On the Mann Iteration Process in a Hilbert Space

Troy L. Hicks and John D. Kubicek
University of Missouri-Rolla, Rolla, Missouri 65401, and Southwest Missouri State University, Springfield, Missouri 65802
Submitted by Ky Fan

1. Introduction

For a self-mapping T of a compact interval of the real line having a unique fixed point, Mann [12] proved that the iteration process $v_{n+1}=\left(1-d_{n}\right) v_{n}+$ $d_{n} T v_{n}$, with $d_{n}=1 /(n+1)$, converges to the fixed point. Franks and Marzec [3] proved that the uniqueness requirement was unnecessary. Outlaw and Groetsch [14] obtained convergence for T a nonexpansive mapping on a convex compact subset of the complex plane. Groetsch [5] generalized the procedure for nonexpansive mappings on uniformly convex Banach spaces. Also, Dotson [2] used the procedure for quasi-nonexpansive mappings on strictly convex Banach spaces. In a Hilbert space we cnlarge the class of mappings for which the iteration process converges to a fixed point to demicontractive mappings. Also, we give some examples and look at an unsolved problem. Throughout this paper we let C denote a subset of a Hilbert space H and T a mapping of C into itself.

2. 'I'heorems and Examples

A self-mapping T on C is said to be pseudocontractive [1] if for all $x, y \in C$,

$$
\|T x-T y\|^{2} \leqslant\|x-y\|^{2}+\|(I-T) x-(I-T) y\|^{2}
$$

where I denotes the identity mapping. T is said to be strictly pseudocontractive [1] if there exists a constant $k<1$ such that, for all $x, y \in C$,

$$
\|T x-T y\|^{2} \leqslant\|x-y\|^{2} \mid k\|(I-T) x \quad(I \quad T) y\|^{2} .
$$

We say T is demicontractive if there exists a constant $k<1$ such that, for each fixed point p of T and each $x \in C$,

$$
\|T x-p\|^{2} \leqslant\|x-p\|^{2}+k\|x-T x\|^{2}
$$

We call k the contraction coefficient. Clearly, a strictly pseudocontractive mapping
is both pseudocontractive and demicontractive. Also, Kannan [7-11] and then Wong [16] studied mappings that satisfy the condition:

$$
\begin{equation*}
\|T x-T y\| \leqslant(\|x-T x\|+\|y-T y\|) / 2 . \tag{1}
\end{equation*}
$$

For $y=p=T p$, this becomes $\|T x-p\| \leqslant\|x-T x\| / 2$. Hence $\|T x-p\|^{2} \leqslant$ $\|x-T x\|^{2} / 4 \leqslant\|x-p\|^{2}+\|x-T x\|^{2} / 4$. Thus the class of demicontractive mappings includes the mappings studied by Kannan and Wong.

Example 1. We give an example of a demicontractive mapping which is not pseudocontractive, hence not strictly pseudocontractive. Let H be the real line and $C=[-1,1]$. Define T on C by $T x=\frac{2}{3} x \sin (1 / x)$ if $x \neq 0$ and $T(0)=0$ Clearly, 0 is the only fixed point of T. Also, for $x \in C,|T x-0|^{2}=|T x|^{2}=$ $\left|\frac{2}{3} x \sin (1 / x)\right|^{2} \leqslant|2 x / 3|^{2} \leqslant|x|^{2} \leqslant|x-0|^{2}+k|T x-x|^{2}$ for any $k<1$. Thus T is demicontractive. We show that T is not pseudocontractive. Let $x=2 / \pi$ and $y=2 / 3 \pi$. Then $|T x-T y|^{2}=256 / 81 \pi^{2}$. However,

$$
|x-y|^{2}+|(I-T) x-(I-T) y|^{2}=160 / 81 \pi^{2} .
$$

Let $\left\{d_{n}\right\}$ be a sequence from $(0,1)$ such that $\sum_{n=1}^{\infty} d_{n}\left(1-d_{n}\right)$ diverges. With an initial value v_{1}, we consider the iteration process defined by

$$
\begin{equation*}
v_{n+1}=\left(1-d_{n}\right) v_{n}+d_{n} T v_{n}, \tag{2}
\end{equation*}
$$

