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1. INTRODUCTION

The notion of a “purity of branch locus” theorem dates back at least to
Zariski [42], who proved the theorem in a geometric context for algebraic
functions. Soon thereafter, the theorem was translated into the language
of local algebra and generalized by Nagata [34] (also see [35, Theorem
41.1D and then Auslander [5], its form being essentially as follows: Let R
be a regular local ring and A4 a normal domain which is a module finite
ring extension of R. If the extension R < A is unramified in codimension
one, then it is unramified (and in this setting, flat as well), hence étale.

Work continued in this area: Abhyankar (see [1-4]) investigated ramifi-
cation theory in algebraic geometry, and other generalizations emerged.
For example, Grothendieck [23, Exposé 10, Theorem 3.4] proved that
complete intersections of dimension > 3 are “pure.” It follows from
Cutkosky [10, Theorem 5] that if we ease the restriction on R, allowing R
to be a normal complete intersection and requiring R < A to be unrami-
fied in codimension two, then the extension is unramified.?

The search for “purity-type” theorems when the hypotheses on the
normal domains R < A and on the extension are adjusted is a focus in
Griffith [21]). Moreover, “weaker” purity results are considered: Let B — A4
be a module finite extension of normal domains, with unramification in
some fixed low codimension. When do “good” properties of B (say,
Gorenstein) guarantee that A4 is also “good”? The adjective “weak” refers
to the fact that the result states that A inherits properties from B, but
does not assert that the extension itself becomes good (that is, unramified).
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In [21], Griffith, via a construction he attributes to Abhyankar [4],
illustrates that module finite extensions B <> § which are unramified in
codimension one, with B a Gorenstein ring and S not Cohen—Macaulay,
are plentiful. This demonstrates that, in the classical setting, weak purity
fails in a convincing fashion when the ring B is merely Gorenstein. In
more detail, starting with any complete local normal domain 4 which is of
characteristic zero and which contains an algebraically closed field (it is
enough that A4 contain all roots of unity), Griffith constructs ring exten-
sions described by the following diagram:

A/S\B
N

Each extension is module finite; R is a complete regular local ring
provided by the Cohen structure theory; S is a local normal domain which
is a normal extension of R (in the sense of Galois theory); and B is a
Gorenstein cyclic extension of R such that B — § is unramified in
codimension one. Since R —= § and A — § are normal extensions, we
have the reduced trace map trg, ,: § — A so that if the original A4 is not
Cohen—-Macaulay, then S cannot be Cohen—Macaulay either [28, Proposi-
tion 12].

In the following investigation, we study module finite ring extensions
B = A of normal rings where B, the base ring, is always a local excellent
domain. Given unramification in some low codimension and restrictions on
B (often B will denote a Gorenstein ring), the purity /weak purity of the
extension is examined. The primary theorem of this project asserts that if
the Gorenstein ring B is “regular” enough (that is, if B satisfies (R,)),
then A will inherit a certain amount of depth (that is, 4 will satisfy
(S,_ ). An example will illustrate that this purity is of the weak kind: the
A can be Cohen—Macaulay, yet the extension is not unramified. In
addition, we show how the technique can be used to recover a result which
is a consequence of Grothendieck’s much stronger purity theorem in the
case when B is a hypersurface ring.

The method of proof involves maximal Cohen—Macaulay (MCM) mod-
ules, so the main result takes place in the equicharacteristic case (that is,
all the rings contain a field), where such modules have been shown to exist
by Hochster (see [27]). Subsequently, under certain conditions, the mixed
characteristic case is considered by reducing to the equicharacteristic case.
Another important ingredient is certain module isomorphisms for normal
ring extensions which are unramified in codimension one, much in the
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spirit of those used in Auslander’s version of the proof of the purity of
branch locus theorem.

After the main results, we apply the ideas to extensions B — A4 as
described, which are also normal. One such application involves investigat-
ing codimension two primes in A which are fixed under the group action
of G = Gal(L/K) (here L and K are the fraction fields of A and B,
respectively), or what amounts to the same thing, codimension two primes
in A which are non-split. Another application considers depth properties
of torsion divisorial ideals in the divisor class group of the normal
domain B.

We begin with preliminaries—some basic definitions, necessary results,
and a survey of the general setting. Next, we describe how the original
problem can be reduced to one which is more tractable via completion and
how the normal closure enters into the arguments. Subsequently, we
discuss the necessary module isomorphisms and construct two exact B-
complexes which are used to deduce the main results. Finally we consider
applications of the ideas, including the issue of codimension two primes in
normal extensions which are fixed under the action of the Galois group.

2. PRELIMINARIES: DEFINITIONS, RESULTS, SETTING,
AND REDUCTIONS

In general, any unexplained terms or notations which appear in this
presentation can be found in a standard commutative algebra text, for
example, in Bourbaki [9] or Matsumura [31, 32). What follows is a very
brief collection of definitions which are prominent.

DEeFINITION 2.1. Let M be a module over the local ring (R, m). We
define the depth of M, denoted depth (M), to be inf{i | Exti,(R/m, M) #
0}).

We remark that, for infinitely generated M, it is possible that
depth (M) = «. However, it is shown in Foxby [17] that mM # M implies
that depthg(M) < dim(R). To see how this definition coincides with the
usual M-sequence definition of depth, refer to [12, Chap. 1].

DEFINITION 2.2. Let M be a module over (R, m). M is said to be a
Cohen—Macaulay module if depthg(M) = dimz(M); M is said to be a
maximal Cohen—Macaulay module (or MCM-module) if mM # M and
depth(M) = dim(R); M is said to be a balanced MCM-module (Sharp
[40]) in the event it is a Cohen—Macaulay module for every system of
parameters of R.
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Every finitely generated MCM R-module is balanced; however, this
need not be the case for infinitely generated MCM-modules (which are
known to exist over equicharacteristic local rings by Hochster’s famous
work—see [27]). Additionally, balanced MCM-modules exist: in fact, it is
shown in Griffith [18], that over a complete local ring, starting with an
MCM-module as provided by Hochster, a countably generated balanced
MCM-module with additional properties can be produced. In [40), it is
shown that balanced MCM-modules localize properly (that is, to balanced
MCM-modules) over complete local rings.

Assume that A4 is a B-algebra and M and N are B-modules. Consider
the B-module Homgz(M, N). When M is an A-module, we can define an
A-module structure on Homg(M, N) as follows: for a €4 and ¢ €
Homgz(M, N), define a¢ by (adpXm) := ¢(am) € N for m € M. We refer
to this structure as domain induced. When N is an 4-module, we can
define the following A-structure on Homz(M, N): for a € 4 and ¢ €
Hom z(M, N), define a¢ by (adp)m) == ad{m) € N for m € M. We refer
to this structure as codomain induced.

Our typical setting is that of ring extensions B — A4 with additional
properties on the rings and on the extension. The notions of ramification
and normal extension play a key role.

DEFINITION 2.3. Let B be a ring, 4 a B-algebra, and P € Spec(A4). P
is said to be unramified over B provided that, setting p = P N B, we have:

(i) pAp, = PA, and
(i) B,/pB, —> Ap/pAp is a finite separable field extension.

A is said to be unramified over B when every P € Spec( A) is unramified
over B.

We note that, in order for 4 to be unramified over B, it is enough that
every maximal ideal m € Spec(A4) is unramified over B (see [7, Theorem
2.5] or [35, Corollary 38.8]).

DEFINITION 2.4. With B <> 4 as above, we say that A4 is unramified
over B in codimension i when every P € Spec(A) of codimension <i is
unramified over B. In the case where B C 4 and A is a domain, to say
that A4 is unramified over B in codimension zero is to say that the
corresponding extension of fraction fields is separable.

For equivalent definitions of unramified (and étale) extensions and
various properties, we refer the reader to [32, 38].

DEFINITION 2.5. Let B — A be a module finite extension of normal
(that is, integrally closed) domains. The extension is said to be normal if
the corresponding extension of fraction fields K — L is Galois. In the case
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of a normal extension, the group G = Gal(L /K) acts on A, and the fixed
ring AC is equal to B.

Results and Other Preliminaries

In the presentation, we refer to various results and constructions. For
convenience, we provide a brief list of several of these with appropriate
reference, and occasionally with a sketch of a proof or some explanation.

To detect unramification in codimension one, we have the following due
to Auslander and Goldman [8, Proposition A.4], which is utilized in
Griffith (see [20-22]) in the following modified form.

THEOREM 1 (Auslander-Goldman). Let B = A be a module finite ex-
tension of local normal domains and assume that the extension of fraction
fields is separable. Then, B <> A is unramified in codimension one if and only
if the trace map tr, ,5: A — B generates Homyz( A, B) as an A-module.

In the situation where B < A is a module finite extension of complete
local rings, B being Gorenstein, the module Homz(A, B) is called the
canonical module for A4 and is often denoted by QY. For a local
Cohen—Macaulay ring R, the following statements are equivalent:

(i) the canonical module Q% exists and is isomorphic to R
(ii) R is a Gorenstein ring.

As a result of this equivalence, in the case when B < A is unramified in
codimension one, we have the following: A is Cohen—Macaulay if and only
if A4 is Gorenstein. This is immediate, for the Auslander-Goldman result
gives that QY% = Hom (A4, B) = A. For information regarding the canoni-
cal module, we refer the reader to Herzog and Kunz [25].

Additionally, the following results will be useful in the sequel:

LEMMA 2.6 (Depth Lemma (see [12, Lemma 1.1])). Ler (R,m) be a
local ring, and
0->L->M->N-0
an exact sequence of R-modules.
(i) If depth(N) < = and depth(M) > depth(N), then depth(L) =
depth(N) + 1,
(ii) depth(L) > min{depth(M), depth(N)}.

