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Summary (steatosis) through inflammation (non-alcoholic steatohepatitis)
Non-alcoholic steatohepatitis (NASH) is hallmarked by lipid accu-
mulation in the liver (steatosis) along with inflammation (hepa-
titis). The transition from simple steatosis towards NASH
represents a key step in pathogenesis, as it will set the stage for
further severe liver damage. Yet, the pathogenesis behind hepatic
inflammation is still poorly understood. It is of relevance to better
understand the underlying mechanisms involved in NASH in
order to apply new knowledge to potential novel therapeutic
approaches. In the current review, we propose oxidized choles-
terol as a novel risk factor for NASH. Here, we summarize mouse
and human studies that provide possible mechanisms for the
involvement of oxidized low-density lipoproteins in NASH and
consequent potential novel diagnostic tools and treatment strat-
egies for hepatic inflammation.
� 2012 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Non-alcoholic fatty liver disease (NAFLD) involves a cluster of
liver disease pathologies ranging from liver lipid accumulation
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to fibrosis and finally, irreversible cirrhosis. Compared to simple
steatosis, non-alcoholic steatohepatitis (NASH) is a more severe,
but less common form of NAFLD. According to a prospective
study, approximately 46% of a general patient population was
classified with a fatty liver, of which 29% of ultrasound positive
subjects were diagnosed with biopsy-proven NASH. Parallel to
the increasing prevalence of obesity, there was a corresponding
increase of body mass index (BMI) in this cohort [1]. Concomi-
tantly, weight loss improved the histological disease activity of
NASH [2]. Since obesity is a growing international epidemic both
in adults and children, steatohepatitis is about to become the
most common cause of liver cirrhosis and end-stage liver dis-
eases, due to the complications of portal hypertension [3].

As of today, several mechanisms have been proposed for
hepatic inflammation. Current interests implicate an important
contribution of the adipose tissue, particularly visceral adipose
tissue (VAT) and its secretory products [4]. Abnormal VAT func-
tion, primarily due to obesity, amplifies the release of adipocy-
tokines from fatty tissue, which can lead to systemic effects,
such as low-grade systemic inflammation and an altered meta-
bolic state with insulin resistance. The increased lipid content in
VAT, enhances free fatty acid (FFA) delivery from the adipocytes
into the liver, impairing the hepatic lipid content and initiating
hepatic insulin resistance. Whereas adipocytokines, including
interleukin-8 and tumor necrosis factor-alpha (TNF-a), could
contribute to hepatic inflammation via lipid peroxidation and
modulating the inflammatory response, FFAs can induce NASH
via hepatocyte apoptosis, lipotoxicity and increased production
of reactive oxygen species (ROS) [5,6]. Recent evidence points
toward another tissue, the gastrointestinal tract, as a source
for liver inflammation. Apart from altered gut microbiota during
obesity [7], studies showed increased intestinal permeability
during NASH, which could lead to elevated levels of plasma
lipopolysaccharide (LPS) [8,9]. This gut-derived LPS can activate
the immune system via pro-inflammatory signaling pathways
after binding to toll like receptors (TLRs), as those present on,
for example, Kupffer cells [10]. Additionally, vascular abnormal-
ities, as observed in atherosclerosis, have been strongly associ-
ated with NASH [11]. Thus, a potential interplay exists
between metabolic tissues and inflammation, leading to the
development of NASH (Fig. 1). At molecular level, increased
FFA levels, among other factors, can initiate endoplasmic reticu-
lum (ER) stress and mitochondrial dysfunction. Subsequently,
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this will lead to excess ROS production and formation of lipo-
toxic molecules, hereby contributing to the hepatic inflamma-
tory response [12]. Disturbed autophagic function, resulting
from decreased removal of altered mitochondria and the ER,
has been suggested to further aggravate hepatic inflammation
[13]. Thus, several mechanisms play a role in the transition to
NASH. Recently, increasing amounts of data show the involve-
ment of oxidized low-density lipoproteins (oxLDL) in hepatic
inflammation. While there is no evidence that the contribution
of oxLDL to NASH is greater than other known mechanisms,
oxLDL is emerging as a new risk factor for hepatic inflammation.
Therefore, in this review, we will focus on oxLDL and its impli-
cations in NASH.

