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FissionedTriangular Schemes via the Cross-ratio

D. DE CAEN AND E. R. VAN DAM

A construction of association schemes is presented; these are fission schemes of the triangular
schemesT(n) wheren = q + 1 with q any prime power. The key observation is quite elementary,
being that the natural action ofPGL(2,q) on the 2-element subsets of the projective linePG(1,q)
is generously transitive. In addition, some observations on the intersection parameters and fusion
schemes of these association schemes are made.

c© 2001 Academic Press

1. THE CONSTRUCTION

This paper is a sequel to [4]. In that paper, it was observed that almost all known self-
dual classicalassociation schemes have natural fission schemes (fissioning the maximum-
distance relation only); whereas in the non-self-dual case there seemed to be no analogous
fission schemes. Subsequently, we found that there is at least one such non-self-dual clas-
sical association scheme that admits an interesting fission scheme, namely the triangular
schemeT(n) = J(n,2) wheren = q + 1 with q any prime power; this is the object of
the present work. For terminology and background, we refer to Bannai and Ito [2] for asso-
ciation schemesand to Hirschfeld [9] for finite geometry. Recall that the groupPGL(2,q)
acts (as M̈obius transformations) on the projective linePG(1,q); this action is (sharply) 3-
transitive. There is a natural induced action on the 2-element subsets of the projective line,
namelyM({x, y}) := {M(x),M(y)} for eachM in PGL(2,q). In the proof below we apply
the basic fact (cf. [9, p. 135]) that the cross-ratio

ρ(a,b, c,d) :=
(a− c)(b− d)

(a− d)(b− c)

is acomplete invariant for ordered quadruples of distinct points on the projective line, i.e., one
quadruple may be mapped to another quadruple (via a Möbius transformation) if and only if
they have the same cross-ratio.

THEOREM. Theaction of PGL(2,q) on the2-element subsets of PG(1,q) is generously
transitive.

PROOF. Given intersecting 2-sets{a,b} and {a, c}, thereis someM in PGL(2,q) that
swaps them, since the group is triply transitive. And given disjoint 2-sets{a,b} and{c,d},
there is also some M̈obius transformation that interchanges them, because the ordered quadru-
ples(a,b, c,d) and(c,d,a,b) have the same cross-ratio. 2

Given any transitive permutation groupG acting on a set�, the orbitals are the orbits in
� × � under the natural action ofG on pairs. IfG is generously transitive, then the orbitals
form the relations (associate classes) of a symmetric association scheme (cf. [2, p. 54]). In
our case,the relations can be described as follows. One relation, sayR1, is the line-graph
of the complete graph (i.e., one relation of the triangular schemeT(q + 1) has remained
unfissioned). Next, for each reciprocal pair{s, s−1

} of elements inGF(q)\{0,1}, there is a
relationR{s,s−1} where{a,b} and{c,d} are in this relation whenρ(a,b, c,d) equalss or s−1.
Note thatρ(b,a, c,d) = ρ(a,b, c,d)−1 so this makes sense as a definition for unordered
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pairs{a,b}. Henceforthwe will write Rs instead ofR{s,s−1} for typographical reasons; note
that since the field element 1 cannot occur as a cross-ratio, this notation will not conflict with
that of relationR1 above.

We now easily find that this fissioned triangular scheme, which we shall denote by
FT(q + 1), has1

2(q + 1) associate classesif q is odd and1
2q classes ifq is even. When

q is odd the field element−1 is equal to its own reciprocal; thus the relationR−1 has valency
1
2(q − 1)which ishalf the valency of the other relationsRs with s in GF(q)\{0,1,−1}. The
relationR1 has valency 2(q − 1).

We remark that for small oddq the relationR−1 is a familiar object: forq = 5 it is the
line-graph of Petersen’s graph; forq = 7 it is the Coxeter graph (this was apparently known
to Coxeter himself, cf. [6, p. 122]); forq = 9 it is the line-graph of Tutte’s 8-cage. There
seem to be some other such ‘sporadic isomorphisms’: for example whenq = 11 the relation
R2 = R{2,6} is the line-graph of the point-block incidence graph of the (unique) symmetric
(11,6,3)-design; and whenq = 9 and{s, s−1

} is the pair of primitive fourth roots of unity,
thenRs is the second subconstituent of the Gewirtz graph (cf. [5, p. 106]).

2. INTERSECTIONPARAMETERS

It is possible to give explicit formulas for the intersection parameterspk
i j of the association

schemeFT(q + 1); we now sketch the main points of the derivation. The casesq odd andq
even are similar, with the latter case being slightly cleaner since the exceptional case ‘ρ= −1’
does not occur. Hence we will only present the caseq even; besides, this case is the more
pertinent one in the discussion of fusion schemes in Section3.