é
THEOREM 2 (see Serre [39, Chap. 1V, Proposition 12]). Let B — A be a

homomorphism of Noetherian local rings which makes A a finite B-module.
For any finite A-module M, we have that

depthz(M) = depth, (M) and dimg(M) = dim (M).
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THEOREM 3 (see Fossum, Foxby, Griffith and Reiten [15, Corollary 2.6]).
Suppose that B — A is a module finite extension of complete local rings, where
B is Gorenstein, that A satisfies (S,) where n > 0, and that Q% = A. Then
QO = Extj(A, B) =0 for 1 <j <n — 2. In particular, if it is the case that
depth(A) + n — 2 > dim(A), then A is Cohen—Macaulay.

THEOREM 4 (see Kaplansky [30, Theorem 208]). Let (R, m) be a local
ring; N, M two R-modules with N finitely generated over R and pdg(N) = 1.
If Extp(N, M) =0, then mM = M.

Proof. Let

0 s G—2 s F >N 0

be a minimal finite free R-resolution of N. Then the entries of the matrix
giving ¢ are in m. Since ExtL(N, M) = 0, then

Homy(F, M) —— Homy(G, M) — 0

is exact. As * is given by the same matrix as ¢ (note the observation
following the proof), we have that Homp(G, M) = Im(y*) C
m Hom (G, M), that is &_ M cm @&_, M where ¢ = rank(G). So M
=mM. |

Finally, we note the following basic observation: For a ring S, when the

map of S-modules N L Nis multiplication by an element r € §, the same
is true of the induced maps

. Exti(M,r) .
Exti(M,N) ——"5 Ext.(M, N).

So, given an S-linear map
U
IHs— 1IIs

of free modules, the additivity of the functor Ext{(M, - ) (here our M is a
finite S-module) implies that the induced map

Exti(M, L1 5) 25 Bxy(M, [15)

can be given by the same matrix as . We think of ¢ as operating on a
basis of LI S = F, and have the commutative diagram where the vertical
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identifications are the natural ones:

Exty(M, IIS) 2>  Exty(M, [15)

: ;

I1Exti(M,$) —— 1] Exti(M.S)

; ;

F & Exti(M,S) — F & Extiy(M,S)

With appropriate modifications, a similar result holds when considering
the functor Ext4(:, N).

Setting and Reductions

The general setting in which we work—referred to as () in this
presentation-—is the following:

B = A is a module finite ring extension,

B is an equicharacteristic local normal excellent domain of dimen-
sion d,

A is a normal ring.

Notice that the assumptions force 4 to be excellent semilocal of
dimension d.

The main result is in the situation (*), with additional assumptions on B
(i.e., Gorenstein and satisfying (R,)) and on the extension (unramified in
codimension one). The aim is to draw a conclusion regarding the depth of
A. Two essential considerations in the proof are (i) a reduction to the
complete case, and (ii) the introduction of the normal closure.

Completion

The excellence of B and A ensures that these rings are analytically
normal. Hence, applying (-) ®, B (where () denotes completion with
respect to the m g-adic topology) gives a module finite extension of normal
rings where B is a local domain. Excellence guarantees that certain good
properties of B pass to B: if B satisfies (R, ) and is Gorenstein, then the
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same is true of B. The semilocal A decomposes as A; X A, X -+ X A4,,
each A, bemg a complete local normal rmg, hence a domam Since we are
mterested in the depth properties of A, it is enough to work with A, hence
with each A,—that is, with the extension B = A,. It is important to
observe that unramification in codimension one is preserved under com-
pletion: for if the trace map tr,,, generates the free A-module
Hom 4( A, B), then after applying (-) ®, B we see that Hom (A, B) is
generated by the corresponding trace map.

Normal Closure

In our general situation described above, we assume that A4 is a local
domain and that the corresponding extension of fraction fields K — L is
separable. We form the normal closure of the extension B <= A as in [21,
Sect. 1]: let E be the Galois closure of K — L and denote by S the
integral closure of A4 in E, which, because of the excellence of A4, is a
finite 4-module. If the base ring B is complete, then S is a complete local
normal domain. The objective in the consideration of the normal closure
lies in Section 3—we need to make use of the module isomorphism of
Proposition 3.1. However, it is subsequently demonstrated (Proposition
3.3) that the depth of the module Homg( A4, M) is the same as that of
Hom 4(S, M) where B — A is the original extension, S the corresponding
normal closure, and M an S-module with appropriate properties (refer to
Section 3 for details). It is the depth of Homg(.4, M) for suitable M which
is critical for the proof of the main results.

It is important to understand how unramification behaves under such a
“normal closure” procedure. Auslander [5, p. 117], which in part he
attributes to Abhyankar [1], observes that composites of unramified exten-
sions are unramified (also see [7, Proposition A.1]). This notion is trans-
lated and used in our context in [22], where the statement is as follows: If
B — A is unramified in codimension i, then the normal closure B — S is
unramified in codimension i (as is the extension 4 <= S).

Primitive Element Assumption

Finally, we remark that for our approach to succeed for a Gorenstein
ring B which is not a hypersurface, it is necessary to locate a hypersurface
R = R/fR C B such that the extension is module finite with R and B
sharing a common fraction field (that is, B is the integral closure of R in
K). This is always achievable in the case where there is a regular local ring
R, C B so that the extension is module finite and the extension of fraction
fields is simple. In this case we may take the primitive element # € X to
be in B. When we are in the complete case, the situation appears as
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follows:

B ’KU[B]

R,[[0]] K,[0]

Now Ryl[IXN/fRJ X1l = R,l[0]] where f & Ri[[X]}is the monic poly-
nomial satisfied by 6. Putting R = R [[X]], we have our complete local
hypersurface R < B.

When B is complete local and the characteristic is zero, the Cohen-
structure theory provides the desired R,; when B is a finitely generated
algebra over a perfect field k, one can produce the desired R, via a
Noether-normalization type argument (using the fact that K = Q(B) is
separably generated over k). In the proof of the main theorem for a
Gorenstein ring B, we assume the existence of the complete local hyper-
surface R € B with (RY = B (here, (-Y denotes the integral closure in
K = Q(B)). We refer to this condition as the primitive element assumption.

3. MODULE ISOMORPHISMS AND APPLICATIONS

In his module theoretic version of the proof of the purity of branch
locus theorem, Auslander [5] reduced to the case where the extension
B > § (with B a regular local ring) is normal. He then utilized the ring
isomorphism A(S; G) = Homg(S,S) where G = Gal(L/K) (L and K
being the fraction fields of S and B, respectively), A(S; G) denotes the
twisted group algebra (that is, A(S;G) = @, _; So;, a free S-module of
rank g =[L:K] where multiplication is extended from ao;- bo; =
aa,-(b)a,vj for a,b €8, 0,0, G), and where the S-structure of
Hom (S, §) is obtained via the codomain.

In [22], this isomorphism is used to obtain other module isomorphisms
for ring extensions which are unramified in codimension one. We proceed

to prove a proposition giving one of these isomorphisms.

PROPOSITION 3.1. Let B <> S be a module finite extension of local normal
domains which is normal (with group G of order g) and which is unramified
in codimension i > 1. Let M be an S-module satisfying depth(M,) = 2 for
all p € Sped B) of codimension >i. Then, M8 =; Hom z(S, M) where the
codomain S-structure is used on the module Hom z(S, M).
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Remarks (see [7, Sects. 3, 4; 35, Theorem 41.5]). (a) For a finite
extension of normal domains B — S, unramified in codimension one with
B local, the following statements are equivalent:

(i) S is locally free over B in codimension i (i > 1), that is, S,
is a free B -module for all p € Spec(B) of codimension <i,

(ii) B — § is unramified in codimension i.

Moreover, if B satisfies (R,), then the unramification in codimension
one “lifts” to codimension i via localization and the classical purity of
branch locus theorem.

(b) When i =1, then any balanced (S,) S-module satisfies the
conditions of the proposition, yiclding the isomorphism M?$ =
Homg(S, M).

COROLLARY 3.2. For B —> S and M as in the proposition,
depth(M,) = depth(Hom, ($,, M,))

for all p € Sped(B).

Proof of Corollary 3.2. This is immediate since Home(Sp,Mp) =
(Hom (S8, M), because S is a finite B-module. ||

Proof of Proposition 3.1. As in [22] we define ¢: M ® Homg(S, S) —
Homy(S, M) by ¢: m ® f = &,,6; Where ¢,,,(x) =f(x)-meM for
x € S. This is a well-defined S-linear map when the codomain S-structure
is used for the homomorphism modules. It is evident that ¢ is an
isomorphism for § = B, consequently ¢ is an isomorphism when S is a
finite free B-module. Thus, the assumption of unramification in codimen-
sion i (which, as remarked, is equivalent to local freeness in codimension i
when unramification in codimension one is present) gives that ¢ is an
isomorphism when localized at any p € Spec(B) of codimension <i. So
we have (1): ker ¢ and coker ¢ have their B-support contained in a subset
of Spec( B) consisting of primes of codimension > i,

In our setting, we have from [5] that Homg(S$, S) = A(S; G) where,
as mentioned before, the twisted group algebra A(S;G) is S-free of
rank g = |G| =[L: K]. So,

M ®& Hom (S, S) =, M & S% =, M5,

Now, ker ¢ € M & Homy(S, S) =g M# so that Assy(ker ¢) C Assz(M).
By assumption, depth(M,) > 2 for p € Spec(B) of codimension >i, so
that M and hence ker ¢ have no B-associated primes of codimension > i.
But Assg(ker ¢) C Suppg(ker ¢), and since (7) holds, it must be that
Ass g(ker ¢) = & and hence ker ¢ = 0.
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Next we consider the exact sequence
0 — M & Hom(S, S) -5 Hom (S, M) — coker ¢ — 0.

