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Fatty acids (FA) have been shown to alter leukocyte function, and depending on concentration and type,
they can modulate both inflammatory and immune responses. Astaxanthin (ASTA) is a carotenoid that
shows notable antioxidant properties. In the present study we propose to evaluate the oxidative stress
in human lymphocytes induced by a FA mixture and the possible protective role of ASTA. The present
study showed that the FA mixture at 0.3 mM caused a marked increase in the production of superoxide
anion, hydrogen peroxide and nitric oxide, which was accompanied by an increase in total-SOD activity,
in TBARS levels and a reduction of catalase activity and content of GSH and free thiol groups. The FA mix-
ture also promoted an increase in intracellular Ca2+ mobilization and in the proliferative capacity of B-
lymphocytes. The addition of ASTA (2 lM) partially decreased the ROS production and TBARS levels
and increased the levels of free thiol groups. ASTA decreased the proliferative capacity of cells treated
with FA but not by reducing intracellular calcium concentration. Based on these results we can conclude
that ASTA can partially prevent oxidative stress in human lymphocytes induced by a fatty acid mixture,
probably by blenching/quenching free radical production.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Fatty acids (FA) have been shown to alter leukocyte function,
and depending on concentration and type, they can modulate both
inflammatory and immune responses. These metabolites are
important components of the diet and act as both intracellular
and extracellular mediators, positively or negatively regulating
physiological and pathological conditions (Pompeia et al., 2000).
Polyunsaturated fatty acids (PUFAs) of the omega-3 family have
overall suppressive effects on lymphocyte by modulating cell-
membrane fluidity and composition of lipid rafts, inhibiting lym-
phocyte proliferation, antibody and cytokine production, adhesion
molecule expression, natural killer cell activity and triggering cell
death (Costabile et al., 2005; Fan et al., 2003; Larbi et al., 2005;
Stulnig et al., 2000). The omega-6 PUFAs have both inhibitory
and stimulatory effects on lymphocyte function. In addition to
lymphocytes, FA has also been found to modulate phagocytosis
of macrophages and neutrophils, reactive oxygen species produc-
tion, cytokine production and leukocyte migration, also interfering
with antigen presentation by macrophages (Calder et al., 1990;
Endres et al., 1993; Meydani et al., 1991). The importance of FA
, 1295, 03342000 São Paulo,

.edu.br, rosemariotton@hot-

sevier OA license.
has been corroborated by many clinical trials in which patients
present enhancement or impairment of immune function depend-
ing on which FA is provided in supplementation. Several mecha-
nisms have been proposed to explain fatty acid modulation of
immune response, such as changes in membrane fluidity and sig-
nal transduction pathways, regulation of gene transcription, pro-
tein acylation, and calcium release (Pompeia et al., 2000).

Cell and plasma levels of FA are significantly increased under
fasting conditions, hypoxia, obesity, strenuous exercise and type
1 and 2 diabetes. In these situations, we also observed a significant
immune suppression (Bazan, 1970; Delarue et al., 2004; Gardiner
et al., 1981; Itani et al., 2002; Otton et al., 2004). Indeed, diabetic
individuals present a high occurrence of infections associated with
complications such as heart disease, atherosclerosis, cataract for-
mation, peripheral nerve damage, retinopathy, and others which
contribute to decrease quality of life of the patients (Valko et al.,
2007).

In our previous study (Otton et al., 2004) we showed that blood
peripheral lymphocytes obtained from poorly controlled diabetic
patients presented increased DNA fragmentation as compared with
cells obtained from healthy patients. Lymphocytes from alloxan-
induced diabetic rats also showed increased DNA fragmentation
when compared with cells from controls. Concomitantly, there
was also high occurrence of chromatin condensation and blebbing
formation. These observations strongly support the proposition
that uncontrolled diabetes leads to impaired immune function
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due to higher number of lymphocyte death. More recently our
group showed that lymphocytes from healthy human subjects as
well as leukemia cell lines (Raji and Jurkat cells) after treatment
with a fatty acid mixture that mimics the proportion and concen-
tration found in plasma from diabetic patients, raises the propor-
tion of cells in apoptosis (Otton and Curi, 2005), by a mechanism
involving the release of cytochrome c from mitochondria, activa-
tion of caspases, increase in the production of NO and superoxide,
and induction of calcium release (Otton et al., 2007).

