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1. INTRODUCTION 

For a self-mapping T of a compact interval of the real lint having a unique 
fixed point, Mann [12] proved that the iteration process o,+r = (1 - &J vi, i- 
d,Tv,L , with d, = l/(rz + I), converges to the fixed point. Franks and Marzec [3] 
proved that the uniqueness requirement was unnecessary. Outlaw and Groetsch 
[14] obtained convergence for T a nonexpansive mapping on a convex compact 
subset of the complex plane. Groetsch [5] g eneralized the procedure for non- 
expansive mappings on uniformly convex Banach spaces. Also, Dotson [2] 
used the procedure for quasi-nonexpansive mappings on strictly convex Banach 
spaces. In a Hilbert space we enlarge the class of mappings for which the iteration 
process converges to a fixed point to demicontractive mappings. Also, we give 
some examples and look at an unsolved problem. Throughout this paper we 
let C denote a subset of a Hilbert space H and T a mapping of C into itself. 

2. THEOREMS AND EXAMPLES 

A self-mapping T on C is said to be pseudocontractive [I] if for all x, y E C, 

II TX - Ty II2 < II x - y II2 + il(I - T) x - (1 - T) y j12, 

where I denotes the identity mapping. T is said to be strictly pseudocontractive 
[I] if there exists a constant K < 1 such that, for all x, y E C, 

11 TX - Ty II2 < // x -y II2 + k li(I - T) x - (I - T)y /12. 

We say T is demicontractive if there exists a constant k < 1 such that, for each 
fixed point p of T and each x E C, 

!; TX -p iI2 < jl x -p j12 + k [I x - TX lie. 

We call k the contraction coeficient. Clearly, a strictly pseudocontractive mapping 
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is both pseudocontractive and demicontractive. Also, Kannan [7-l 1 J and then 
Wong [16] studied mappings that satisfy the condition: 

II TX - TY II G (II x - TX II + II Y - TY IIW (1) 
Fory = p = Tp, this becomes jj TX -p jj < jj x - TX 1112. Hence jj TX -p jj2 < 
I/ x - TX II”/4 < /I x - p /I2 + 11 x - TX /12/4. Thus the class of demicontractive 
mappings includes the mappings studied by Kannan and Wong. 

EXAMPLE 1. We give an example of a demicontractive mapping which is 
not pseudocontractive, hence not strictly pseudocontractive. Let H be the real 
line and C = [ - 1, I]. Define Ton C by TX = 3x sin( l/x) if x # 0 and T(0) = 0 
Clearly, 0 is the only fixed point of T. Also, for x E C, j TX - 0 j2 = I TX 12 = 
1 $x sin(l/x)12 < 1 2x/3 I2 < 1 x I2 < I x -012 +kl TX-X/~ for any K < 1. 
Thus T is demicontractive. We show that T is not pseudocontractive. Let 
x = 2/7r and y = 2/3rr. Then 1 TX - Ty I2 = 256/81r2. However, 

1 x -y I2 + I(1 - T) x - (I - T)y I2 = 160/817r2. 

Let {d,} be a sequence from (0, 1) such that Crz=, &(I - d,) diverges. With 
an initial value q , we consider the iteration process defined by 

v,+l = (I - 4) v, + 4% > (2) 

for n 3 1. Let A = (Q) be the infinite matrix defined by a,,, = 1, al,k = 0 
for K > 1; ~~+i,~+i = d, for n 3 1; a,+,,i = aj,j nEzj (1 - dk) for 1 < j < n 
and a,,,,, = 0 for j > n + 1. Dotson [2] has shown that A yields a normal 
Mann process. A frequent choice for the sequence {d,} is d, = l/(n + 1). The 
matrix A then becomes the Cesaro matrix, originally used by Mann [12]. If 
0 < K < 1, one can choose d > 0 and a sequence (d,} from (0, 1) such that 
C d,( 1 - d,) diverges and d, -+ d < 1 - K. Just let d = (1 - k)/2 and 
4 = ((1 - k)/2) + (I/+ + 1)). 