Let p € Assg(coker ¢) and localize the above sequence at p, noting that
depth(M,) > 0 implies that depth(Hom Bp(Sp, M,)) > 0. An appeal to the
Depth Lemma (see Section 2) gives that

depth((M & Homy(S,S)),) = depth(M$) = depth(M,) = 1,

a contradiction (since Assg(coker ¢) C Suppg(coker ¢) and (t) imply that
codim( p) > i). So again, Assg(coker ¢) = J, hence coker ¢ = 0, and the
proposition is proved. [

Remarks. (a) To prove that ker ¢ = 0 in the proposition, it is enough
that depth(M,) > 1 for p € Sped( B) of codimension > i, and

(b) When § is locally free over B on the punctured spectrum
Spec®(B), then the required assumption on M is that depth(M) > 2.

We now proceed to a companion proposition to Proposition 3.1 which
gives information regarding the depth of Homg(A, W) (for suitable S-
modules W) where the extension B <> A has normal closure B = S.

PROPOSITION 3.3. Let B > A be a module-finite extension of local nor-
mal domains which is unramified in codimension i > 1, and denote by § the
normal closure of B «— A. Let W be an S-module which satisfies the depth
condition of Proposition 3.1 and denote Homg(A,W) by M. Then
depth z(W) = depth z;(M).

As with Corollary 3.2, an immediate result is the following.

COROLLARY 3.4. For B = A and W as in Proposition 3.3,
depth(W,) = depth(HomBP( A,, Wp))

for all p € Sped B).

Proof of Proposition 3.3. First we remark that M = Hom (A, W) is an
S-module via the codomain structure on Homg(A4,W), and that the
module M satisfies the depth condition of Proposition 3.1 since W does.
Consider the module-finite extensions B = 4 — § with fraction fields
K = L = E, where K — E is Galois with group G. Then L — E is also a
Galois extension with group H < G, and moreover, S = 4. Noting that
the normal extension 4 <> § is also unramified in codimension i, and
that, because of the module-finiteness of the extensions B —> A = §, we
may compute depths over A instead of B, we apply Proposition 3.1
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to the extension A = § and module M to obtain the isomorphism
Hom (S, M) =; M" where h = |H|. Using the Adjoint Isomorphism The-
orem, we see that

M*" = Hom (S, M)
= Hom 4(S,Homz( A, W)) =5 Homg(S ®, A,W) = Homg(S,W).

But, an application of Proposition 3.1 to B — § and the S-module W
yields the S-isomorphism Homg(S, W) = W& where g = |G|. So, as B-
modules, M* = W3, hence we conclude that depth (M) = depthz(W). |

To compute depth properties in the sequel, we require the following,
which is a direct consequence of the Acyclicity Lemma of Peskine and
Szpiro [36, Lemma 1.8], and which applies to modules M for which the
above propositions hold.

PROPOSITION 3.5. Suppose B is local, B <> A is a module finite ring
extension, and M is a B-module such that:

(1) depthz(Homyz(A, M)) = depthg(M) = ¢ (¢ > 3) and
(i) SuppplExti(A4, M)} c {mg} fori=1,...,t — 2.

Then Exty(A,M) =0 fori=1,...,t — 2.

4. CONSTRUCTION OF THE EXACT B-COMPLEXES

The proofs of the main results found in the next section rely on the
exact complexes which we construct here. Qur setting is the following:
B — A is a module finite extension of complete local normal domains. We
consider two cases:

(i) B is a hypersurface ring. By the Cohen-structure theory, there is
a complete regular local ring R, such that R, € B € A, where the
extensions are module finite.

(ii) B is a Gorenstein ring which is not a hypersurface. We remind
the reader that in the event char(B) # 0, then the primitive element
assumption (refer to Section 2) is in force. As above, by the Cohen-
structure theory, there is a complete regular local ring R, such that
R, € R € B c A where R is the complete local hypersurface with (RY = B
(here (- denotes integral closure in K, the field of fractions of B). Recall
that given a complete regular local R, C B so that R, — B is module
finite and the extension of fraction fields is simple, we may produce R by
taking R = R([[9]], 8 € B a primitive element.
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As shown in [18], there is a countably generated MCM A-module C so
that C is free as an Rj,-module. In addition, such a C is a balanced MCM
A-module.

PROPOSITION 4.1. Let B — A be a module finite extension of complete
local normal domains and C an MCM A-module of the type described above.
Then:

(i) If B is a hypersurface, then there is an exact B-complex
0—>C-—->F3ﬁ’»FB——>C——+O,

where Fg is a countably generated free B-module.

(ii) If B is Gorenstein ring and not a hypersurface, then there is an exact
B-complex

0—C—F, 2 F, —T—0,
where Fy is countably generated B-free and T has an A-module structure.

Proof. (i) Since B is a complete local hypersurface, then B = R/fR
where R is a complete regular local ring and f € my. From [19, Theorem
1.7] we have that pdz(C) = dim(R) — dim(B) = 1. Let

0-GAHFoc=o0

be a free R-resolution of C. Since C is a torsion R-module, then G =, F,
so we consider the free resolution

0FAFosc—o. (4.1)

Here, F is a countably generated free R-module and ¢ is represented by a
column-finite matrix. We apply B ®, (-} to (4.1) and obtain

— 1 —_
0 — Tor?(B,C) - F 225 F ¢ —o.

Putting F, = F, a free B-module and ¢, = ¢ ® 1,, we have our desired
complex as soon as it is verified that Tor{(B,C) = C. From the exact
sequence

0—->RLR—-R/fR=B—0,
we obtain
0 — Tor®(B,C) > C 5 C—B& C—0

by applying (-) ®& C. But fC = 0, hence Tor{(B,C) = C, and we have the
exact complex

0—C—oFy 2 F, —C—o.
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_ (i) We have R; < R = B = A, all module finite _extensions, where
R =R/fR is a complete local hypersurface with (R) = B. From [19,
Theorem 1.7], we have pdz(C) = 1, so that there is an R-free resolution

0—>F5F>cC—0, (4.2)

where F is a countably generated free R-module and ¢ is represented by
a column-finite matrix. To produce the desired complex, we apply
Hom y(B, - ) to (4.2) and obtain the exact sequence

0 — Homg( B, F) — Homg(B,F) — Homg(B,C)
2, ExtL(B, F) — ExtL4(B,F) — Exth(B,C)
2, Ext3(B, F). (4.3)
Regarding (4.3), we make the following observations:
(a) Since B is R-torsion and F is R-torsion-free, then Hom z(B, F)
=0
(b) Since pdg(B) = 1, then Ext3(B, F) = 0 follows from the depth

theorem of Auslander and Buchsbaum;

(c) From the facts that fB =0 and f is F-regular, we obtain
Exth(B, F) = Homy(B, F),

(d) Homgx(B, F) = Homg(B, 11 R) = 11 B; and

(¢) Homg(B,C) = Homg(B,C) = C.

The first three remarks are evident; we provide clarification of the
remaining two.

Proof of (d). Since B is a finite R-module, then Homz(B, LI R) =
Il Homgz(B, R). Moreover, since B and R are local Gorenstein rings,
then Homg(B, R) is just the canonical module for B, which is naturally
isomorphic to B. |

Proof of (e). Consider the maps
Hom (B, C) -» Homg(B,C) > C,

where { is the inclusion map and j(¢) = ¢(1). So Homy(B,C) is an
R-direct summand of Homgz(B, C), say Homz(B,C) = Homy(B,C) & M.
Since B ®zK = R ®zK (where K denotes the fraction field of R and B),
the maps i and j become isomorphisms when (-) ®zK is applied. In
particular, M ®zK = 0. But Homgz(B, C) is a torsion-free R-module (since
C is) so that M is torsion-free over R as well. Hence M =0 and
Homgz(B,C) = Homyx(B,C) =C. 1
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Recalling the exact sequence (4.3) and utilizing these observations, we
see that (4.3) has the form

0—C— [[BZS []B — Exty(B,C) — 0,

where ¢, can be expressed by the same (column-finite) matrix as ¢. We
denote ¢, by ¢, 11 B by Fy, and Exth(B,C) by T, and remark that T is
naturally an A-module via the 4-module structure from C. 1

Remarks. (a) ¢z # 0. If ¢p5 =0, then C = I B and the entries of
the matrix for ¢ are in the principal ideal fR  R. Applying (-) ® R to the
R-free resolution

0—>FAFCco0

we obtain
_ 3 -
F—-F—>C—0

which is exact. But $ is the O-maE, so that C = F. So as_ﬁ—modules, we
have 11 B = F, hence that B is R-projective. But then R satisfies (R)),
since B does, and hence is integrally closed in K. This forces R = B, a
contradiction.

(b) T = Exti(B,C) # 0. This follows immediately from Theorem 4

and the fact that mC # C.

B-Structure of T

We focus our attention on 7 = Ext,(B,C) which has two B-module
structures: one given through the B-action on the first variable; the other
given via the B-action on C. Since C is free over the regular local ring R,
and R, — B is module finite, then C is B-free in codimension k when B
satisfies property (R,) [19, Theorem 1.7). Consequently, we first consider
the case when C = B, that is, when T = Ext:(B, B).