NAFLD corresponds to an altered lipid metabolism and is asso-
ciated with the metabolic syndrome (MetS). One central feature
is the elevation of triglycerides in plasma as well as in the liver.
Sources of increased hepatic triglyceride content are due to
excess dietary intake, elevated triglyceride synthesis in the liver
from FFA formed during de novo lipogenesis, enhanced FFA influx
into the liver from lipolysis of adipose tissue, and subsequent
conversion into triglycerides, reduced lipid export from the liver
via very low-density lipoprotein particles and diminished oxida-
tion of fatty acids [14]. Other hallmarks associated with NAFLD
are low plasma high-density lipoproteins (HDL), elevated low-
density lipoproteins (LDL) and total cholesterol [15]. Currently,
it has been postulated that different types of lipids mediate the
disease spectrum of NAFLD. While hepatic accumulation of tri-
glycerides is related to steatosis, it becomes more evident that
cholesterol is implicated in the hepatic inflammatory response.
For example, a high cholesterol diet induced liver inflammation
in mice susceptible to NASH, while elimination of dietary choles-
terol prevented steatohepatitis [16,17]. Although there is a clear
association between obesity and NASH, dietary cholesterol was
even found to be the main trigger of hepatic inflammation in
non-obese rodents and humans [18,19]. Moreover, in livers of
NASH patients, total plasma cholesterol as well as free cholesterol
deposits were found to be increased compared to control subjects
[20,21]. Altogether, these observations indicate that cholesterol is
a key player in the onset of NASH.

Oxidative stress is another important and central mechanism
in the progression towards NASH. Many cells, including macro-
phages, are capable of internalizing and accumulating excess
amounts of plasma lipoprotein-derived cholesterol [22]. Mimick-
ing this process in vitro, by loading macrophages with cholesterol,
resulted in increased generation of ROS [23]. In turn, oxidative
stress brings damage to cell structures such as membranes, pro-
teins and DNA of liver cells, hereby triggering a hepatic inflam-
matory response, which can eventually lead to apoptosis [24].
Several sources of hepatic ROS have been determined regarding
the development of NASH and include mitochondria, peroxi-
somes, the endoplasmic reticulum, and enzymes such as the
cytochrome P450 superfamily, NAPDH oxidase and xanthine oxi-
dase [24]. Recently, it has been reported that steatohepatitis may
be caused by lipid-induced oxidative stress [25]. Thus, given that
cholesterol and oxidative stress play a causal role in the patho-
genesis of NASH, it is highly likely that not cholesterol alone,
but consequent oxidation of cholesterol is the substantial risk
factor for NASH. To support this hypothesis, we will evaluate cur-
rent data that describe the involvement of oxLDL in inflammation
and NASH. Additionally, potential clinical benefits of oxLDL in the
field of NASH will be discussed.
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Key Points

• Uptake of modified lipids by Kupffer cells, such as
oxLDL, leads to the inflammatory response in NASH

• Disturbed intracellular trafficking of oxidized lipids
within Kupffer cells is associated with hepatic
inflammation

• Among other metabolic inflammatory diseases, oxLDL
should be considered a substantial risk factor for NASH

• The pathogenesis of NASH in hyperlipidemic mice is
associated with lysosomal storage defects

• Atherosclerosis and NASH are both metabolic
diseases and share disease mechanisms

• Future therapy and diagnosis of NASH should focus
on oxLDL
The inflammatory aspects of oxLDL

Recent studies show that oxLDL contributes to inflammatory pro-
cesses through interaction with immune cells and disturbed
intracellular cholesterol trafficking. To date, an increasing
amount of evidence suggests an important role for oxLDL in obes-
ity-related inflammatory disorders, such as atherosclerosis
[26,27] and cardiovascular disease (CVD) [28,29].

So far, several mechanisms underlying LDL oxidation have
been identified in vivo. Hyperglycemia, a pre-diabetic state prior
to insulin resistance, has been shown to be strongly associated
with oxidation of circulating LDL, as glucose decreases the antiox-
idant characteristics of serum albumin [30,31]. Chronic hypergly-
cemia has been implicated in the enhanced formation of
advanced glycation end products (AGEs), eliciting alterations of
the LDL particle [32]. Interestingly, feeding mice a high-AGE diet
caused liver inflammation, suggesting that AGE-induced modi-
fied LDL plays an important role in inflammation [33]. The
increase of FFA flux, primarily released from adipose tissue, into
the liver, is strongly linked to insulin resistance and increased
oxidative stress, possibly exacerbating oxidation of LDL [34].