Thus letq = 2e beany power of two. The schemeFT(2e
+1)has 2e−1 classes. The relation

R1 has valency 2(q−1) and each of the other relationsRs = R{s,s−1} (for s in GF(q)\{0,1})
has valencyq − 1. The intersection parameters involvingR1 are easy to work out and we
list them without proof: for distinctr ands (ands 6= r−1) in GF(q)\{0,1}, p1

11 = q − 1,
pr

11 = 4, p1
1r = 2, p1

rr = 1, andp1
rs = 2.

Now let the symbolsr , s and t represent three (not necessarily distinct) elements of
GF(q)\{0,1}; we aim at a formula forpr

st. What one has to do is fix a pair of 2-sets{a,b}
and{c,d} in relationRr , and count the number of 2-sets{x, y} such that{a,b} and{x, y} are
in relationRs and{c,d} and{x, y} are in relationRt . The triple transitivity ofPGL(2,q) is
useful here, since it implies that we may take, without loss of generality,{a,b} = {∞, 0} and
{c,d} = {1,r }. For the unknown pair{x, y} we then obtain the two equations

s or s−1
=
(∞− x)(0− y)

(∞− y)(0− x)
=

y

x
(1)

and

t or t−1
=
(1− x)(r − y)

(1− y)(r − x)
. (2)

Equations (1) and (2) together involve two essentially different cases, not four, since{y, x} =
{x, y}; thus we may fix the left-hand side of (1) as beings, andexamine the two cases for (2)
in turn. In the first case we havey = sx and

t =
(1− x)(r − y)

(1− y)(r − x)
=
(1− x)(r − sx)

(1− sx)(r − x)
.

This leads to the following quadratic forx (after changing all minus signs to plus signs, as we
may since we are in characteristic two):

s(t + 1)x2
+ (rst + r + s+ t)x + r (t + 1)= 0. (3)
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The other case (when the left-hand side of (2) ist−1) leads to the similar quadratic

s(t + 1)x2
+ (rs+ r t + st+ 1)x + r (t + 1)= 0. (4)

Note that sincer, s andt are allin GF(q)\{0,1}, Eqns (3) and (4) are genuine quadratics,
with non-zeroquadratic and constant terms. The linear coefficient(rst+r +s+t) in (3) could
equal 0,in which case the unique solution forx is the square root ofrs . If r st+ r + s+ t 6= 0,
then (3) has (two) solutionsx if andonly if

Tr

[
rs(t + 1)2

(rst + r + s+ t)2

]
= 0 (5)

whereTr(z) is thetrace map fromGF(2e) ontoGF(2). Similarly, if rs + r t + st+ 1 6= 0,
then (4) has (two) solutionsx if andonly if

Tr

[
rs(t + 1)2

(rs+ r t + st+ 1)2

]
= 0. (6)

Thus pr
st hasa value of anywhere from 0 to 4. A reasonably concise formula is the fol-

lowing: let A = A(r, s, t) be the expression for the argument of the trace map in (5), and
B = B(r, s, t) be theone for (6). Then, whenrst + r + s+ t 6= 0 andrs+ r t + st+ 1 6= 0

pr
st = 2+ (−1)Tr[A]

+ (−1)Tr[B] (7)

with the obvious modifications being made in the other cases. Incidentally, it is easy to check
that(rst + r + s+ t) and(rs+ r t + st+ 1) cannot simultaneously equal 0.

We make one more remark concerning the form of the intersection parameters. The ex-
pressionsA(r, s, t) and B(r, s, t) are not symmetric ins and t , hence formula (7) forpr

st
appearsnot to be symmetric either. This may seem strange, since we know from general prin-
ciples thatpr

st = pr
ts. An explanation for this is the following.A(r, s, t) has the same trace

asC(r, s, t) := rs+r t+st
(rst+r+s+t)2

since their sum is of the form xy
x2+y2 and suchfield elements, in

characteristic two, must have trace 0 (exercise for the reader).
Similarly, B(r, s, t) has the same trace asD(r, s, t) := rst(r+s+t)

(rs+r t+st+1)2
. Thus we may replace

A by C and B by D in (7) without changing the value of the right-hand side; andC and
D are bothsymmetric functions of the three variablesr, s andt . This confirms the fact that,
since the valenciesnr are the same for allr in GF(q)\{0,1}, the intersection parameterpr

st
is symmetric in all three variables.