PROPOSITION 4.2. There is a B-module isomorphism
¥: Exth(B, B) — Extk(B, B)

where the B-module structure of the left module is via the first variable, and
the B-module structure on the right module is via the second variable.

Proof. Since pdg(B) = 1, let

0—>F-5F—>B—0 (4.4)
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be a minimal free resolution of B over R, where F is a finite free
R-module. Denote Hom (-, R) by (-)*, Homg(:, R) by (-)*, and (object)
“mod f” by (). We proceed to construct a B-module commutative
diagram with exact rows and with the indicated vertical maps isomor-
phisms:

Homgz(B,F) — Homg(B,F) — Exth(B,B) —0
HomE(F;,B¥) —_— HOmE(F;, B;) — EXt}Q(B;, B;) ) (45)

Homg(F,B) -— Homg(F,B) — Exty(B,B) —0

In the top row, the B-structure is via the domain of the homomorphism
modules; in the remaining two rows, the B-structure is obtained via the
codomain of the homomorphism modules. The conclusion is that the
cokernels are isomorphic:

Ext}(B, B) = ExtL(B*, B*) = ExtL(B, B)

where the B-structures are as described. Hence, the proposition will be
proved as soon as diagram (4.5) is constructed.
We make the following observations:

(a) Recall that B* = Hompg(B, R) is the canonical module for the
Gorenstein ring B, hence there is a natural identification B* =5 B.

(b) F is a finite free R-module and F is a finite free R-module, so
we have F* = F and F* =5 F.

(c) f annihilates F, B, and B*.

(d) F¥ > F*. This follow immediately by applying (\)* to

0>FLFSFo0

and noting that ExtL(F, R) = Homy(F, R) = (F)*.

From the resolution

0—>F-5F—>B—0 (4.6)
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we obtain the exact sequence
0> F* 5 Fr > Bx -0 (4.7)
by applying (-)*, where we use the information that B* = 0 and that

Extk(B, R) =~ Homz(B, R) = B*. We apply Homg(B,-) to (4.6) and
Hom (-, B*) to (4.7) to obtain the following exact B-sequences:

Extly(B, F) —*> Ext\(B, F) — Exty(B,B) — 0  (4.8)
Hom 4(F*, B*) 5 Hom p( F*, B*) — Ext,(B*, B*) — 0. (4.9)
Notice that
Exth(B,F) = Homg(B, F),
HomR(F*,B;) = Homﬁ(F-I,B;),

and that pdz(B) = pd R(B;) = 1 provides exactness at the right hand end
of the sequences. Rewriting with respect to this information, we have the
exact B-sequences

Homg( B, F) —> Homz( B, F) — Ext4(B,B) — 0 (4.10)
- — (y')* — — — —
Homz(F*, B*) <25 Homp(F*, B*) — ExtL(B*, B*) > 0 (4.11)
with domain B-structure in (4.10) and codomain B-structure in (4.11).
The natural correspondence of maps F — B with maps F* — B* via
the isomorphisms vy, and vy
F—"——B8
= 'YB]=
B*
gives a B-isomorphism &: Hom (F, B) — Hom z(F*, B*). To the exact
sequence

YF

—1
YaMYF
F* —

— 141,
0—F-2¥" . F B0
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we apply Homg(-, B) and obtain, after appropriate identifications, the
following diagram with exact rows:

e llye)
————

Homgz(F, B) Homy(F,B8) — Exth(B,B) — 0

_ = (') —_— - - -
Hom z(F*, B¥) —~, Homg(F*, B¥) — Ext'y(B¥, B¥) — 0

Notice that the square commutes, hence that Extp(B, B) =
Ext,(B*, B*) where all the B-structures are obtained from the codomain

(refer to (4.5)). 3
For a B-module M and an R-module N, we define the map ®* V.

Homgz(M, N) » Homg(N*, M*) by g — g*, where g*(¢) = go g for &
e N*. Here Homgz(M, N) obtains its B-structure from the domain, and
Homg(N*, M*) from the codomain. ®M ¥ is B-linear: for g €
Homg(M,N), b€ B, and any a € N* we have (bg)*(a) = aobg =
bla - g) = b(g*(a)) since both Homgz(M, N) and M* use the domain

B-structure.
Consider the diagram (refer to (4.5))

Hompz( B, F) LI Homg( B, F)

jd)B,F_’ l(DB,F

Homﬁ(lﬁ, B*) v, Homﬁ(f;, B*)

Given ¢ € Homz(B, F), it is clear that (i o ¢)* = ¢*o ' so that the
square commutes. Finally we verify that ®2-7 is a bijection.

Let g € Homg(B, F) — {0}. Then g(b) # 0 in F for some b € B, hence
7(g(b)) # 0 for some j, where =;: F > R is projection onto the jth
factor. But then g*(m,) = ;o g # 0, hence g* # 0 and therefore ®%7 is
injective.

Since B and F are R-reflexive, we have the following isomorphism of
B-modules

Homg( B**, f;;) > Homz(B, F)
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which is evident from the following diagram:

oL
aF laog
B ——

gl or

B¥ —— F*

|

—

Take g € Homg(B, F). Applying @5 F and then ®F 5" we obtain g* €
Hom z(F*, B*) and (g*)* € Homgz(B**, F**). Under the above identifi-
cation 7, g** corresponds to g: Let x € B. Then,

o7 '(8*)" op(x) = a7 ' o (op(x) > g*).

For B € F*, op(x)o g*(B) = op(x)o(Bog) = Boglx) = B(g(x)). That
is, oz(x)e g* is evaluation at g(x) € F. Therefore, o7 '(g*)*oy(x) = g(x).
We have

Homg( B, F) LA Homz(F*, B*)
2", Homz( B*, F**) = Homg( B, F)

* k

where g — g* — g** — g. Hence,

Homgz(B,F) @ M' =, HomE(F;,B;).

Applying (-) ®zK (where K is the quotient field of R and B) we see that
& F becomes an isomorphism (recall that F * = F and B* =~ B). Since
HomR(F*, B*) is torsion-free, it must be that M’ = 0 and that ®?F is an
isomorphism.

So the commutative diagram (4.5) has been produced, hence the propo-
sition is proved. 1

COROLLARY 4.3. With the notation as above, let T = Extp(B, L1 B).
Then two B-structures on T coincide.

Proof. Since B is module finite over R, we have

Extp(B, LI B) = LI Extx(B, B)
~% LI Extk(B, B) = Exty(B, 11 B),

where the left two modules use the B-structure from the first variable, the
right two modules use the B-structure from the second variable, and the
isomorphism ¥ (which “switches” B-structures) comes from the preceding
proposition. [
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We consider T = ExtL(B,C) and denote by 7" the R-module T with
B-action inherited from the action on C, and by T' the R-module T with
B-action inherited from the left variable. For t € T and b € B, we write
t - b for the action in 7" and b - ¢ for the action in T".

PROPOSITION 4.4. Let T = Extp(B,C) and assume B satisfies (R,).
Then, T' =5 T".

Proof. Let b € B and define the map of abelian groups ¢,: T — T by
¢,(t) =1t-b — b-t. Since the action of R = R/fR is the same through
either variable (this is evident from the exactness of Hompg(B, F)—
Homgz(B,F) > T — 0), ¢, is an R-linear, hence R,-linear map. We
assert that 0 = Im(¢,) C T. First, we remark that, for p € Spec(R,) with
codim(p) < 2 we have C,, = IJ B,: for B, is regular semilocal, and by [19,
Theorem 1.7], pdg (C ) = (R )(C ) =10. So, C, is B, -projective,
and hence B,-free. Now we show that Im(¢,) has no R,-support in co-
dimension <2 _ _

Let p € Spec(R,) such that codim(p) < 2. Put § :== R; — p C R. Then
S is a multiplicatively closed set in R which does not contain 0. Likewise
put S == 7 (§) ¢ R where m: R > R = R/fR is the natural map (recall
that R, ¢ R € B), and notice that S is multiplicatively closed. Using the
facts that f7 = 0 and that B is module finite over R, we have

T, = Extp(B,C) & S™'R — Extz(B,C) & S™'R

= Exti 1x(S7'B,S7IC)
= Ext§1x(B,,C,) — Ext}-(B,, LI B,).
By the previous corollary, T’ =g, T, so that Im(¢,), = 0. Suppose

that g € Assg (Im(&,)). Since  Ass R (Im(d>b)) C Suppg (Im(¢>,,)) then
codim(q) = 3. Locahzmg

O—*C—>FB&FB——>T—+O

at g and applying the Depth Lemma gives that depth(C,) = 2, a contradic-
tion (as d = dim(B) > 3). Hence, Ass; (Im(¢,)) = &, and so Im(¢,) = 0
Since this holds for every b € B, then T! = =, T". |

We close this section with some remarks regarding the divisibility

properties of the 4-modules C and T. By construction, m ,C # C, and we
assert a similar result for 7.

PROPOSITION 4.5. kg @& T # 0 where kg = B/my.

Proof. Let x =x,,...,x; € mg form a system of parameters for B.
C is balanced, hence x forms a C-sequence. We claim that x7 # 7.
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Applying Ext(B, - ) to the short exact sequence
0—~C35C—-C —0

we obtain the exact sequence

ExtL(B,C) 2> ExtL(B,C) — ExtL(B,C,) — 0,
where the zero at the right hand end appears because pdg(B) = 1.
Therefore,

T/x,T = Extyx(B,C) /x, Extk( B,C) — Extk(B,C,).
Assuming T/x,...x,_,T = Exth(B,C,_,) where r — 1 < d, it is clear
how to proceed: from
0—>C_, Z5C, _,—>C —0

we find that

Exti(B,C,_,)/x, ExtL(B,C,_,) — Exty(B,C,),

that is, T/x, ... x,T = Extk(B,C,). Therefore, T/xT = Exty(B, C,).