THEOREM 1. Suppose C is a convex subset of H. Suppose T is a demicontractive 
mapping of C into itself with contraction coejicient k. Suppose the set offiedpoints 
F(T) is nonempty. Stippose 2 d,(l - d,) diverges and d, + d < 1 - k. Then 
lim inf I/ v, - TV, /I = 0 for each v1 E C, where v~+~ is defined by (2). 

Proof. Ishikawa [6] has shown that for any x, y, z in a Hilbert space and 
real number /1,II hx + (1 - h)y - z II2 = h Ij x -- x II2 + (1 - h) I/y - x II2 - 
h(l - A) (( x - y (12. Thus for each p EF(T) and each integer n, 

0 G II%+1 - P II2 = ll(1 - da) vu, + &TV, - P /I2 
= (1 - 4) II an -P /I2 + d, II TV, -P II2 - 441 - 4) II v, - TV, II2 
< (1 - 4J II 0, - P II2 + 4ztll v, - P II2 + k II vu, - TV, II”) 

- 441 - dn) II v, - Tvn II2 
= II% - p II2 - d,(l - d, - k) j/ v,, - TV, 1i2. 

(3) 
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By induction, we obtain 

Thus 

0 s.; Ii v1 - p II2 - f d,(l - d, - k) ~’ vj - Tvj j2. 
j=l 

c d,(l - d, - k) Ij v, - TV, ;I2 < 1~ v1 - p l12. 
Vl=l 

(4) 

Since 0 < d, < 1, d, > d, (1 < d,). Also C d,(l - d,) diverges. Thus JJ d, 
diverges. Let 7 = 1 - d - K. Then 7 > 0, and there exists an integer N such 
that d, < d + ~12 for n > N. Thus 1 - d, - k > 1 - k - d - 712 = 1712. 
Therefore C d,(l - d, - k) 3 (q/2) C d, , which diverges. Hence 
2 d,(l - d, - k) diverges. Thus, from (4), we obtain lim inf j/ v,, - TV,, /) = 0. 

Remark 1. In Theorem 1, if d # 0, the terms of the series C d,(l - rt, - k) 
are bounded away from zero. Hence we can conclude that lim /) v, - TV,, II = 0. 

Remark 2. Since 1 - d, - k -+ 1 - d - k > 0, there exists an integer 
Na such that 1 - d, - k > 0 for n > N,, . Thus, from Eq. (3), we obtain 

/I%+1 -PI! <Iii% -pII for naN,. 
Groetsch [5] proved the following for T nonexpansive and H a uniformly 

convex Banach space. Our result shows that the theorem holds for a larger class 
of mappings in a Hilbert space. 

COROLLARY 1. Suppose C is a closed bounded convex subset of H. Suppose T 
and {d,} satisfy the hypothesis of Theorem 1. Suppose I - T maps closed bounded 
subsets of C into closed subsets of C (in particular, if T is demicompact [l]). Then 

for each v, E C, the iteration process defined by (2) converges to a fixed point of T. 

Proof. Let A denote the closure of the set of iterates v, . By Theorem 1, 
0 is a cluster point of (1 - T) A. But (I - T) A is closed so 0 E (I - T) A. Thus 
there exists a subsequence v,~ converging to a fixed point p. Remark 2 and 
v,,~ + p imply that v, -+p. 

COROLLARY 2. Suppose C is a closed bounded convex subset of H. Suppose T 
and (d,} satisfy the hypothesis of Theorem 1 with d > 0. Suppose p is a cluster 
point of {vn} and T is continuous at p. Then v, converges to p and p E F(T). 

Proof. Suppose vnj +p. By continuity at p, 1) Tv,$ - v,~II --f 11 Tp -p jj . 
Also, by Remark 1, // TV, -vv,jj+O.Thus))Tp-pjI/=OandhenceTp=p. 
Again v,~ -+p and Remark 2 implies that a, -+p. 

Remark 3. Wong [16] showed that if C is closed, bounded, and convex, 
then a continuous mapping T that satisfies (1) has a unique fixed point P. If the T 
in Corollary 1 satisfies (I), then v, -+p. Thus we have a way of finding the 
fixed point. 
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LEMMA (Opial [13]). Suppose H is a Hilbert space and the sequence (xn} 
is weakly convergent to x0 . Then for any x # x0 , lim inf 11 x, - x0 jl < 
lim inf 11 x, - x /I . 