The production of free radicals is increased in diabetic patients,
generating an oxidative stress condition as showed by many
authors. According to these authors, many different pathways
may contribute to increased oxidative stress in diabetes, including
increased plasma levels of FA (Newsholme et al., 2007). The in-
crease in fatty acid levels may alter reactive oxygen species
(ROS) production via activation of NADPH-oxidase, by induction
of mitochondrial uncoupling, by inducing calcium mobilization as
well as the activation of the transcription factor NF-jB via Toll like
receptor 4 (TLR-4) signaling (Atli et al., 2004; Baynes, 1991;
Catherwood et al., 2002; Green et al., 2004; Inoguchi et al., 2000;
Otton et al., 2007; Rolo and Palmeira, 2006; Sano et al., 1998).
Based on these effects, many authors have suggested the use of
antioxidants in the treatment of diabetic complications, especially
those involving excessive production of free radicals.

Carotenoids act as antioxidants by quenching singlet oxygen
and free radicals (Palozza and Krinsky, 1992; Tsuchiya et al.,
1992). These compounds are colored pigments widely distributed
in vegetables, fruits and seafood and are implicated in the preven-
tion of degenerative diseases including coronary heart disease and
cancer (Gerster, 1993; Morris et al., 1994). The xanthophyll carot-
enoid astaxanthin (3,30-dihydroxy-b,b0-rotene-4,40-dione; ASTA), a
reddish-colored C-40 compound, is a powerful broad-ranging anti-
oxidant that occurs naturally in a wide variety of living organisms,
such as microalgae, fungi, complex plants, and crustaceans
(Hussein et al., 2006). It is a quencher of ROS and reactive nitrogen
species (RNS) single- and 2-electron oxidants as well as a chain-
breaking scavenger of free radicals. ASTA, unlike other carotenoids,
contains two additional oxygenated groups on each ring structure,
resulting in enhanced antioxidant properties (Guerin et al., 2003).
It has been reported that ASTA has a high antioxidant activity: 10
times higher than other carotenoids such as lutein, canthaxantin,
and b-carotene and 100 times higher than a-tocopherol (Goto
et al., 2001; Naguib, 2000). This potent antioxidant activity has
been observed to modulate biological functions ranging from lipid
peroxidation to tissue protection against light damage (McNulty
et al., 2007; Santocono et al., 2006).

At the same time, ASTA displays interesting anti-inflammatory
effects by preserving redox-sensitive (and essential) structures of
human lymphocytes, although the applied dose apparently hinders
lymphocyte proliferation (Bolin et al., 2010). As fatty acids are po-
tent inducers of oxidative stress and as reported by many authors
that ASTA has an important and prominent antioxidant activity, we
propose to evaluate the oxidative stress caused by a mixture of
fatty acids previously used by our group, and the possible ASTA
protective role of oxidative stress induced by the FA mixture.
2. Materials and methods

2.1. Reagents

Astaxanthin (ASTA) and most of other chemicals were pur-
chased from Sigma–Aldrich Chemical Company (St. Louis, MO,
USA), excepting the RPMI-1640 culture medium, pluronic acid, Vy-
brant MTT Cell Proliferation kit and acetoxymethylester (Fura-2
AM) which were from Life Technologies (California, USA). Common
reagents for buffers (e.g. PBS) and regular laboratory solutions
were obtained from Labsynth (Diadema, SP, Brazil).

2.2. Subjects

The Ethical Committee of the Universidade Cruzeiro do Sul (pro-
tocol number 030/07) approved the experimental procedure of this
study. Around 30 healthy adult women and men (mean age
27.0 ± 9.0) were included in the present study. All subjects did
not present systemic or topical therapeutic regimen at least for
the last 2 months. Subjects with a smoking history, alcohol habits,
obesity or any other systemic diseases were excluded of the study
(based on an anamnesis protocol).

2.3. Cell isolation and culture condition

Lymphocytes were obtained through the collection of human
peripheral blood by venipuncture procedure in vacuum/siliconized
tubes containing 0.1 mM EDTA. Peripheral blood lymphocytes
were isolated under sterile conditions by using a density gradient
present in the reagent Histopaque 1077 (Sigma–Aldrich) according
to the manufacturer’s instructions. After centrifugation, lympho-
cytes were counted in a neubauer chamber using Trypan blue
(1%). Lymphocytes (1 � 106/mL) were cultured in 5 mL of RPMI
1640 supplemented as described above. The cells were treated
with 0.3 mM of the fatty acid mixture added or not of 2 lM of ASTA
solubilized in DMSO and cultured at 5% CO2 for up to 24 h at 37 �C.
After this period, the cells were collected, centrifuged and stored at
�80 �C. To perform the assays of enzymes activities and oxidative
damages in biomolecules, cells were defrosted and immediately
used. For acute effects of FA on cell ROS production and intracellu-
lar calcium mobilization, after isolation lymphocytes were resus-
pended in Tyrode’s solution (137 mM NaCl, 2.68 mM KCl,
0.49 mM MgCl2, 12 mM NaHCO3, 0.36 mM NaH2PO4, 5.6 mM D-glu-
cose, and 5 mM acid HEPES, pH 7.4) and freshly used.