for $n \geqslant 1$. Let $A=\left(a_{i, j}\right)$ be the infinite matrix defined by $a_{1,1}=1, a_{1, k}=0$ for $k>1 ; a_{n+1, n+1}=d_{n}$ for $n \geqslant 1 ; a_{n+1, j}=a_{j, j} \prod_{k=j}^{n}\left(1-d_{k}\right)$ for $1 \leqslant j \leqslant n$ and $a_{n+1, j}=0$ for $j>n+1$. Dotson [2] has shown that A yields a normal Mann process. A frequent choice for the sequence $\left\{d_{n}\right\}$ is $d_{n}=1 /(n+1)$. The matrix A then becomes the Cesaro matrix, originally used by Mann [12]. If $0<k<1$, one can choose $d>0$ and a sequence $\left\{d_{n}\right\}$ from $(0,1)$ such that $\sum d_{n}\left(1-d_{n}\right)$ diverges and $d_{n} \rightarrow d<1-k$. Just let $d=(1-k) / 2$ and $d_{n}=((1-k) / 2)+(1 /(n+1))$.

Theorem 1. Suppose C is a convex subset of H. Suppose T is a demicontractive mapping of C into itself with contraction coefficient k. Suppose the set of fixed points $F(T)$ is nonempty. Suppose $\sum d_{n}\left(1-d_{n}\right)$ diverges and $d_{n} \rightarrow d<1-k$. Then $\lim \inf \left\|v_{n}-T v_{n}\right\|=0$ for each $v_{1} \in C$, where v_{n+1} is defined by (2).

Proof. Ishikawa [6] has shown that for any x, y, z in a Hilbert space and real number $\lambda,\|\lambda x+(1-\lambda) y-z\|^{2}=\lambda\|x-z\|^{2}+(1-\lambda)\|y-z\|^{2}-$ $\lambda(1-\lambda)\|x-y\|^{2}$. Thus for each $p \in F(T)$ and each integer n,

$$
\begin{align*}
0 & \leqslant\left\|v_{n+1}-p\right\|^{2}=\left\|\left(1-d_{n}\right) v_{n}+d_{n} T v_{n}-p\right\|^{2} \\
& =\left(1-d_{n}\right)\left\|v_{n}-p\right\|^{2}+d_{n}\left\|T v_{n}-p\right\|^{2}-d_{n}\left(1-d_{n}\right)\left\|v_{n}-T v_{n}\right\|^{2} \\
\leqslant & \left.\left(1-d_{n}\right)\left\|v_{n}-p\right\|^{2}+d_{n}\| \| v_{n}-p\left\|^{2}+k\right\| v_{n}-T v_{n} \|^{2}\right) \tag{3}\\
& \quad-d_{n}\left(1-d_{n}\right)\left\|v_{n}-T v_{n}\right\|^{2} \\
= & \left\|v_{n}-p\right\|^{2}-d_{n}\left(1-d_{n}-k\right)\left\|v_{n}-T v_{n}\right\|_{1}^{2} .
\end{align*}
$$

By induction, we obtain

$$
0 \leqslant\left\|v_{1}-p\right\|^{2}-\sum_{j=1}^{n} d_{j}\left(1-d_{j}-k\right)\left\|v_{j}-T v_{j}\right\|^{2} .
$$

Thus

$$
\begin{equation*}
\sum_{n=1}^{\infty} d_{n}\left(1-d_{n}-k\right)\left\|v_{n}-T v_{n}\right\|^{2} \leqslant\left\|v_{1}-p\right\|^{2} \tag{4}
\end{equation*}
$$

Since $0 \leqslant d_{n}<1, d_{n}>d_{n}\left(1<d_{n}\right)$. Also $\sum d_{n}\left(1-d_{n}\right)$ diverges. Thus $\sum d_{n}$ diverges. Let $\eta=1-d-k$. Then $\eta>0$, and there exists an integer N such that $d_{n}<d+\eta / 2$ for $n \geqslant N$. Thus $1-d_{n}-k>1-k-d-\eta / 2=\eta / 2$. Therefore $\sum d_{n}\left(1-d_{n}-k\right) \geqslant(\eta / 2) \sum d_{n}$, which diverges. Hence $\sum d_{n}\left(1-d_{n}-k\right)$ diverges. Thus, from (4), we obtain $\lim \inf \left\|v_{n}-T v_{n}\right\|=0$.