OxLDL-induced inflammation and apoptosis

Minimally oxidized forms of LDL contain lipid oxidation products
without extensive protein modification. Since oxLDL particles
stay longer in the plasma, they are more prone to further oxida-
tion. As modification proceeds, the highly oxidized LDL particle
turns into a structure similar to pathogen-related epitopes and
therefore will be removed from plasma through binding and
uptake by macrophages. This response is initially intended to
be protective, however, an excessive amount of lipids will build
up inside macrophages, leading to a phenomenon called foam cell
formation [35]. This change in foamy appearance causes the
swollen phenotype of the macrophage to activate the transcrip-
tion factor nuclear factor-kappaB (NF-jB) [36], hereby inducing
the production of inflammatory cytokines (Fig. 2) [36,37]. OxLDL
has been shown to modulate inflammation by affecting several
other cellular mechanisms, such as inducing transmigration of
3 vol. 58 j 801–810
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Fig. 1. Schematic diagram illustrating the metabolic crosstalk between liver, adipose tissue, gut, arteries and systemic inflammation. The development of NASH is
dependent on underlying mechanisms related to the metabolic syndrome, such as disturbed intestinal permeability, gut microbiota, increased systemic inflammation,
vascular abnormalities, and adipose tissue dysfunction as a result of increased macrophage infiltration and insulin resistance. In turn, NASH by itself can exacerbate
inflammation in these metabolic tissues, retaining a positive feedback mechanism.
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neutrophils [38], eosinophils [39], monocytes and T lymphocytes
[40]; elevating several adhesion molecules [38,41–43], and
recruiting immune cells through the release of the chemokine
(C–C motif) ligand 23 (CCL23) [44]. Moreover, oxLDL induces
inflammation through increased ROS generation [45] and ele-
vated expression of metalloproteinases [46].

Another important aspect during the pathogenesis of inflam-
mation is apoptotic cell death, which has been shown to play
an important role in NASH [47,48]. OxLDL has been found to
increase apoptosis through activation of apoptotic signaling cas-
cades including the Fas signaling pathway [49]. Additionally, bio-
logically active oxidized lipids were found in apoptotic cells [50].
Thus, given that oxLDL induces apoptosis, oxLDL is not merely an
inflammatory trigger, but also promotes subsequent cell damage.

Disturbed intracellular trafficking of oxLDL

OxLDL possibly exerts its inflammatory effects upon receptor-
mediated macrophage endocytosis. Once internalized, it has been
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postulated that oxLDL is transported to the lysosomal compart-
ment where it is poorly degraded or hydrolyzed and therefore
accumulates in lysosomes. This is in contrast to native or acety-
lated LDL, which are normally degraded by lysosomal enzymes
followed by relocation into the cytoplasm for further processing
[51]. Lysosomal trapping of oxLDL, probably due to impaired cho-
lesteryl ester hydrolysis or an alteration in lysosomal pH [52], has
the potential to damage and disrupt the lysosomal membrane.
Since lysosomes are involved in a wide variety of biological pro-
cesses, cholesterol-induced lysosomal damage can lead to inflam-
mation and apoptosis [53]. In vitro data demonstrated the
appearance of cholesterol crystals inside lysosomes upon pro-
longed oxLDL incubation. It is speculated that these crystals rep-
resent an endogenous danger signal and trigger the activation of
the NLRP3 inflammasome and subsequent pro-inflammatory
interleukin-1 production [54]. In addition, it has been proposed
that lysosomal cholesterol accumulation leads to disturbed
autophagy, a process important in inflammation and apoptosis
[55]. Taken together, lysosomal trapping of oxLDL inside
3 vol. 58 j 801–810 803
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Fig. 2. Schematic illustration showing the involvement of oxLDL in the
macrophage inflammatory response. Lipid-laden foamy macrophages express
higher levels of the scavenger receptors CD36 and SR-A and produce more pro-
inflammatory cytokines. Through interplay with surrounding cells, these cyto-
kines further amplify the inflammatory response. Blocking macrophage uptake of
oxLDL leads to macrophages smaller in size, less CD36 and SR-A expression and
reduced inflammation. Modified from [135], reprinted by permission from
Elsevier.
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macrophages leads to cellular damage, possibly through mediat-
ing inflammation and apoptosis. Although the inflammatory
effects of oxLDL are well-documented in the atherosclerosis field,
the link between NASH and CVD has never been investigated
directly by any study. Therefore, it is still questionable whether
the inflammatory aspects of oxLDL summarized in this paragraph
can be applied to NASH as well.
OxLDL and its implications in non-alcoholic steatohepatitis

An increasing amount of studies strongly emphasize the role of
Kupffer cells (KCs), the liver’s resident macrophage population,
in the pathogenesis of NASH [56]. We now elucidate the effect
of oxLDL on KCs and its contribution to hepatic inflammation.