The fatty acid mixture used in the present study was previously
described (Otton and Curi, 2005). Briefly, the proportion of fatty
acids was as follows: 1.74% lauric (C12:0), 5.2% myristic (C14:0),
31% palmitic (C16:0), 1.1% palmitoleic (C16:1), 41% stearic
(C18:0), 4.6% oleic (C18:1), 9.6% linoleic (C18:2), 1.3% linolenic
(C18:3), 3.2% arachidonic (C20:4), 0.45% eicosapentaenoic
(C20:5), and 1.8% docosahexaenoic (C20:6) acids. In this study,
the 0.3 mM FA concentration used is frequently found in plasma
from diabetic patients (Bajaj et al., 2002; Woerle et al., 2002).
The percentage of ethanol used to prepare the FA mixture, was al-
ways lower than 0.05% of the total volume of culture medium. This
concentration of ethanol has shown not to be toxic for the cells
(Siddiqui et al., 2001). All experiments were performed with cells
left untreated (control) or treated with ethanol (vehicle). Bovine
serum albumin (BSA) was added at 0.2% as an extracellular fatty
acid chelator. There was no difference between untreated and eth-
anol-treated cells in all cases.

2.4. Determination of lymphocyte proliferation capacity

The proliferation response of lymphocytes was determined
using the Vybrant MTT Cell proliferation (Life Technologies)
according to the manufacturer’s instructions. Briefly, the MTT as-
say involves the conversion of the water soluble compound
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) to the insoluble formazan. The formazan is then solubilized,
and the concentration determined by optical density at 570 nm.
The cells (5 � 105 cell/well) were treated for 48 h with 0.3 mM of
the fatty acid mixture added or not of 2 lM of ASTA and stimulated
with concavalin A (Con A) (20 lg/mL) or lipopolysaccharide (LPS)
(100 lg LPS/mL) to stimulate T and B cell proliferation, respec-
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tively. Absorbance was measured in 570 nm and the results were
expressed as optical density (OD).

2.5. Intracellular Ca2+ release

Changes in cytosolic Ca2+ levels were monitored by fluorescence
using the calcium-sensitive probe Fura 2-AM (Otton et al., 2010).
Briefly, cells (1 � 106/300 lL) were acutely treated with 0.3 mM
of the FA mixture added or not by 2 lM of ASTA. The loading period
for 5 lM Fura 2-AM was 1 h at 37 �C in 1 � 106 cells/well in Tyr-
ode’s solution. Afterwards, cells were washed and intracellular
[Ca2+]i was monitored for 20 min and fluorescence emission at
510 nm (excitation wavelengths alternating between 340 and
380 nm) of Fura 2-AM was measured in a microplate reader (Tecan,
Salzburg, Austria). Transformation of the fluorescent signal to
[Ca2+]i was performed by calibration with ionomycin (100 lM,
maximum concentration) followed by EGTA addition (60 lM, min-
imum concentration) according to the Grynkiewicz equation, using
the Kdiss of 224 nM (Grynkiewicz et al., 1985).

2.6. Measurement of ROS production by lymphocytes

2.6.1. Phenol red assay
Hydrogen peroxide (H2O2) production was measured according

to Pick and Mizel (1981) which is based on the horseradish perox-
idase catalysis of the phenol red oxidation by H2O2. Lymphocytes
(5 � 105/well) were acutely treated (3 h) with 0.3 mM of the fatty
acid mixture added or not by 2 lM of ASTA in the absence and
presence of phorbol myristate acetate (PMA; 20 ng/well) used as
a ROS inducer. After 3 h the absorbance was measured at 620 nm
to evaluate H2O2 concentration (compared to a standard curve).

2.6.2. Dihydroethidium assay
Dihydroethidium (DHE) is a florescence probe and was used to

measure the intracellular superoxide anion production. Once in-
side the cell, DHE is rapidly oxidized to ethidium (a red fluorescent
compound) by superoxide with minor collaboration of other ROS.
Lymphocytes (5 � 105/well) were incubated with 5 lM DHE for
15 min at room temperature in the dark. At the beginning of the as-
say control cells were stimulated with PMA (20 ng/well) and
0.3 mM of the FA mixture added or not by 2 lM of ASTA. Cells were
incubated in the dark at room temperature for additional 30 min.
DPI (diphenylene iodonium 10 lM), an inhibitor of NADPH oxidase
(Chen et al., 2007), was used to investigate if superoxide anion pro-
duction occurred through NADPH-oxidase activation. Sodium
azide (SA – 400 lM) was used as a mitochondrial inhibitor. After-
wards, fluorescence was analyzed in a microplate reader (Tecan,
Salzburg, Austria) (wavelengths of excitation and emission were
396 and 590 nm, respectively).