Remark 1. In Theorem 1, if $d \neq 0$, the terms of the series $\sum d_{n}\left(1-d_{n}-k\right)$ are bounded away from zero. Hence we can conclude that $\lim \left\|v_{n}-T v_{n}\right\|=0$.

Remark 2. Since $1-d_{n}-k \rightarrow 1-d-k>0$, there exists an integer N_{0} such that $1-d_{n}-k>0$ for $n \geqslant N_{0}$. Thus, from Eq. (3), we obtain $\left\|v_{n+1}-p\right\| \leqslant\left\|v_{n}-p\right\|$ for $n \geqslant N_{0}$.

Groetsch [5] proved the following for T nonexpansive and H a uniformly convex Banach space. Our result shows that the theorem holds for a larger class of mappings in a Hilbert space.

Corollary 1. Suppose C is a closed bounded convex subset of H. Suppose T and $\left\{d_{n}\right\}$ satisfy the hypothesis of Theorem 1. Suppose $I-T$ maps closed bounded subsets of C into closed subsets of C (in particular, if T is demicompact [1]). Then for each $v_{1} \in C$, the iteration process defined by (2) converges to a fixed point of T.

Proof. Let A denote the closure of the set of iterates v_{n}. By Theorem 1, 0 is a cluster point of $(I-T) A$. But $(I-T) A$ is closed so $0 \in(I-T) A$. Thus there exists a subsequence $v_{n_{j}}$ converging to a fixed point p. Remark 2 and $v_{n_{j}} \rightarrow p$ imply that $v_{n} \rightarrow p$.

Corollary 2. Suppose C is a closed bounded convex subset of H. Suppose T and $\left\{d_{n}\right\}$ satisfy the hypothesis of Theorem 1 with $d>0$. Suppose p is a cluster point of $\left\{v_{n}\right\}$ and T is continuous at p. Then v_{n} converges to p and $p \in F(T)$.

Pronf. Suppose $v_{n_{j}} \rightarrow p$. By continuity at $p,\left\|T v_{n_{j}}-v_{n_{j}}\right\| \rightarrow\|T p-p\|$. Also, by Remark 1, $\left\|T v_{n}-v_{n}\right\| \rightarrow 0$. Thus $\|T p-p\|=0$ and hence $T p=p$. Again $v_{n_{j}} \rightarrow p$ and Remark 2 implies that $v_{n} \rightarrow p$.

Remark 3. Wong [16] showed that if C is closed, bounded, and convex, then a continuous mapping T that satisfies (1) has a unique fixed point P. If the T in Corollary 1 satisfies (1), then $v_{n} \rightarrow p$. Thus we have a way of finding the fixed point.

Lemma (Opial [13]). Suppose H is a Hilbert space and the sequence $\left\{x_{n}\right\}$ is weakly convergent to x_{0}. Then for any $x \neq x_{0}, \lim \inf \left\|x_{n}-x_{0}\right\|<$ $\lim \inf \left\|x_{n}-x\right\|$.

The following theorem generalizes a theorem of Dotson [2, Theorem 8].
Theorem 2. Suppose C is a closed convex subset of H. Suppose $T: C \rightarrow C$ such that:
(a) $F(T) \neq \phi$.
(b) T is demicontractive with contraction coefficient k.
(c) If any sequence x_{n} converges weakly to x and $(I-T)\left(x_{n}\right)$ converges strongly to 0 then $(I-T)(x)=0$.

Then for $v_{1} \in C$ and $d_{n} \rightarrow d, 0<d<1-k$, the iteration process defined by (2) converges weakly to a fixed point of T.