Role of KCs

A growing body of evidence contradicts the ‘‘two-hit’’ model, in
which is described that hepatic steatosis is considered to be the
first critical ‘hit’ and a necessary prerequisite for further liver
damage, such as inflammation [57]. Nowadays, it becomes
increasingly clear that a multifactor etiology, with a central role
for KCs, underlies the pathogenesis of NASH [58]. In contrast to
the ‘‘two-hit’’ model, several papers describe the development
of severe hepatic inflammation without the presence of hepatic
steatosis [16,59]. For example, omitting cholesterol from hyper-
lipidemic mice prevented hepatic inflammation without affecting
steatosis [16]. Furthermore, comparable to foam cell formation in
atherosclerosis, hyperlipidemic mice showed bloated foamy KCs,
which was correlated to hepatic inflammation. Consistently, a
high-fat diet (HFD) without added cholesterol demonstrated
reduced hepatic inflammation without swollen KCs [16]. During
804 Journal of Hepatology 201
early steatohepatitis, isolated fat-laden KCs from HFD-fed mice
predominantly contained cholesterol and displayed a pro-inflam-
matory phenotype [60]. Inflammation triggered by cholesterol-
rich foam cells, is a well established hypothesis in the field of
CVD and has been recognized as a significant parameter during
atherosclerotic plaque formation [61]. Thus, cholesterol or its
modified form, trapped inside KCs, is an actual trigger for NASH.

Critical contributors for the uptake of modified lipids and cho-
lesterol by macrophages are the scavenger receptors (SRs), scav-
enger receptor A (SR-A) and CD36 [62]. Literature describes a
distinct affinity for binding of oxLDL between these two SRs.
SR-A binds and mediates uptake of oxLDL to a lesser extent than
CD36. Compared to incubation with LDL and acetylated LDL
(acLDL), treatment with oxLDL elevated gene expression and pro-
tein levels of SR-A and CD36 in macrophages [63,64]. These data
show that both scavenger receptors are involved in the uptake of
oxLDL. Similar to typical macrophages, SRs were also identified
on KCs [65]. Haematopoietic deletion of SR-A (Msr1) and/or
Cd36 in hyperlipidemic mice resulted in decreased hepatic
inflammation, indicating that SR-mediated uptake of modified
cholesterol by KCs is the trigger for the development of steato-
hepatitis (Fig. 2) [59,66]. Loading bone-marrow derived macro-
phages of LDL receptor (ldlr)-/- mice with oxLDL, hereby
mimicking foam cell formation, showed to be more inflammatory
than macrophages without oxLDL loading [67]. Taken together,
these data demonstrate the causal role of oxLDL as a driver of
the inflammatory response.

Recently, a novel mouse model for NASH has been developed
by using a combination of oxidized LDL and a HFD. Administra-
tion of oxLDL to wild type HFD-fed mice displayed the entire
pathology of NASH, i.e., steatosis, hepatic inflammation, fibrosis,
and also lipid-laden macrophages, dyslipidemia and aggravated
hepatic lipid peroxidation [64]. This novel animal model shows
the direct involvement of oxLDL in the development of NASH,
however, the underlying intracellular pathway that contributes
to hepatic inflammation has not been established. One proposed
theory is a defective intrinsic mechanism of lipid trafficking
inside KCs.

Macrophage-derived foam cells, as those present during ath-
erosclerosis, predominantly contain enlarged lysosomes filled
with cholesterol and cholesterol crystals, instead of cholesterol
ester storage into the cytoplasm [54,68]. For the first time, our
group demonstrated accumulation of cholesterol and cholesterol
crystals inside lysosomes of KCs in a mouse model representing
NASH [66,69]. In line with these data, hepatic inflammation
was found to be associated with increased cholesterol storage
inside lysosomes of KCs, providing evidence that lysosomal cho-
lesterol accumulation in KCs is crucial for inflammation in the
context of NASH [66,69]. Altogether, mounting evidence demon-
strates that NASH exhibits similar characteristics to atherosclero-
sis, including foam cell formation and cholesterol-engorged
lysosomes. Regarding the latter observation, it has been proposed
that advanced stages of atherosclerosis are analogous to a modi-
fied form of lysosomal storage disorders [70]. Therefore, these
results indicate that NASH can be considered likewise. Our novel
hypothesis that NASH shares similarities with an acquired lyso-
somal storage disorder, opens up entirely new therapy possibili-
ties for hepatic inflammation.

