, every edge of *G* lies in a cycle of length 4. It follows by Corollary 2.6 that *G* must be collapsible. \Box

To see that the bound $\delta(G) \ge 5$ is best possible, we consider the following family of graphs. Let $K_{2,2t+1}$ have bipartition (X, Y), where $X = \{x_1, x_2, \dots, x_{2t+1}\}$ $(t \ge 2)$. Let H denote the graph depicted in Fig. 3(a). We call the vertex of degree 2 in H its *peak*. Let $G(t) = K_{2,2t+1}(H)$ be the graph obtained from the disjoint union of a $K_{2,2t+1}$ and 2t + 1 copies of H, by identifying x_i $(i = 1, 2, \dots, 2t + 1)$ of $K_{2,2t+1}$ with the peak of one H, see Fig. 3(b).

Since $G(t) = K_{2,2t+1}(H)$ can be contracted to $K_{2,2t+1}$, which is not supereulerian, G(t) is not supereulerian, and so not collapsible also. On the other hand, it is straightforward to verify that G(t) is a connected bipartite biclaw-free graph with $\delta(G(t)) = 4$. Therefore, the condition $\delta(G) \ge 5$ in Theorems 1.2 and 2.1 cannot be improved.

Note that G(t) has a cut vertex. We have the following surmise:

Conjecture 2.7. *Every* 2*-connected bipartite biclaw-free graph* G *with* $\delta(G) \ge 4$ *is collapsible.*

References

- [1] F.T. Boesch, C. Suffey, R. Tindel, The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977) 79–84.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [3] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
- [4] P.A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory 16 (1992) 177–196.
- [5] Z.H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics—a survey, Combinatorics and Graph Theory 95, vol. 1 (Hefei), World Scientific Publishing, River Edge, NJ, 1995, pp. 53–69.
- [6] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graphs-a survey, Discrete Math. 164 (1997) 87-147.
- [7] H.-J. Lai, Graphs whose edges are in small cycles, Discrete Math. 94 (1991) 11–22.
- [8] H. Li, Problem A15, Memorandum 1076, University of Twente, Enschede, 1992, p. 119.
- [9] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309-311.