Proof. Suppose $T p=p$. By Remark 2, there exists an integer N such that $\left\|v_{n+1}-p\right\| \leqslant\left\|v_{n}-p\right\|$ for all $n \geqslant N$. If $v_{N}=p$, then clearly $v_{n} \rightarrow p$. If $v_{N} \neq p, \quad\left\|v_{N}-p\right\|=r>0$. Let $\quad S_{r}(p)=\{x:\|x-p\| \leqslant r\}, \quad$ and let $D=C \cap S_{r}(p)$. Then $\left\{v_{n}\right\}_{n=N}^{\infty} \subset D$. Also, D is weakly compact since it is closed, bounded, and convex. Thus there exists a subsequence $\left\{\boldsymbol{v}_{n_{j}}\right\}$ which converges weakly to $y \in D \subset C$. By Remark $1,(I-T) v_{n_{j}} \rightarrow 0$; hence, by condition (c), $T y=y$.

Suppose $\left\{v_{n}\right\}$ does not converge weakly to y. Then the sequence $\left\{v_{n}\right\}_{n=N}^{\infty}$ has at least one other weak cluster point $q \neq y$. Suppose $\left\{v_{m_{i}}\right\}$ converges weakly to q. As for $y, T q=q$. From Remark 2, we see that the sequences $\left\{\left\|v_{n}-y\right\|\right\}$ and $\left\{\left\|v_{n}-q\right\|\right\}$ are nonincreasing for sufficiently large n. Thus $\lim \left\|v_{n}-y\right\|$ and $\lim \left\|v_{n}-q\right\|$ both exist. Using Opial's lemma, we obtain the following contradiction:

$$
\begin{aligned}
\lim _{n}\left\|v_{n}-y\right\| & =\lim _{j} \inf \left\|v_{n_{j}}-y\right\| \\
& <\lim _{j} \inf \left\|v_{n_{j}}-q\right\| \\
& =\lim _{i} \inf \left\|v_{m_{i}}-q\right\| \\
& <\lim _{i} \inf \left\|v_{m_{i}}-y\right\| \\
& =\lim _{n}\left\|v_{n}-y\right\| .
\end{aligned}
$$

Therefore, v_{n} converges weakly to $y \in F(T)$.
Remark 4. A mapping T is said to be demiclosed if weak convergence of any sequence $\left\{x_{n}\right\}$ to x and strong convergence of $\left\{T x_{n}\right\}$ to y implies $T x=y$. For C closed and convex, every weakly continuous self-mapping T of C is weakly closed, every weakly closed self-map is demiclosed, and if $I-T$ is demiclosed, then condition (c) holds.

Dotson [2, Theorem 6] proved the following for T quasi-nonexpansive and H a uniformly convex Banach space. In a Hilbert space, we can enlarge the class of mappings and obtain the result as a corollary of Theorem 2.

Corollary 3. Suppose C is a closed convex subset of H with T and $\left\{\tau_{n}\right\}$ as in Theorem 1 and $d>0$.
(1) There exists a subsequence of $\left\{v_{n}\right\}$ which converges weakly to $y \in C$, and if $I-T$ is demiclosed, $y \in F(T)$.
(2) If $I-T$ is demiclosed and T has only one fixed point $p \in C$, then $\left\{v_{n}\right\}$ converges weakly to p.
(3) If I - T is weakly closed, then each weak cluster point of $\left\{v_{n}\right\}$ is a fixed point of T.

Proof. $I-T$ is demiclosed implies condition (c); thus we have part (1). We have part (2) without assuming $F(T)$ is a singleton. For (3), note that the last part of the proof of Theorem 2 shows that $\left\{v_{n}\right\}$ can have only one weak cluster point.

Example 2. We give an example to show that the iteration process defined by (2) does not necessarily converge for a pseudocontractive mapping.

Let H be the complex plane and $C-\{z:|z| \leqslant 1\}$. Define $T: C \rightarrow C$ by

$$
\begin{aligned}
T\left(r e^{i \theta}\right) & =2 r e^{i(\theta+\pi / 3)}, & & \text { for } 0 \leqslant r \leqslant \frac{1}{2} \\
& =e^{i(\theta+2 \pi / 3)}, & & \text { for } \frac{1}{2}<r \leqslant 1
\end{aligned}
$$

Clearly zero is the only fixed point of T. With $d_{n}=1 /(n+1)$, we show that the sequence $\left\{z_{n}\right\}$ defined by (2) does not converge to 0 . If $0<\left|z_{n}\right| \leqslant \frac{1}{2}$, then $\left|z_{n+1}\right|>\left|z_{n}\right|$. If $\left|z_{n}\right|>\frac{1}{2}$, then $\left|z_{n+1}\right|=\left(n^{2}\left|z_{n}\right|^{2}-n\left|z_{n}\right|+1\right)^{1 / 2} /(n+1)$ $>\left(n^{2}-2 n+4\right)^{1 / 2} / 2(n+1)$. This last quantity is bounded away from zero. Thus for $z_{1} \neq 0$, the sequence $\left\{z_{n}\right\}$ does not converge to the fixed point $\mathbf{0}$.