By interfering with the immune response, more evidence was
provided for the relevant role of oxLDL in NASH. Oxidation struc-
turally modifies the LDL particle, whereby the phosphorylcholine
3 vol. 58 j 801–810
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(PC) headgroups, one of the so-called oxidation-specific epitopes,
can be found on the outer surface [71]. Oxidation-specific epi-
topes are viewed as damage associated molecular patterns
(DAMPs) and therefore serve as ligands for immune recognition
[72]. Since these PC epitopes are also present on the capsular
polysaccharide cell wall of Streptococcus pneumoniae [73], cross
reactivity exists between PC epitopes from oxLDL and this bacte-
rium. Therefore, a protective effect against NASH upon active
immunization with heat-inactivated S. pneumoniae in ldlr�/�
mice was found. Immunized mice fed a high fat cholesterol diet
showed less foamy KCs, decreased hepatic inflammation and
reduced cholesterol crystals inside lysosomes of KCs compared
to mice without immunization [69]. More importantly, reduced
inflammation was associated with lower cholesterol oxidation
and an increase of IgM autoantibody levels against modified
LDL in plasma [59]. These data strongly suggest that anti-oxLDL
antibodies of the IgM subtype are protective against steatohepa-
titis (Fig. 2), supporting our hypothesis that oxLDL plays an
important role in the development of NASH.

Crosstalk between KCs and other cell types in the liver

Activation of KCs leads to a rapid release of a wide range of
inflammatory mediators and signaling molecules such as cyto-
kines, ROS, proteases and lipid mediators [74]. One of the stimuli
that has been shown to activate macrophages and to increase
pro-inflammatory cytokines, is oxLDL [67]. Other than oxLDL,
different stimuli can activate KCs, such as gut-derived endotoxins
[75] and damaged hepatocytes. For example, due to intercellular
communication between hepatocytes and KCs, hepatocyte stress
and/or injury result in the excretion of inflammatory mediators,
which in turn activate KCs hereby possibly inducing hepatic
inflammation [76,77]. Furthermore, at a more advanced stage,
the engulfment of apoptotic hepatocytes by KCs promotes their
activation and could further contribute to hepatic inflammation
[78].

As discussed earlier, oxLDL trapping inside lysosomes triggers
inflammation, most likely due to its activation of KCs. Once
inflammation is elicited, KCs can further spread hepatic injury
by amplification of the inflammatory response through interac-
tions with neighboring hepatocytes, sinusoidal endothelial cells
(SECs) and hepatic stellate cells [77]. Upon activation, KCs pri-
marily release TNF-a and interleukins [79], hereby influencing
hepatocyte function and viability or indirectly by activating other
cells, including SECs. Activation of SECs can indirectly lead to
neutrophil-mediated damage to the hepatocytes or even cell
death [74]. Additionally, inflammatory signaling initiated by
KCs can be further amplified by the secretion of chemokines, fol-
lowed by recruitment of infiltrating macrophages and neutro-
phils [80]. KC-derived TNF-a contributes to elevated secretion
of the chemokine macrophage inflammatory protein 2 (MIP-2)
and monocyte chemotactic protein 1 (MCP-1), facilitating activa-
tion and infiltration of neutrophils and macrophages into the
liver [74,81]. The hepatic accumulation of neutrophils in turn
can lead to hepatotoxicity.

In summary, oxLDL is a harmful lipid that causes cellular
injury and activation of macrophages and endothelial cells, par-
ticularly. OxLDL-induced KC activation enhances cytokine-driven
hepatocellular signaling pathways, hereby inducing KCs to fur-
ther augment inflammation through interaction with other cell
types in the liver.
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Oxidative stress

Oxidative stress, the primary risk factor for LDL oxidation, is
believed to be a central mechanism in the pathogenesis of NASH.
Therefore, in mouse models, as well as in human studies, markers
for oxidative stress were measured as potential surrogate mark-
ers for NASH.

Neutrophils are a potent source of the oxidant-generating
enzyme myeloperoxidase (MPO) and are abundantly present in
the liver [82,83]. In vitro data demonstrated that uptake of
MPO-induced oxidation of LDL leads to foam cell formation
[84]. In line with this finding, Rensen et al. detected increased
MPO-positive KCs in the livers of obese NASH patients, which
was accompanied by elevated plasma MPO levels [85].