Notice that m,C # C implies that myC # C, and that C,/m,C, =
(C/xC)/(mgC/xC) = C/mgC + 0, so that mzC, + C,. By Theorem 4,
Extg(B,C,) # 0, so that T/xT # 0. Finally we claim that T/m,T + 0.
Otherwise, since (x) C m, and x is a system of parameters, then mj C (x)
for N > 0. In particular, m§T =m§ 'T= - =T,so that xT=T, a
contradiction. Hence, T/mzT =ky & T+ 0. 1

5. THE MAIN THEOREM

We recall the general setting (*) from Section 2.

B = A is a module finite ring extension,

B is an equicharacteristic local normal excellent domain of
dimension d,

A is a normal ring.

The main result is:

THEOREM 5. With the setting as above, assume that B is a Gorenstein ring
of dimension d > 5 and that B < A is unramified in codimension one.
Furthermore, in the event that char(B) # 0, suppose the primitive element
assumption is in force. If B satisfies (R,), then A satisfies (S,_,) where
k=4

COROLLARY 5.1.  Let B = A be as in the theorem. If B satisfies (R,) with
k > 3d + 2 then A is a Gorenstein ring.

Proof of Corollary. By the theorem, A satisfies (S,_,). Since k —
1> 3d + 1, Theorem 3 applies and shows that 4 is Cohen—Macaulay.
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But, referring to the Auslander—Goldman Theorem (Theorem 1 in Section
2) this is the same as A4 being Gorenstein. ||

B Is a Hypersurface

As an illustration of the techniques, we recover a portion of a much
stronger purity theorem for normal complete intersections which is due to
the work of Grothendieck and Cutkosky. Grothendieck [23, Exposé 10,
Theorem 3.4] proved that complete intersections of dimension >3 are
“pure.” From Cutkosky [10, Theorem 5] it follows that if the base ring is a
normal complete intersection and the extension is unramified in codimen-
sion two, then the extension is unramified.

THEOREM 6 (see Grothendieck [23] and Cutkosky [10]). Let the setting
be as in (x). Moreover, assume that

B is a hypersurface ring of dimension d > 3,

A is a domain,

B — A is unramified in codimension one, and
A is locally free over B in codimension three.

Then B — A is an étale extension, that is, it is flat and unramified.

Proof. When d = 3, A is B-free and an appeal to [7, Corollary 3.7] or
[35, Theorem 41.5] gives that B — A is étale. Let p € Spec(B) be minimal
with respect to the property that A4, is not unramified over B, (or, what
amounts to the same thing in this setting, that 4, is not B, -free. Refer to
the remarks following Proposition 3.1). Consider the extension B, = B, —
A, = A, noting that codim(p) > 4. The various hypotheses for B — A
remain in this new extension, with the addition that A4, is unramified over
B, at all nonmaximal prime ideals. It is enough to verify that A, is
unramified over B, for then no such p exists.

We apply the reductions discussed in Section 2, observing that, since
() &, l§l is faithfully flat, it is enough to prove unramification in the
complete case. In addition, we note that upon completion, excellence
preserves unramification at all nonmaximal primes. Referring to the com-
pleted rings as A4, and B, again, we consider the normal closure S, of
B, => A,. In this setting (as discussed in Section 2), unramification in
codimension i of B, —» A, implies the same for B; — §, and vice versa
(we also note that 4, — S, inherits the unramification in codimension i
from B, — §,). Consequently, we consider the situation as in the theorem
with the additions:

B, and A, are complete, with A, a local normal domain.

B, — A, is unramified at all nonmaximal prime ideals—or equiva-
lently (see the remarks following Proposition 3.1) A4, is locally free
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at all nonmaximal prime ideals of B, (and likewise for the extension
B, - S§).
Claim 1. A, is Cohen—Macaulay.
We consider the extensions B, = A, «— §, and apply Proposition 4.1 to
obtain an exact B,;-complex

¢
0 —C—Fy —>Fp —C—0,

where C is a countably generated balanced MCM §,-module, free over a
complete regular local ring R, C B, (where R, — B, is module finite) and
Fy is a countably generated free B,-module. Writing this complex as two
short exact sequences

0 C

ép,

— Fp, Fy,
N
RN

0 0

we apply Homg(A,,-) and produce two long exact sequences which we
write in the following commutative diagram:

N e

Ext}y(A4,,C) Extj(A,,C)

\ (¢B| ¥,

Exty (A, F) ——  Extj(A,, Fy)

\ / 5.1

Extp (A, Z)
Exti; '(A4,,C) Exty '(A4,,C)

N

Put L' == Extj(A,, B,). We assert that if L' + 0, then (dp,)s is not a
surjection. From the observation in Section 2, we have a commutative
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diagram,
; (g Vs ;
EXtB,(Al’FB,) EXtB,(A]’FBI)
) 1. .
Fe L ol Fe, L

where R, F, and ¢ are as in the proof of Proposition 4.1 (recall that
B, = R/fR and that

0—F35FC—0

is a free R-resolution of C), and the vertical maps are the natural
identifications. Assume that L’ # 0. Then by Nakayama’s Lemma, L’ #
my L' since L' is a finite B;-module. Hence there is a map L' —> kg — 0
where ky = B,/mp . Applying (-) & C we obtain the surjection

L'& C—ky & C—0

and, noting that k, ® C # 0, we have L' & C # 0. Applying (-) ®;L' to
the free R-resolution of C,

0—>F3F—>C—0

we obtain the exact sequence
Fee L 22 pe I >Ce L —0
showing that ¢ ®;1,:, hence (¢, Y, is not surjective.

Since A, is locally free on Spec(B,) and C, because of Corollary 3.4,
satisfies the hypotheses of Proposition 3.5, then the proposition gives that
Extj(A4,,C) =0 for i=1,...,d ~ 2. Referring to diagram (5.1), this
implies that (¢B‘)i* is surjective for i =1,...,d — 3, hence that
Extj,‘(A,, B)Y=0for i=1,...,d — 3. From Auslander and Bridger [6]
(also see [12, Theorem 3.8]), we get that A} = Hom,(A, B,) satisfies
(§,_,). Referring to Theorem 1 and Theorem 3, since depth(A4,) +
(d-—1)—2>d when d>4 (that is, (d - 1)+(d—-3)=2d~4>d
when d > 4), then A} is Cohen—Macaulay. Recalling that A7 =, A, by
Auslander—Goldman (see Theorem 1), our first claim is proved.

Claim 2. A, is free over B,.

We proceed in the manner of [22]. Since A, is a finite MCM B,-module,
and A, is locally free on Spec®(B,), we apply Proposition 3.5 to see that
Extp(A4,, A)) =0for i=1,...,d — 2. Viewing A, as an R-module (re-
call, B; = R/fR where R is complete regular local ring) we obtain, from
the Auslander—Buchsbaum theorem, that pdz(A4,) = 1. Let

0 -G, —G,—A4, —0
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be a free R-resolution of A4, and apply (-) ® B, to this short exact

sequence. Recalling that Tor*(B,, A,) = A, (see the proof of Proposition
4.1 where the isomorphism Tor (B, C) = C is explained), we arrive at the

exact complex
0——4, > GB\ / > Gy,
/ W\.
0 0
where W is the first syzygy of A4, and G is a finite free B,-module. Now
Extp(W, A,) = Extj(A,,A)) =0  (recall that d > 4),

> A, — 0

hence
0—A =Gy »W—0

is split-exact. So A4, is B, -projective and hence B,-free. But then [7,
Corollary 3.7] or [35, Theorem 41.5] immediately gives that A, is unrami-
fied over B, and we are done. |

When B Is Not a Hypersurface

We proceed to the proof of Theorem 5. By the remarks in Section 2, we
reduce the problem via completion and introduce the normal closure.
Consequently, it is enough to prove the result in the setting of the theorem
with the additional condition that B and A4 are complete local normal
domains. We denote by § the normal closure of B — A4, and by G the
corresponding group.

Proof of Main Theorem. Assume B satisfies (R,) where k& > 4. From
Proposition 4.1, there is an exact B-complex

0—>C—oFy B F, T, (5.2)

where C is a countably generated balanced MCM S-module, Fy is a
countably generated free B-module, and T = ExtL(B,C)—hence T has
an S-structure inherited from C. Since B satisfies (R,) where k > 4,
Proposition 4.4 gives that the two B-structures on T are isomorphic, the
structure used in (5.2) coming from the first variable (that is, the domain
structure). Since B is at least (R,), the classical purity of branch locus
theorem implies that A4 (and S) are locally free over B in codimension 4.
Now depth B,,(Cp) = codim( p) for all p € Spec(B) and from (5.2) and the
Depth Lemma we have

depth, (7,) > codim( p) — 2
for all p € Spec(B) of codimension > 4 (5.3)

(here T,

", is a B,-module via the domain structure).
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Since C is a balanced MCM S-module, Proposition 3.1, hence Proposi-
tion 3.3, applies to C. Since the B-structures coincide for T, then (5.3)
holds when T is equipped with the codomain B-structure, hence Proposi-
tions 3.1 and 3.3 apply to T as well (the isomorphism in these propositions
requires the S-structure of T, which comes from the second variable).
Consequently, Corollary 3.4 gives that

depthy (C,) = deptth(Hom 5(Ap Cp))
and
depth, (T,) = depth,, (Hom, (4,,T,))

for all p € Spec(B).
Choose g € Spec(B) so that ¢ is minimal in the B-support of

k-1 k-3
@ Exti(A,C) @ @ Exti(A,T).

i=1

Then, codim(g) = & = 5 (recall that A is locally free over B in codimen-
sion 4). By choice of ¢

Suppy, Exty(A4,,C,) € {¢B,} fori=1,... k-1
and
Suppy, Ext} (4,.T,) c {¢B,} fori=1,....k-3.