We outline the procedure to show that T is pseudo-contractive. For $z_{1}, z_{2} \in C$, $\left\|T z_{1}-T z_{2}\right\| \leqslant\left\|z_{1}-z_{2}\right\|^{2}+\left\|(I-T) z_{1}-(I-T) z_{2}\right\|^{2}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\overline{\left(z_{1}-z_{2}\right)}\left[(I-T) z_{1}-(I-T) z_{2}\right]\right\} \geqslant 0 \tag{5}
\end{equation*}
$$

Since distance between points is preserved under rotation about the origin, without loss of generality we may assume $z_{1}=\left|z_{1}\right|$ and $\left|z_{2}\right| \leqslant\left|z_{1}\right|$. Let $z_{1}=x$ and $z_{2}=y e^{i \theta}$ where $y \leqslant x$. Then the left side of (5) can be considered as a function of three real variables,

$$
f(x, y, \theta)=\operatorname{Re}\left\{\left|x-y e^{i \theta}\right|^{2}-\left(x-y e^{-i \theta}\right)\left(T(x)-T\left(y e^{i \theta}\right)\right)\right\} .
$$

We consider three cases:
(I) $0 \leqslant y \leqslant x \leqslant \frac{1}{2}, 0 \leqslant \theta \leqslant 2 \pi$,
(II) $0 \leqslant y \leqslant \frac{1}{2}<x \leqslant 1,0 \leqslant \theta \leqslant 2 \pi$, and
(III) $\frac{1}{2}<y \leqslant x \leqslant 1,0 \leqslant \theta \leqslant 2 \pi$.

Case I. With $T x=2 x e^{i \pi / 3}$ and $T\left(y e^{i \theta}\right)=2 y e^{i(\theta+\pi / 3)}$, it is easy to show that $f(x, y, \theta)=0$.

Case II. With $T x=e^{i(2 \pi / 3)}$ and $T y e^{i \theta}=2 y e^{i(\theta+\pi / 3)}$,

$$
f(x, y, \theta)=x^{2}+x / 2-(x y+y / 2) \cos \theta-3^{1 / 2}(x y-y / 2) \sin \theta
$$

We show that $f(x, y, \theta) \geqslant 0$ for arbitrary but fixed x, y. With x, y fixed, f can be considered a function of the single variable θ. Clearly for $y=0, f(x, y, \theta)>0$. For $y \neq 0$, elementary calculus yields a minimum at

$$
\theta_{0}=\arctan \left[3^{1 / 2}\left(x-\frac{1}{2}\right) /\left(x+\frac{1}{2}\right)\right] .
$$

Since $0<y<\frac{1}{2}<x \leqslant 1$,

$$
\begin{aligned}
f\left(x, y, \theta_{0}\right) & =x^{2}+x / 2-\left[y\left(x+\frac{1}{2}\right)^{2}+3 y\left(x-\frac{1}{2}\right)^{2}\right] /\left(4 x^{2}-2 x+1\right)^{1 / 2} \\
& \geqslant x^{2}+x / 2-\left[\left(x+\frac{1}{2}\right)^{2}+3\left(x-\frac{1}{2}\right)^{2}\right] / 2 \\
& =\frac{1}{16}-\left(x-\frac{3}{4}\right)^{2} \geqslant 0 .
\end{aligned}
$$

Case III. With $T x=e^{i(2 \pi / 3)}$ and $T y e^{i \theta}=e^{i(\theta+2 \pi / 3)}$,

$$
\begin{aligned}
& f(x, y, \theta) \\
& \quad=x^{2}+y^{2}+(x-y) / 2-[2 x y+(x+y) / 2] \cos \theta-\left(3^{1 / 2} / 2\right)(x-y) \sin \theta .
\end{aligned}
$$