During oxidative modification of LDL, a variety of reactive
aldehydes on apoB lysine residues are generated by decomposi-
tion of lipid peroxidation products, such as 4-hydroxynonenal
(HNE) and malondialdehyde (MDA) [35]. While HNE has shown
to contribute to foam cell formation, MDA modification of lysine
residues contributes to functional properties of oxLDL [86]. Con-
sistently, increased hepatic MDA and HNE levels in rodent mod-
els of NASH were identified [47,87]. Other pivotal contributors to
oxidative stress are microsomal cytochrome P450 enzymes, such
as P450 2E1, which are mainly located in the liver. Deletion of
P450 CYP2E1 in mice resulted in less susceptibility for NASH,
decreased oxidized proteins, as well as MDA and HNE levels,
and protection against insulin resistance compared to their wild
type littermates [88]. While mouse studies show straightforward
results about the role of oxidative stress in NASH, less outspoken
data are represented by human studies. Koruk et al. demon-
strated an increase of serum MDA in patients with biopsy proven
NASH, while the antioxidants glutathione peroxidase and gluta-
thione reductase showed no difference compared to the control
group [89]. Moreover, an increase of serum thioredoxin, thiobar-
bituric acid reactive substances (TBARS) and plasma oxLDL was
detected in NASH patients in comparison to control subjects
[90,91]. Although the data was statistically significant, a small
sample size was used and there were large standard deviations
between the groups, considering these studies as being under-
powered. Additionally, cohorts were poorly controlled regarding
overlapping risk factors for NASH, such as the MetS and/or diabe-
tes. Yet, although a small cohort was used, increased hepatic
CYP2E1 activity in non-diabetic NASH patients was demonstrated
compared to BMI-matched controls [92]. Evidence implicates
other pro-oxidant enzymes, such as 15-lipoxygenase and cerulo-
plasmin, to be involved in the oxidation of LDL [93,94]. Therefore,
clinical data showed a concomitant increase of enzymatic sources
of ROS during hepatic inflammation, in parallel to the progression
of NASH [15,95]. Of note, the changes observed in ceruloplasmin
levels and P450 liver enzymes are not specifically related to
NASH, but also to other aspects of the MetS, including obesity
and diabetes mellitus.

In general, most of the human studies presented in this para-
graph do not show a causal link between oxidative stress and
NASH.

Anti-oxidants

Oxidative stress represents an oxidant/anti-oxidant imbalance,
which is shifted towards greater oxidant activity and/or decreased
anti-oxidant levels. Enzymatic and non-enzymatic anti-oxidant
3 vol. 58 j 801–810 805
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defense mechanisms play a role in protecting lipids, such as LDL
from oxidation. Observations described above clearly indicate a
pro-oxidant state for NASH patients, suggesting there is a dimin-
ished anti-oxidant defense status in this population. Indeed, a
diversity of anti-oxidant enzymes was found to be reduced in
the plasma of NASH patients [89,96]. Moreover, total anti-oxidant
capacity and anti-oxidant enzymes were specifically decreased in
the livers of patients with steatohepatitis compared to healthy
controls [97]. Consistent with a decreased activity of anti-oxidant
enzymes, non-enzymatic anti-oxidants, such as glutathione con-
tent and vitamin E, were also diminished in NASH subjects
[97,98]. In parallel with the disease progression of human NAFLD,
a decline of glutathione transferase enzyme activity was detected
in liver specimens [99]. In striking contrast, extreme low anti-oxi-
dant levels alleviated the progression towards NASH, as observed
in glutathione-deficient mice, indicating the activation of a protec-
tive compensatory mechanism under severe low anti-oxidant con-
ditions [100]. Altogether, NASH patients reflect a pro-oxidant state
and a reduced anti-oxidant capacity, implying limited ability to
counteract oxidation. Thus, these data point towards an important
role for oxidation, most likely of LDL, in the development of NASH.
However, the decreased level of anti-oxidants as observed in NASH
subjects could also be a consequence of other related disorders or
risk factors, such as the MetS, obesity and diabetes mellitus.
Clinical implications

At present, the most accurate diagnostic tool to determine NASH
is the histological assessment of a liver biopsy. Due to its invasive
procedure, patients experience discomfort and there is a risk for
complications including pain, hemorrhage, bile peritonitis and
pneumothorax [101]. The existing non-invasive biomarkers for
NASH used in the clinic, i.e., transaminases (ALT, AST), alkaline
phosphatase (ALP) and gamma-glutamyl-transpeptidase (GGT),
lack specificity and sensitivity to distinguish NASH from steatosis
and have been reported as unreliable [102]. Instead of inflamma-
tion, these plasma liver enzymes represent liver damage, of
which a novel potential biomarker, plasma cytokeratin 18, is a
marker specifically for hepatocyte apoptosis [103]. Concerning
therapeutics against NASH, there is no proven effective treatment
available that specifically reduces hepatic inflammation.
Although not all patients fit the following description, NASH
patients typically meet the criteria for the MetS, i.e., being obese,
insulin resistant and hyperlipidemic [104]. Therefore, the most
adequate recommendation for reducing hepatic inflammation
focuses on lifestyle alterations, such as changing nutritional hab-
its and increasing physical activity [104]. Additional to lifestyle
modifications, pharmacological interventions against NASH tar-
get hyperlipidemia, insulin resistance and oxidative stress and
are therefore similar to that of the MetS. Altogether, non-invasive
tests are warranted to diagnose NASH at early stages of the dis-
ease process, to allow opportunities to prevent further progres-
sion towards severe and irreversible liver damage, such as
fibrosis and cirrhosis. Moreover, there is a need for novel and safe
therapeutic strategies against NASH that lead to a pronounced
reduction in hepatic inflammation.