It would be interesting to find explicit formulas for the entries of the eigenmatrix (character
table) ofFT(q+1). One strategy for doing this (used by Bannai and his co-workers in several
papers; see [1] for a survey) is the following. First calculate all of the intersection parameters;
it is usually feasible to do this, at least in some reasonable algebraic form perhaps involving
character sums. This tells us what the intersection matricesBi (k, j ) := pk

i j are. Secondly,
from theseBi ’s (at small values ofq) it may be possible to guess what the eigenmatrixP
should be. Once the right guess has been made it is usually straightforward to actually prove
the result, using Theorem II.4.1 in [2]. Unfortunately, we have been unable so far to guess the
general shapeof P for our schemesFT(q + 1); we generated these character tables using a
computer for all prime powersq less than 40, and they seem to have a very complicated form.

3. FUSION SCHEMES

Given any association scheme, it is of interest to determine all of its fusion schemes (also
called subschemes). This is in general a very hard problem that has not been worked out
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completely even for quite classical examples such as the Johnson schemes (cf. [10]). In the
case ofthe schemesFT(q + 1), there is of course the original two-class triangular scheme
T(q+1). Observe also that ifq = pe is a proper power ofp, then the Frobenius mapx 7→ xp

(and its iterates) gives a fusion scheme. In other words, there is an overgroup (P0L(2,q) in
casep is prime) of PGL(2,q), and the orbitals under this overgroup constitute a fusion
scheme ofFT(q + 1).

Limited computational evidence suggests thatFT(q + 1) has no other non-trivial fusions,
except maybe in some sporadic cases, and whenq = 4 f ( f any integer at least 2) where
there seems to be an interesting 4-class fusion scheme. We say ‘seems’ because we are lack-
ing a proof that this is indeed an association scheme. To describe this (putative) scheme, let
the ground-set be all 2-element subsets of the projective linePG(1,4 f ); the four possible
relations for two distinct 2-sets{a,b} and{c,d} are:

S1: {a,b} ∩ {c,d} 6= ∅, i.e., R1 in the earlier notation.
S2: {a,b} ∩ {c,d} = ∅ and the cross-ratioρ = ρ(a,b, c,d) satisfiesρ2 f

−1
= 1, i.e.,ρ lies

in the subfieldGF(2 f ).
S3: {a,b} ∩ {c,d} = ∅ and the cross-ratioρ = ρ(a,b, c,d) satisfiesρ2 f

+1
= 1.

S4: The remainder.

We have been able to show by computer that these four relations do indeed form a scheme
when f is less than or equal to 6. In addition, we can prove in general that some of the
intersection parameters, such asp3

23, are well defined; but certain other parameters such as
p3

33 have left us baffled. An explicit knowledge of the eigenmatrix ofFT(4 f
+ 1) would

theoretically settle this question (cf. [10, Lemma 1]), which is partly why we raised the issue
of computingit earlier.

CONJECTURE. Theabove relations Si on the2-subsets of PG(1,4 f ) do form a4-class
association scheme for all f≥ 2. The corresponding eigenmatrix is given by

P =


1 2(4f

− 1) (2f−1
− 1)(4f

− 1) 2 f−1(4 f
− 1) 2 f (2 f−1

− 1)(4f
− 1)

1 4f
− 3 2− 2 f

−2 f
−2 f (2 f

− 2)
1 −2 1− 2 f 0 2 f

1 −2 (2 f−1
− 1)(2f

− 1) 2 f−1(2 f
− 1) −2 f (2 f

− 2)
1 −2 2f−1(2 f

− 1)+ 1 −2 f−1(2 f
+ 1) 2 f

 .
We note finally that, granting this conjecture, one can mergeS2 andS3 to obtain a 3-class

scheme, and then further mergeS1 with S2 andS3 to obtain a 2-class scheme. The resulting
graphG = S1 ∪ S2 ∪ S3 is strongly regular with parametersv = 22 f−1(22 f

+ 1), k =
(2 f
+1)(22 f

−1),λ = (2 f
−1)(3·2 f

+2),µ = 2 f+1(2 f
+1). Graphs with these parameters

have already been constructed by Brouwer and Wilbrink (cf. [3, 7B]); it was checked that in
the smallestcase f = 2 (v = 136) the two constructions yield isomorphic strongly regular
graphs. We know nothing for larger values; but the two constructions look totally different, so
that it is a reasonable guess that they are not isomorphic in general.

ADDED IN PROOF. The above conjecture is proven by Tanaka [11] and independently by
Ebert, Egner, Hollmann, and Xiang [7, 8]. Tanaka gives a group theoretic proof using charac-
ters, whileEbertet al. give a geometric proof using inversive planes in [7], and a direct proof
from theintersection parameters in [8]. In [7] it is also proved that the strongly regular graph
G = S1 ∪ S2 ∪ S3 is isomorphicto the Brouwer-Wilbrink strongly regular graph.
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