As noted above, we have depthg (C ) = depth, (Hom B(A C,)) and
depth; (T;) = depth, (Hom, (4, )) Now, depth (C, Y=h >k +1
and depth (T Y>h-2>k— 1 We apply Proposmon 3 5t B, > A,
and the modules C,, T, to obtain

Extp(A4,,C,) =0 forj=1,...,(k+1) -2
and

Exth(A4,,7,) =0 forj=1,...,(k-1) -2

9°7q
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Therefore,
k-1 k=3
0= i€=BI Extj,q(Aq,Cq) D i?l Extj,q(Aq,Tq)
k—1 ‘ k=3 _
= ,-63 Exty(A,C) ® Eal Exty(A,T) ,
contrary to our choice of g. So the module

k-1 k-3
@ Exty(A,C) e @D Exty(A4,T)
i=1 i=1
has no B-associated primes, hence is the 0-module. That is, Ext%(A4,C) = 0
fori=1,...,k — 1,and Exty(A,T)=0fori=1,...,k = 3.

Recall the exact B-complex (5.2):

b,
0——C—F, . T——0

N
0 0
Applying Homg(A4,-) to the two short exact sequences which comprise

(5.2), two long exact sequences are obtained, yielding the following com-
mutative diagram:

N\ /

Exti(A,C) Exti(A,T)

\ - /

Extiy( A, Fy) ——> Exty( A, Fp)

N

Ext4( A, Z)
Exty '(A,T) Exti 1(A4,C)

N
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Proceeding as in the case of a hypersurface B (refer to the previous
subsection), we note that the following diagram commutes, where the
vertical maps are the natural ones (also see the discussion in Section 2).

. (dg)s .
Exti( A, Fy) s Ext,( A, Fy)
. { )'; .
I Exth(4,B) —2".  [IExtj(4,B) (59
i bp®y 1 i
F® Exti(4,B) %', Fe, Exti(4,B)

Again, we assert that if L' = Extp(A, B) # 0 then () is not surjec-
tive: Assume L' # 0. We apply (-) & L' to the exact sequence (from (5.2))

Fy -2 F,—T—0
and have the exact sequence
: 1 . .
Fe, L 2% po I >T® L' —0. (5.6)

Since L' is not zero and is finite over B, then L' # myL’ and we have the
surjection L' — k, — 0, hence the surjection T ®, L' — T & ky — 0. By
Proposition 4.5, T ®; ky # 0 so that 7 ® L' # 0. Exact sequence (5.6)
shows that ¢ ®; 1 is not a surjection, hence from (5.5) we conclude that
(¢p) is not a surjection.

Referring to diagram (5.4) in conjunction with the information

Exty(A,C) =0 for i=1,...,k—1
and
Exti(A,T) =0 for i=1,....k—3,

we have that (¢,)', is a surjection for i = 1,...,k — 3. Consequently,
0 = Exti,(A, B) = Exty(A**, B) for i = 1,...,(k — 1) — 2 where (-)* de-
notes Hom (-, B) (recall that A is reflexive as a B-module). By [6] (also
see [12, Theorem 3.8]), this gives that A* satisfies (S,_;). But again,
A =, A* by the Auslander-Goldman result (see Theorem 1) so that A4
satisfies (S,_,) and the theorem is proved. |

As a corollary to the above result, we consider the setting (*) with the
modification that the local normal excellent domain B is of mixed charac-
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teristic and is unramified—that is, char(B) = 0, char(k,) = p > 0, and
p € mp — m5. Excellence implies that the singular locus of B is closed,
say Sing(B) = V(I), where I C B is an ideal. We have the following result:

COROLLARY 5.2. Assume the setting is as in (*) with the modification
that B is unramified of mixed characteristic, and that { A : B) is a unit in B.
Suppose that B is Gorenstein of dimension d = 6, A satisfies (S,),
codim(p, I) > k + 1, and B — A is unramified in codimension one. Further-
more, suppose that the primitive element assumption holds for B/pB. If B
satisfies (R, ), then A satisfies (S, _ ) where k > 4.

COROLLARY 53. Let B <> A be as above. If B satisfies (R,) with
k > 3d + 2, then A is a Gorenstein ring.

Proof of Corollary 5.3. This follows from Corollary 5.2 in exactly the
same fashion as Corollary 5.1 follows from Theorem 5. |

Proof of Corollary 5.2. Consider the extension B = B/pB = A/pA = A
(the injectivity of B/pB — A /pA follows since p is regular on B, A4, and
—since B is a direct summand of A via the reduced trace map—on A/B
as well). Then B is a Gorenstein local excellent ring—moreover B
satisfies (R,) (where k > 4), hence is a normal domain. To see that B
satisfies the (R,) property, let Q € Spec( B) such that codim(Q) < k. Then
codim(Q) < k + 1 where Q € Spec{B). So Q@ # (p, 1) and thus Q 2 I. As
a result, By is a regular local ring, and as p € OB, — (QBQ)Z, then
B,/pBy = (B/pB)g is regular local also, showing that B satisfies (R,).
The extension B — A remains unramified in codimension one (since the
original extension B — A is unramified in codimension four by the classi-
cal purity of branch locus theorem). Moreover, B being (R,) (k > 4) and
the extension B —> A being étale in low codimension forces A to satisfy
(R)) (in fact, to satisfy (R,)). Since A4 is (), then A is (S,), hence is a
normal ring. Finally, since B is an equicharacteristic domain whose dimen-
sion is d — 1 > 5, we find ourselves back in the setting of Theorem 5, and
conclude that 4/pA = A satisfies (S,_ ).

As in the proof of the main theorem, we can reduce to the case where
the normal ring A is a local normal domain. Applying Hom (-, B) to

0—->A—p—>A-»,21_——>0

we obtain a long exact sequence for Ext. Using standard identifications
along with the facts that A4 =7 (A)* (see Theorem 1) and that A satisfies
(S,_,), we conclude that A satisfies (S, _,) as well (as Ext{(A4, B) = 0 for
i=1,...,k=3. 1

Next, we consider an example which illustrates that a weak purity is all
that we can hope for in this setting.
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ExaMPLE (refer to Fossum [14, Example 16.5]). Let A = k[ X,,..., X,
a polynomial ring over k, where d > 2, and assume that & contains w, a
primitive nth root of unity where n is prime to the characteristic of k.
Consider the k-automorphism of A4 given by o: X, — wX,, and put
G = (o), a cyclic group of order n. The invariant subring 4A¢ = B is
generated as a k-algebra by the monomials of degree n. Moreover, if we
take d = n, then we may consider G as a subgroup of SL{(n, k) since
o" = 1. By Watanabe [41, Theorem 1], B is then a Gorenstein ring.

As discussed in [14], the extension B — A is unramified in codimension
one. In fact, B is an isolated singularity, so that the extension is unrami-
fied at all nonmaximal prime ideals of A (or equivalently, at all nonmaxi-
mal prime ideals of B). To see this, note that X, X,,..., X, are all
primitive elements for the corresponding extension of fraction fields K —
L, with minimum polynomials given by f(T) = T" — X/. Since
X[, X7,..., X, forms a system of parameters for B, the ideal
(X7, X7,..., X)B is not contained in any prime ideal of B which is not
maximal.

Given p € Spec(B), p not maximal, we may assume that X ¢ p. Then
S T) =T" — X" is a separable polynomial in B,[T] (see [11, Chap. 111,
Sect. 4]), in particular, the extension B, - BP[T]/f,(T)BP[T] =B, is
étale. Consequently, the normality of B, implies the normality of B,. But
B, = A, is a finite extension with the fraction fields of B, and A4, being
identical. Hence, B, = A, so that Bp HAP is étale. Since A, is regular,
then B, is also regular.

However, the extension B — A cannot be unramified, for 4 is regular
yet B is not. To consider the complete local case, we refer to [16] and
complete at the respective maximal ideals. We remark that in this case
we have a weak purity: A is Gorenstein (in fact, regular) when B is
Gorenstein satisfying (R,_,), yet full purity is not achieved.

Properly Presented Modules

In the proof of the main results, we relied on the fact that when
Ext4(A,Fp) # 0 then the induced map

; (dg)e .
Extiy( A, Fy) —— Exti( A, Fy)

cannot be surjective——a result which we arrived at using some natural
identifications and facts about the nondivisibility of the modules C and T.
Another way to arrive at this conclusion is to obtain the exact B-complexes
(refer to Proposition 4.1) from a special free R-resolution of C,

0>F5Foc—o,
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one where the entries of the matrix giving ¢ are in my (we refer to such a
resolution as a proper presentation of C). Since the (¢,), can be given by
the same matrix as ¢, we see immediately that the (¢y), cannot be
surjective in the case of a proper presentation of C. A natural question to
ask is whether, in our setting, such a presentation can be produced over R.

QUESTION. Consider the situation as described in the discussion of
Section 2, that is,

B

)

R
77~ Rollo]l «—Ro[[Xx]] = R

]

Ry « Rol[f]]

and note that C has a nice resolution over R[[f1:

0— LIRJIIFN L LIRIFN —C—o0

(recall that C = II R, as an Rj,-module). Using this information (or
otherwise), is it possible to obtain a proper presentation

GLF—C—0

over R? (Recall that pdz(C) = 1 so that Im(y) C F is free.)