The following theorem generalizes a theorem of Dotson [2, Theorem 81. 

THEOREM 2. Suppose C is a closed convex subset of H. Suppose T: C -+ C 
such that: 

(4 w? # 4. 

(b) T is demicontractive with contraction coeficient k. 

(c) If any sequence x, converges weakly to x and (I - T) (xJ converges 
strongly to 0 then (I - T) (x) = 0. 

Then for v1 E C and d, -+ d, 0 < d < I - k, the iteration process de$ned by (2) 
converges weakly to a jixed point of T. 

Proof. Suppose Tp = p. By Remark 2, there exists an integer N such that 
/I%+1 -P II < II vn -p // for all n 3 N. If v,,, =p, then clearly vu, -+p. If 

‘N +P> 11 vN - p I/ = Y > 0. Let S,(p) = {x: // x - p j/ < r}, and let 
D = C n S,(p). Then {vn)EN C D. Also, D is weakly compact since it is closed, 
bounded, and convex. Thus there exists a subsequence {oni} which converges 
weakly to y E D C C. By Remark 1, (I - T) va, + 0; hence, by condition (c), 
Ty =y. 

Suppose {vn} does not converge weakly to y. Then the sequence {vn}EN 
has at least one other weak cluster point q # y. Suppose {vmi> converges weakly 
to q. As for y, Tq = q. From Remark 2, we see that the sequences (11 v, - y /I> 
and (11 v, - q II> are nonincreasing for sufficiently large n. Thus lim jj v, - y II 
and lim 11 v, - q /I both exist. Using Opial’s lemma, we obtain the following 
contradiction: 

li,m II vn -ylj=liminfIIv,j-ylj 

< lim inf II vnj - q I/ 

= lim inf 11 v,, - q 11 

< lim inf jl vmi - y II 

=li~IIv,--yll. 

Therefore, v, converges weakly to y E F( T). 

Remark 4. A mapping T is said to be demiclosed if weak convergence of any 
sequence {x~} to x and strong convergence of {TX,} to y implies TX = y. For C 
closed and convex, every weakly continuous self-mapping T of C is weakly 
closed, every weakly closed self-map is demiclosed, and if I - T is demiclosed, 
then condition (c) holds. 
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Dotson [2, Theorem 61 proved the following for T quasi-nonexpansive and N 
a uniformly convex Banach space. In a Hilbert space, we can enlarge the class 
of mappings and obtain the result as a corollary of Theorem 2. 

COROLLARY 3. Suppose C is a closed convex subset of H with T and {v,,> 
as in Theorem 1 and d > 0. 

(1) There exists a subsequence of {v,} w zc converges weakly toy E C, and if h. h 

I - T is demiclosed, y E F(T). 

(2) If I - T is demiclosed and T has only one Jixed point p E C, then {v,~} 
converges a?eakly to p. 

(3) If I - T is weakly closed, then each weak cluster point of {on> is a fixed 
point of T. 

Proof. I - T is demiclosed implies condition (c); thus we have part (1). 
We have part (2) without assuming F( T) is a singleton. For (3), note that the last 

part of the proof of Theorem 2 shows that {v,} can have only one weak cluster 
point. 

EXAMPLE 2. We give an example to show that the iteration process defined 
by (2) does not necessarily converge for a pseudocontractive mapping. 

Let H be the complex plane and C = {z: ! z 1 < l}. Define T: C + C by 

I’(reiO) = ‘&ei(8+ni3), for0 <r < 4 

= ez(B+2n/3) , for$<r<l. 

Clearly zero is the only fixed point of T. With d, = l/(n + I), we show that the 
sequence (2,) defined by (2) d oes not converge to 0. If 0 < 1 z, / < 4, then 

I zn+l I > I 2, I . If I 2, I > Q, then i x,+~ I = (d I x, I2 - n I z, I + l)““/(n + 1) 
> (n2 - 2n + 4)rj2/2(n + 1). This last quantity is bounded away from zero. 
Thus for .zr # 0, the sequence {zn} does not converge to the fixed point 0. 