Plasma OxLDL

Higher circulating oxLDL levels were detected in CVD patients
compared to healthy subjects [105]. Generally, the important role
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of plasma oxLDL has been reviewed extensively for atherosclero-
sis [26,35]. In line with this, Binder et al. have shown to reduce
atherosclerosis by inducing protective plasma anti-oxLDL anti-
bodies in mice [106]. Similarly, we have recently shown that
these antibodies are also effective against NASH [69]. Thus, these
data point towards oxLDL as a potential target for the prevention
of both atherosclerosis and NASH. However, clinical studies are at
their infancy and comparative studies of testing various assays to
monitor oxLDL are needed to assess which assays have enhanced
clinical utility for detecting CVD and NASH. So far, none of the
tested assays are approved for routine clinical use [29].

As for diagnosis, oxLDL is not used as a marker to detect ath-
erosclerosis. Similarly, while we found an association between
antibodies against oxLDL and NASH, there is no sufficient evi-
dence to suggest that plasma oxLDL can be used as a non-invasive
marker to detect hepatic inflammation. To evaluate the prognos-
tic value of plasma oxLDL for the detection of NASH, several big-
ger cohort studies are necessary.

Anti-oxLDL antibodies

The finding that oxidation-specific epitopes are not merely pres-
ent on oxLDL, but also on apoptotic cells [107], reflects the link
between oxLDL and tissue damage. Therefore, anti-oxLDL
antibodies have been shown to be predictors of inflammatory
diseases, such as atherosclerosis and CVD [108,109]. In line with
these findings, we have found that plasma IgM anti-oxLDL anti-
bodies correlate negatively with hepatic inflammation in mice
[69]. In this view, anti-oxLDL antibodies can potentially be used
as a diagnostic tool for the detection of NASH. However, it is
important to note that the amount of anti-oxLDL antibodies
may differ naturally between people and can vary over time
[110,111]. Additionally, molecular mimicry exists between oxida-
tion-specific epitopes of oxLDL and epitopes located on infectious
agents, suggesting that exposure to pathogens influences the pro-
duction of anti-oxLDL antibodies [110]. This argument may not
be beneficial for the use of anti-oxLDL antibodies for the diagno-
sis of NASH, yet it opens up promising therapeutic strategies
against liver inflammation. Boosting the production of anti-oxLDL
antibodies via immunization approaches ameliorated atheroscle-
rosis [106,112]. Since atherosclerosis shares features with NASH,
i.e., foam cell formation and inflammation, these immunization
approaches hold promise as treatment against NASH and should
be tested clinically in the future.
Cholesterol lowering medication

Hypertriglyceridemia and hypercholesterolemia are commonly
found in NASH patients, suggesting that NASH is strongly associ-
ated with hyperlipidemia [113]. Therefore, lipid-lowering agents,
such as polyunsaturated fatty acids (PUFAs), fibrates and statins,
have been tested in patients with NASH. Recent work reported a
positive effect of PUFAs on lobular inflammation and ballooning
of the liver in mice, as well as in human NASH, although the
human study lacked a control group[114,115]. Therefore, it has
been proposed that randomized controlled trials of adequate size
are needed in the future to propose such PUFA treatment to NASH
patients[2].