6. APPLICATIONS

Whern C(B) Has an Element of Finite Order

We begin this section by applying the main results in Section 5 to the
situation considered in [21, Sect. 2].

THEOREM 7. Let (B, m) be a complete local normal Gorenstein domain
of dimension d > 5. Assume that I is a divisorial B-ideal of order n in CI(B)
where (n,char(B/m)) = 1 and B contains the nth roots of unity. Further-
more, in the case char(B) # 0 assume the primitive element assumption
holds. If B satisfies (R,) where k > 4, then the symbolic powers of I, 1,
satisfy (5,_,).
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In exactly the same way that Corollary 5.1 follows Theorem 5, we obtain

COROLLARY 6.1. Let (B,m) and I be as in Theorem 7. Assume B
satisfies (R, ) where k > id + 2. Then, the IV are Cohen—Macaulay.

Proof of Corollary 6.1. This follows immediately from Theorem 7 and
Theorem 3. §

Before embarking on the proof of Theorem 7, we offer some remarks:

(a) For information about divisorial ideals and class groups, we refer
the reader to [9, Chap. VII; 14].

(b) The symbolic power of a divisorial ideal I is a generalization of
the same notion for a prime. As a divisorial ideal has a primary decomposi-
tion p{’ A p{) - N pl’ where py, p,,..., p, are codimension one
primes of 4 which are associated to A /I, [V is defined by [ = p{/*» N

Ue) ~ ... pUe)
P2 P

The proof of the theorem follows easily once the construction from [21,
Theorem 2.4] is described.

Proof of Theorem 7. First, we outline the construction mentioned
above. Let a € B be such that I = (a) and denote by A the integral
closure of B in Kl[a'/"], where K is the fraction field of B. The
assumptions that the order of [/] in CI(B) is n and that B contains the nth
roots of unity combine to ensure that X" — a is irreducible (over K and
B), hence that the extension K < K(a'/") is cyclic of order n. In [21] it is
shown that B «— A4 is unramified in codimension one and that, as a
B-module,

A=BeolteolPe - ol" "
where t" = 1/a € K.

Now, as we are precisely in the situation of Theorem 5, we have that A4
satisfies (S, _,). But then each /) must satisfy (S, _,) as well, and we are
done. |

We continue in a similar spirit to Section 5, and investigate module
finite normal extensions B — A, now in connection with the behavior of
certain codimension two “Bourbaki” prime ideals of A under the action of
the Galois group G (and the interpretation in terms of splitting). Specifi-
cally, the setting (* x) is as follows:

B — A is a module finite extension of local normal domains, is
unramified in codimension one, and is a normal extension with
group G; and B is an equicharacteristic excellent Gorenstein ring
of dimension d.

A significant ingredient which may be added to (* %) above is that A is
locally free over B in some fixed low codimension, thus boosting the
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unramification to that same codimension (refer to the remarks following
Proposition 3.1). First, we briefly discuss Bourbaki-exact sequences.

Comments on Bourbaki-Exact Sequences

Assume that M is a finitely gencrated torsion-free R-module where R is
a normal domain. By [9, Chap. 7, Sect. 4.9, Theorem 6], there is a finite
free R-module F so that

O—-F—->-M-—>1—-0

is exact and [ is an ideal of R. We refer to such a sequence as a
Bourbaki-exact sequence. We note that in Herzog and Kihl [24], the
definition of Bourbaki-exact sequence requires that M be MCM and that
either codim(/) > 2 or / = R.

In suitable circumstances, it can be arranged that / has codimension 2,
that 7 is actually prime, and that / is a normal prime (that is, R// is
integrally closed in its field of fractions). In particular, we have the
following theorem due to Miller [33]:

THEOREM 8 [33].  Ler (R, m) be a factorial, (R,), (S;) excellent domain
of dimension d = 4 containing an infinite field k. Let M be a non-free
reflexive R-module of rank d + 1. Assume that one of the following holds:

(1) char(k) =0, or

(2) char(k) = p > 0, R/m is separable over k, and M is free at all
primes in R of codimension three.

Then there is a short exact sequence
0 >R —>M-—>Q—0,

where Q is a codimension two prime ideal. Furthermore, if R satisfies (R;)
and (S,), and M is (S;), then Q is a normal prime.

Also, we have the following (refer to [24, Proposition 1.8)):

THEOREM 9. Let P € Spec( A) be a Cohen—Macaulay prime ideal (that
is, A/P is Cohen—Macaulay) of codimension two. Then there is a finite MCM
A-module M with

0 —>F->M—-P—>0

a Bourbaki-exact sequence. In the case of a normal extension B — A, if P is
normal, then so is p = P N B.

Remark. The normality of p follows since B/p is a ring of invariants of
the normal domain A /P (see [35, Sect. 41)).
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Referring to Theorem 8, the UFD property of (R,m) is used to
guarantee that Q may be taken of codimension exactly two (codimension
> 3 primes are excluded because R is (S;) and M is not free). We can
generalize this statement slightly, replacing factoriality by the condition
[M]; =0 in CI(R). Here [M], € CI(R) denotes the divisor attached to
the R-module M, and CK(R) is the divisor class group of the normal
domain R. For information about the divisor class group, attached divisors,
and related ideas, we again refer the reader to Bourbaki [9, Chap. VII] and
Fossum [14]. We will use elementary properties which can be found in the
above references to sketch a proof that the “Bourbaki” ideal in Theorem 8
may be taken of codimension two when [M ], = 0.

LEMMA 6.2. In Theorem 8, assume that (R, m) is normal (but not
necessarily factorial) and that [M1; = 0. Then the two conclusions of the
theorem hold—in particular, ) may be taken 1o have codimension two.

Proof. Assume [M]; = 0. First we show that if codim(Q) = 1, then Q
is contained in a principal ideal of R. From

0—-»F->M-—-0-—-0

we obtain 0 = [M1; = [Fl; + [QIi. Since F is free, then [F]; = 0 and so
[Q1z = 0. Denote by X' the set of all codimension one primes in R. Since
Q, is R, free for all p € X', then Q, = Q** for p € X' (here, ()*
denotes the R-dual) and so 0 = [Q],; = [Q**];. Now O0** - R** = R, s0
up to isomorphism, Q** is a reflexive R-ideal with [Q**], = 0. Hence,
Q** is principal and we may assume that Q** = xR with x € R — {0}
Therefore, Q — O** = xR.

Now set Q, =(1/x)Q € R and note that Q, = Q. We show that
codim(@,) > 1. Since ((1/x)Q)* = x(Q* we have that

k% __ ! ** * ¥ 1 * % !
(Q) —(;Q) = (+Q*)* = - Q" = ~(xR) = R.

Now (Q\))** = N, x1 (Q)), so that N, 4 (Q)), = R. Hence, O, ¢ p
for every p € X', that is, codim(Q,) > 1. Since Q, = Q, we may replace Q
by Q, and the lemma is proved. |

Results on Fixed Primes

In an integral extension of rings B < A, primes (of A) split and ramify.
In the particular case of codimension one primes in our usual setting (that
is, B = A a normal extension of local normal domains with the extension
of fraction fields separable), there is a formula which relates the splitting
and ramification of P € Sped(4) to the degree of the extension K < L
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(here K and L denote the fraction fields of B and A, respectively). More
precisely, if p =P N B, and pA = P{V N P N ,..., P (the P, are

the primes lying over p, say P, = P), then L4, ¢,f; = n, where [4: B] =

[L:K]=n and f, =[A/P,: B/p]. Moreover, when the extension is nor-
mal (with Galois group G), then ¢, =¢, = - =¢, and f, =f, = -+ =
f.» and we have the formula efg =n where g = the number of G-
conjugates of the prime P. In the case of codimension two primes in A,
assuming our setting is sufficiently “good,” a similar result will hold (this
can be seen by using Bertini’s Theorem (see Flenner [13] and also {12,
Chap. 0, Sect. H]) to reduce to the codimension one case, or by considering
splitting groups, inertia groups, etc. (refer to [35, Sect. 41]).

Our aim is to prove the following theorem, and along the way we are
able to (under certain hypotheses) identify Hom 4( A, p) as /pA4 .

THEOREM 10. Let B <> A be as in (* *) with d > 4. Assume that B
satisfies (R,), A satisfies (S,), and M is a finitely generated MCM A-module
with [M 1z = 0. Then M?® (where g = |G|, G = Gal(A4/B)) has a Bourbaki
codimension two prime ideal P which is normal and fixed under the action
of G.

We begin with a proposition and a lemma.

PROPOSITION 6.3. Let B — A be as in (» x) withd > 4 and A locally free
over B in codimension three. Suppose M is a finite A-module and that both M
and A satisfy (S,). Let p € Sped(B) be normal of codimension two such that
p fits into a Bourbaki-exact sequence (over B)

0—>F—=M-—->p—0.

Then, for P € Spec( A) such that P N B = p we have that P is normal and
fixed under the action of G.

Remark. 1In particular, it will be shown that /p4 = P.

LEMMA 6.4. Let B— A be as in (% x) and assume A is locally free
over B in codimension i. Then, for p € Spec(B) with codim(p) < i,

Hom (A, p) =, {pA.