We outline the procedure to show that T is pseudo-contractive. For zr , ,z2 E C, 

II TX, - Tz, II < II ~1 - za (I2 + l/(1 - T) a1 - (I - T) z2 /I2 if and only if 

Re{(.z, - z2) [(I - T) z1 - (I - T) z2]} > 0. 

Since distance between points is preserved under rotation about the origin, 
without loss of generality we may assume zi = ( x1 1 and 1 a2 1 ,( 1 a1 / . Let 
z, = x and a2 = yeie where y < X. Then the left side of (5) can be considered 
as a function of three real variables, 

f(x, y, 6) = Re{; x - yei8 (’ - (X -ye-is) (T(x) - T(ye”“))j. 
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We consider three cases: 

(I) o<y<x<g, O<l9<2rr, 

(II) O<y<&<x<l, 0<0<27r, and 

(III) p <y < x < 1, 0 < 0 < 27r. 

Case I. With TX = 2xeia13 and T(yeie) = 2ye i(e+V/3), it is easy to show that 

f(x, y, 0) = 0. 

Case II. With TX = ei(2a/3) and Tyeie = 2yei@+/3), 

f(x, y, 0) = x2 + x/2 - (xy + y/2) cos 0 - 31/2(xy - y/2) sin 0. 

We show that f(x, y, 0) > 0 for arbitrary but fixed x, y. With x, y fixed, f can 
be considered a function of the single variable 8. Clearly for y = 0, f (x, y, 8) > 0. 
For y # 0, elementary calculus yields a minimum at 

8, = arctan[3ii2(x - 4)/(x + *)I. 

Since 0 < y < $ < x < 1, 

f (x, y, e,) = x2 + x/2 - [Y(X + 3)” + ~Y(X - jj)21/(4~2 - 2~ + 1)1’* 

3 x2 + x/2 - [(x + jj)” + 3(x - 9”]/2 

= -& - (x - +,2 > 0. 

Case III. With TX E ei(2*/s) and Tyeie = eM+sn/a), 

f (X> Y, 0) 

= ~2 + y2 + (X - y)/2 - [2xy + (X + y)/2] cos 0 - (3112/2) (X - y) sin 0. 

We consider f defined on the compact set D = {(x, y, 0) 1 4 < y < x < 1, 
0 S, 0 < 2~). Since f is continuous, it assumes its minimum value. We show 
this minimum is nonnegative on D, hence nonnegative on the subset of D which 
comprises Case III. Setting the three partial derivatives, fz , f, , and fs , off 
equal to zero, we find no relative extrema in the interior of D. We consider the 
five faces of D. 

(a) For faces 0 = 0, 0 = 2rr, or x = y, it is easy to show that f is non- 
negative. 

(b) Consider the face x = 1. Setting f,( 1, y, 0) = 0 and fe(l, y, 8) = 0, 
we find no relative extrema in the interior of this face. Thus the minimum occurs 
along an edge of the face. The only edge not included in (a) is for y = 2, and 
it is easy to see that f (1, 3, 0) > 0. 
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(c) Consider the face 4’ == 1. Setting ,~Jx, 4, 0) = 0 and &(x, 4, 0) 0, 
we again see that the minimum occurs along an edge. However, all edges have 
been considered in (a) and (b). Thus f 1s nonnegative for y = -2. Therefore f is 
nonnegative on D. Consequently, T is a pseudocontractive mapping for which 
the iteration process defined by (2) does not converge to a fixed point of T. 

PROBLEM. Does the iteration process always converge for continuous pseudo- 
contractive mappings or Lipschitz pseudocontractive mappings ? 

The referee pointed out the interesting paper by Reinermann [17]. Section 3 
of his paper contains similar results. In particular, his Theorem 6 has the same 
conclusion as our Corollary 1. Theorem 6 has a slightly weaker hypothesis and it 
apphes to a smaller class of functions. If F(t) # 4, the demicontractive mappings 
include those of Go&be1 et al. [4] since they were shown to be nonexpansive 

in [15]. 
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