We consider f defined on the compact set $D=\left\{(x, y, \theta) \left\lvert\, \frac{1}{2} \leqslant y \leqslant x \leqslant 1\right.\right.$, $0 \leqslant \theta \leqslant 2 \pi\}$. Since f is continuous, it assumes its minimum value. We show this minimum is nonnegative on D, hence nonnegative on the subset of D which comprises Case III. Setting the three partial derivatives, f_{x}, f_{y}, and f_{θ}, of f equal to zero, we find no relative extrema in the interior of D. We consider the five faces of D.
(a) For faces $\theta=0, \theta=2 \pi$, or $x=y$, it is easy to show that f is nonnegative.
(b) Consider the face $x=1$. Setting $f_{y}(1, y, \theta)=0$ and $f_{\theta}(1, y, \theta)=0$, we find no relative extrema in the interior of this face. Thus the minimum occurs along an edge of the face. The only edge not included in (a) is for $y=\frac{1}{2}$, and it is easy to see that $f\left(1, \frac{1}{2}, \theta\right) \geqslant 0$.
(c) Consider the face $y=\frac{1}{2}$. Setting $f_{x}\left(x, \frac{1}{2}, \theta\right)=0$ and $f_{\theta}\left(x, \frac{1}{2}, \theta\right)=0$, we again see that the minimum occurs along an edge. However, all edges have been considered in (a) and (b). 'Ihus f is nonnegative for $y=\frac{1}{2}$. Therefore f is nonnegative on D. Consequently, T is a pseudocontractive mapping for which the iteration process defined by (2) does not converge to a fixed point of T.

Problem. Does the iteration process always converge for continuous pseudocontractive mappings or Lipschitz pseudocontractive mappings?

The referee pointed out the interesting paper by Reinermann [17]. Section 3 of his paper contains similar results. In particular, his Theorem 6 has the same conclusion as our Corollary 1. Theorem 6 has a slightly weaker hypothesis and it applies to a smaller class of functions. If $F(t) \neq \phi$, the demicontractive mappings include those of Goëbel et al. [4] since they were shown to be nonexpansive in [15].

References

1. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-229.
2. W. G. Dotson, Jr., On the Mann iteration process, Trans. Amer. Math. Soc. 149 (1970), 65-73.
3. R. L. Franks and R. P. Marzec, A theorem on mean-value iterations Proc. Amer. Math. Soc. 30 (1971), 324-326.
4. K. Goëbel, W. A. Kirk, and T. N. Shimi, A fixed point theorem in uniformily convex spaces, Boll. U.M.I. 7 (1973).
5. C. W. Groetsch, A note on segmenting Mann iteraties, J. Math. Anal. Appl. 40 (1972), 369-372.
6. S. Ishikawa, Fixed points by a new iteration, Proc. Amer. Math. Soc. 44 (1974), 147-150.
7. R. Kannan, Some results on fixed points, Bull. Cal. Math. Soc. 60 (1968), 71-76.
8. R. Kannan, Some results on fixed points, II, Amer. Math. Monthly 76 (1969), 405-408.
9. R. Kannan, Some results on fixed points, III, Fund. Math. 70 (1971), 160-177.
10. R. Kannan, Some results on fixed points, IV, Fund. Math. 74 (1972), 181-187.
11. R. Kannan, Fixed point theorems in reflexive Banach spaces, Proc. Amer. Math. Soc. 38 (1974), 111-118.
12. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
13. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
14. C. Outlaw and C. W. Groetsch, Averaging iteration in a Banach space, Bull. Amer. Math. Soc. 75 (1969), 430-432.
15. W. V. Petryshyn and T. E. Williamson, Jr., Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43 (1973), 459-497.
16. C. S. Wong, Fixed points and characterizations of certain maps, Pacific J. Math. 54 (1974), 305-312.
17. J. Reinermann, Neue Existenz- und Konvergenzsätze in der Fixpunkttheoric nichtlinearer Operatoren, J. Approx. Theory 8 (1973), 387-399.