Proof of Lemma 6.4. The assumption that B — A4 is unramified in
codimension one implies that the extension is unramified in codimension
zero, that is, the extension of fraction fields is separable, hence that the
Auslander—Goldman result can be applied. Let p € Spec(B) be such that
codim( p) < i. Applying Homg( A, -) to the exact sequence

0—p—>B—B/p—0
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we obtain the A4-exact sequence

0 — Homg( A, p) —»Homg( A, B)
=% Hom,( A, B/p) = Ext}( A, p). (6.1)

From Auslander-Goldman (see Theorem 1), Homy(A,B) = A - tr, 5 =
A. We put I = Homg(A, p), and since I € Homg(A, B) =, A, we iden-
tify I with an ideal of A. We assert that p4 C I C y/pA: Since tr, 5 is
B-linear, then tr, ,z(pA) C pB so that ,(pA) = 7 otr, ,5(pA) = 0. The
exactness of

0— 1 — A —% Homy( A4, B/p)

shows that pA C kerm, = 1.
Localizing (6.1) at B — p, we note that Ext},P(Ap,Bp/po) =0, and

Hom; (A4, B,/pB,) = A,/pA, since A, is B -free. S0 (6.1) yields
0—1,—>A,—>A4,/pA, —0

after the appropriate identifications, and we may assume that /, = pA,.
For Q € Spec( A) such that Q D p4 we have that (pA4,), = pAy # Ay, s0
for each such Q, I, # A, that is I C Q. In particular, 1 C ypA.

Claim. depth((yf/pA4),) and depth(,) are > 2 for any Q €
Sped A/ Y/ pA) which is not minimal.

Since A/y/pA is reduced, it satisfies (S,) as an A/ ypA -module; since
A is normal, it satisfies (S,). From the exactness of

0—p4 — A4 —)A/\/;Z — 0

and the Depth Lemma (refer to Section 2), we conclude that

depth((y/pA ),) > 2 for any non-minimal Q € Spec( 4/ v pA).
From

0—1-—>A— Homg(A4,B/p)

we see that A/I - Homg(A, B/p). Since B/p is a domain, then
Homg(A, B/p) and hence A/I are B/p-torsion free modules. Since
B — A is unramified in codimension zero, the going down theorem holds
between A4 and B. In particular, given Q € Spec(A/y/pA) which is not
minimal, then @ does not lie over p, thatis, N B Dp,but N B = p.
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For any such @, let xe QNB —pCB. Then xeB/p—>A/lis A/I-
regular and (A4 /I)g-regular as well. Consequently, for any such Q, (A4 /1),
has positive depth. From the exact sequence

0—o1—>A—>A4A/1 >0

and the Depth Lemma, we obtain depth(/;) > 2 for any Q €

Spec( A/ y/ pA) which is not minimal.
Finally consider the exact sequence of A-modules

0—=1—ypAd - W—0

and let Q € Ass (W). As pA c I < y/pA and by our assumptions, pA and
vpA agree when localized at any prime in A of codimension <i, then
codim(Q) > i (=2). We note that Q D y/pA4, for otherwise I, = A, =

(YpA)y. Hence, Q € Spec( A/ y/pA) and is not minimal. Applying the
Depth Lemma to

0——>1Q——>(\/;)7)Q——>WQ—->O

leads to a contradiction, as both depth(/,) and depth((y/pA4),) are =2.
Therefore, Ass (W) = sothat W=0and I = ypA. |

Proof of Proposition 6.3. Let P € Spec(A) such that PN B =p.
Consider

B/p — A/pA ™ A/ypA

where 7 is the natural map. We claim that A/+/pA satisfies (R,) and
($,).

Since p is a normal codimension two prime ideal, then B/p is a normal
domain, hence satisfies (R,) and (S,). The unramification of B > A4 in
codimension three implies that B/p — A /pA is unramified in codimen-
sion one, because unramification is preserved under base change (refer to
[7] or [32]). Let Q € Spec(.4/pA) be of codimension one. Then O N B = g
is a codimension three prime in B, so that § € Spec(B /p) is of codimen-
sion one. Then, (B/p), — (A/pA)gz is an étale extension and, since
(B/p); is regular local, then (A /pA)g is as well. That is, A/pA satisfies
(R,). By the hypotheses, p4 and y/pA become equal upon localization at
codimension three (or smaller) primes, so that A/pA and A/ pA are
equal when localized at primes (in Spec(A/pA) = Spec( A/ /pA)) of
codimension < 1. Therefore, A//pA satisfies (R,).
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We go on to demonstrate that 4/ /pA satisfies (S,). To the Bourbaki-
exact sequence
0—-F->M-o>p—0
apply Hom z( A4, - } and produce the exact sequence
0 — Homg( A, F)—Homy( A, M)
— Hom( 4, p) > Im(8) — 0,
where Im(8) C Ext}( A4, F). Note that we have the following isomor-

phisms:

(a) Homg(A4, F) = Homy(A4, 11 B) = ILIHomgz(A, B) = 11 4
since Homz(A4, B) =, A by Auslander—Goldman.

(b) Homg(A, M) =, M# where g =1A4:B}—refer to Proposition
3.1

(¢) Homg(A4, p) =, y/pA from Lemma 6.4.
Claim. 1f A satisfies () then Im(8) = 0.
Let ¢ € Spec(B) with codim(g) < 3. Then

Exty( A, F), = Exty(A4,,F) =0

since A, is a finite MCM B, -module and F, = LI B, is of finite injective

dimension. Therefore, Im(8) is supported at primes in B of codimension
> 4.

Let g’ € Assg(Im(5)). Then codim(g’) > 4 and applying the Depth
Lemma to

0 — Homg( A, F), —Homg( A, M),
— Homy( A, p)y > Im(8), — 0

and using the identification mentioned above, we conclude that

depth(Hom z( A4, F),.) = depth(A4}.) = 2 (here r denotes rank(F)), which

is a contradiction. Therefore, Im(8) = 0 and the following is A-exact:
0—A"—>M&— yp4 — 0. (6.2)

Let Q € Spec(A) such that codim(Q) > 4 and such that Q D /pA.
Localizing (6.2) at Q we have

0— A4, - M§ — ypA, — 0.
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Since depth(A}) = 4 and depth(M§) = 4, the Depth Lemma guarantees

that depth((y/p4),) > 3.
Finally consider the exact sequence

0—pA —A—A/\/pa —0.

Since A/y/pA is reduced, it satisfies (S,) as a ring. Let Q O y/pA4 be a
prime in A of codimension > 4. Since depth((y/pA4),) > 3 and A satisfies
(8,), it must be that depth(( A/ /p4 )o) = 2. Therefore, A/ VpA satisfies
(S,) as a ring.

Since A//pA satisfies (R,) and (S,), it is a normal ring, so that

A/NpA =A/Q, X A/Q, X - X A/Q,.,

where the A /Q, are normal domains (here the Q, are the minimal primes
in A/\/pA, say Q, = P). But A, hence A//pA is local so that m = 1
and hence A/W = A/P. Therefore \/;-)Z = P and P is a normal prime
in A. Since P lies over p and is the unique minimal prime lying over p, it
is the only prime that contracts to p (for B <= A is a finite extension). As
any G-conjugate of P also lies over p, it must be that P is fixed under the

action of the Galois group G. |
We return to Theorem 10:

Proof of Theorem 10. Viewing M as a B-module, we have that M is a
finite MCM B-module, and by Theorem 8 (with Lemma 6.2), there is a
Bourbaki-exact sequence

0—-F—-M-—>p—0, (6.3)

where F is a finite free B-module, and p is a normal codimension two
prime in B. We apply Hom z( A, -) to (6.3) to obtain

0 — Homg(A,F) — Homg(A, M) — Homgz(A4, p} — 0. (64)

The exactness at the right-hand end follows as in Proposition 6.3. Using
the identifications as in the proposition, (6.4) becomes

0—F, »M!—pA —0,

where F, is a finitely generated free A-module. Moreover, the proposition
gives that yp4 = P, a normal prime ideal in A4 which is fixed under the
action of G. We add that codim(P) = 2 since codim(p) = 2. |

The following corollary involves a result from linkage theory. For
appropriate definitions and clarification of this topic, we refer the reader
to Peskine and Szpiro [37] and Huneke and Ulrich [29].
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COROLLARY 6.5. Let B = A be as in Theorem 10, and M a finite MCM
A-module such that [M]; = 0. Let Q € Spec(A) be a codimension two
Bourbaki prime ideal for M%. Then Q is evenly linked to a normal codimen-
sion two prime P which is fixed under the action of G.

Proof. Let
0—-F ->Ms—Q—0 (6.5)

be a Bourbaki-exact sequence of A-modules for Q. As in the proof of the
above theorem, we view M as a B-module, produce the Bourbaki-exact
sequence (over B)

0—-F—->M-—>p—-0,

where p is a normal codimension two prime ideal, and apply Homg( A4, -)
to obtain (after appropriate identifications) the exact sequence

0 =-F, ->M —-P—0. (6.6)

Here, F, is a finite free A-module and P a codimension two normal prime
which is fixed under the action of G. Considering (6.5) and (6.6) in light of
the result [24, Theorem 2.1] immediately gives that Q and P are evenly
linked. |

In general, it is difficult to determine when a codimension two prime
ideal of A is fixed under the action of G (that is, when the prime is
nonsplit). Primes in Spec( 4) which are generated by two-sequences x,, x,
(where x,, x, are chosen in m to preserve the (R,) and (S,) properties of
A = A/(x,, x,)A as permitted by Bertini’s Theorem (see [13; 12, Chap. 0,
Sect. H]) give a trivial sort of example of this phenomenon, because
(x,, x,)A N B = (x, x,)B. The codimension two primes which are gener-
ated from the above results are not of this type, since the finite MCM
modules which are considered are not free.
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