The use of fibrates, which are ligands of the peroxisome pro-
liferator-activated receptor, and statins are still controversial.
Fenofibrate administered to mice has been shown to ameliorate
3 vol. 58 j 801–810
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hepatic inflammation, while human studies demonstrated no
difference in plasma liver enzymes or without changes in histo-
logical end points for NASH [116–118]. Statin therapy was inves-
tigated by human pilot studies, but only in a limited number of
patients [119–121]. Short-term outcomes show promising
results on liver inflammation, as proven by serum aminotrans-
ferase activities and liver histology [119–121]. In addition to
their anti-inflammatory properties, statins are generally targeted
at lowering lipids. Interestingly, patients who received statins
even demonstrated reduced oxLDL, which could be relevant for
NASH patients with increased plasma oxLDL levels [122]. Still,
statin-treated NAFLD patients developed advanced fibrosis based
on liver histology after a long-term follow-up period [119,123].
In conclusion, the beneficial effects of statins and fibrates on
NASH are still debatable, due to clear limitations to monitor
NASH. While some human studies use unspecific plasma liver
enzymes, other studies assess liver histology for the develop-
ment of NASH. Furthermore, there is a clear lack in repeated
measurements to monitor NASH progression. Moreover, the dif-
ference in beneficial outcome after statin therapy could be
explained by the fact that statins are directed at lipid lowering
in general and are not directly related to oxLDL. Therefore, future
adequate and well-designed human intervention studies exam-
ining the effect of statins or fibrates on NAFLD/NASH should be
conducted. To monitor long-term statin or fibrate therapy on
the development of NASH in human studies, liver histology
assessment is critical.

Anti-oxidant therapy

A pivotal contributor to the pathophysiology of NASH includes
oxidative stress. As pro-oxidant activity is paralleled with oxida-
tion of lipids, including LDL, anti-oxidants have the potential to
treat NASH. Promising results were obtained during a clinical
trial where non-diabetic NASH patients were randomly assigned
to receive the anti-oxidant, vitamin E, or placebo for 96 weeks.
Vitamin E treatment improved individual features of NASH, such
as lobular inflammation and hepatocellular ballooning, as well as
the overall NAFLD activity score [124]. A similar positive outcome
of the NASH phenotype was demonstrated in a clinical trial
where NASH patients received the anti-oxidant pentoxifylline
[125]. Vitamin E has been shown to inhibit CD36-mediated
uptake of oxLDL, hereby preventing foam cell formation, whereas
pentoxifylline reduced oxLDL-induced leukocyte adhesion to the
endothelium and downregulated the integrin receptor CD11b/
CD18 [43,126]. Additional clinical studies could not attribute a
favorable effect to vitamin E and pentoxifylline treatment in
the development of NASH [127,128]. Nevertheless, this could be
due to the variable disease course of NAFLD/NASH, sampling
error during liver biopsy [129] and the use of plasma transami-
nases as a non-specific predictor for NASH [102]. Although fur-
ther investigations are needed, other anti-oxidants have also
shown to be effective against NASH and include ursodeoxycholic
acid with or without vitamin E [130,131], betaine and other die-
tary supplements [87,132–134]. In summary, anti-oxidant ther-
apy, either via supplementation of anti-oxidants or agents that
increase the generation of anti-oxidant enzymes, seems to be
effective in reducing NASH. Even though anti-oxidant therapy
counteracts oxidative stress and thereby inflammation, anti-oxi-
dants might serve as a useful adjunct therapy to support targeted
therapies.
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Concluding remarks

A number of studies demonstrated a close relationship between
the MetS and increased plasma oxLDL levels. In recent years, a
greater amount of evidence therefore linked oxLDL to the patho-
genesis of NASH, the hepatic manifestation of the MetS. It has
been known for a long time that oxLDL is cytotoxic and induces
cellular damage. However, until recently, oxLDL has also been
found to exert its harmful effects on KCs, followed by KC-derived
interplay with other hepatic cells. The reviewed data suggest, for
the first time, that oxLDL is an important trigger for NASH devel-
opment. Since cholesterol and its oxidized form play a crucial role
in the progression of NAFLD, most therapeutic strategies against
NASH should aim at lowering plasma cholesterol, prevention of
(oxidized) cholesterol uptake by macrophages and enhancement
of the whole-body anti-oxidant status. The finding that NASH can
be viewed as an acquired lysosomal storage disorder has signifi-
cant implications for the development of novel therapeutics
against liver inflammation. Higher oxLDL levels in the plasma
does not necessarily discriminate NASH from its overlapping risk
factors, obesity, diabetes or atherosclerosis. On the one hand,
lowering plasma oxLDL has therefore additional beneficial effects
on metabolic related disorders. On the other hand such an
overlap puts the diagnostic value of plasma oxLDL, and its spec-
ificity to detect NASH, at risk. Therefore, we suggest that studies
in mice and large human cohorts should be used in the future to
test the clinical utility of plasma oxLDL as a non-invasive marker
for NASH. All in all, these diagnostic and therapeutic strategies
provide a basis for the amelioration of NASH and related meta-
bolic risk factors that can lead to CVD, diabetes mellitus and its
associated complications.
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