2.6.3. DCFH-DA assay
The probe DCFH-DA was primarily used as an indicator of the

production of H2O2 (Keston and Brandt, 1965) but is also described
as being oxidized by other ROS such as HO�, ROO�, NO and perox-
ynitrite (Crow, 1997; Wang and Joseph, 1999). The cells (5 � 105/
well) were preloaded with DCFH-DA (5 lM) by incubation in cul-
ture medium for 30 min. DCFH-DA is cleaved intracellularly by
non specific esterase and turns into high fluorescent 2,7-dichloro-
fluoroscein (DCF) upon oxidation by ROS. After the loading period,
cells were treated with FA with or without ASTA at 2 lM and cul-
tured for 18 h. The experiments were conducted in the presence
and absence of PMA (20 ng/well). After the culture period, cells
were centrifuged and resuspended in 300 lL of Tyrode’s buffer
and the fluorescence was monitored in spectrofluorimeter Tecan
(Salzburg, Austria) with excitation at 485 nm and emission at
530 nm. The results of this experiment were expressed as relative
units of fluorescence.

2.7. Nitric oxide production

Nitric oxide production was performed according to Ding et al.
(1988) through nitrite (NO��2 ) determination. Nitric oxide (NO�) is
rapidly converted into NO�2 in aqueous solutions and, therefore,
the total NO�2 concentration can be used as a stoichometric indica-
tor of NO� production in culture. Lymphocytes (5 � 105/well) were
cultured with 0.3 mM of the FA mixture with or without 2 lM of
ASTA and LPS (10 lg/well) for 4 h. EGTA (ethylene glycol tetraace-
tic acid, 500 lM) was used as a calcium quelator and therefore to
discard NO production by constitutive calcium-dependent NOS.
N-Acetyl-Cysteine (NAC – 500 lM) was added as an antioxidant
to discard ROS induction on iNOS activation. The absorbance was
measured in 550 nm to estimate NO�2 concentrations based on a
standard NaNO2 solution.

2.8. Preparation of homogenates

For the enzymatic activities, oxidative lesions in biomolecules
and glutathione content cells were pelletized (5 � 106) after 24 h
culture and mixed with 0.6 mL of the assay-specific extraction buf-
fer and ruptured by ultrasonication in a Vibra Cell apparatus (Con-
necticut, USA), then centrifuged for 10 min, 10,000g at 4 �C. The
supernatant was used for further analysis.

2.9. Lymphocyte antioxidant enzyme activities

Superoxide dismutase (SOD), catalase (CAT), glutathione perox-
idase (GPx) and glutathione reductase (GR) activities were deter-
mined in lymphocytes using a microplate reader (Tecan,
Salzburg, Austria). CAT activity was measured as described by Aebi
(1984) based on the direct decomposition of hydrogen peroxide
(H2O2). SOD activity was measured using the method described
by Ewing and Janero (1995), which involves the reduction of
O��2 radicals by nitroblue tetrazolium (NBT) following a linear first
order kinetic during 3 min. Glutathione peroxidase (Mannervik,
1985) and glutathione reductase (Carlberg and Mannervik, 1985;
Rahman et al., 2006) were measured based on the oxidation of b-
NADPH in the presence of tert-butyl hydroperoxide used as
substrate.

2.10. GSH/GSSG ratio

Lymphocytes (5 � 106) were used for determination of glutathi-
one status, using the method described by Rahman et al. (2006).
Both total GSH and GSSG were analyzed using 5,5́-diothiobis-2
nitrobenzoic acid (DTNB) to combine with reduced glutathione
(GSH) to form 5-thio-2-nitrobenzoic acid (TNB). The GSH/GSSG
concentrations were calculated from a standard curve prepared
with pure GSH/GSSG standards and were expressed as lM of
GSH and GSSG.

2.6.8. Oxidative damages
The lipid peroxidation in lymphocytes was performed by mea-

suring the concentration of thiobarbituric acid-reactive substances
in cell homogenates as described previously by Fraga and col-
leagues (Fraga et al., 1988). The assay evaluated the formation of
a colored adduct after the stoichiometric reaction between thio-
barbituric acid (TBA) and several lipid derived aldehydes, including
malondialdehyde (MDA). The absorbance at 535 nm was measured
after the mixture reached room temperature and the TBARS
content was estimated by a standard curve of 10 lM 1,1,3,
3-tetraethoxypropane.
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Thiol and carbonyl groups were evaluated as biomarkers of
aminoacid oxidation in total protein fractions, which were isolated
from crude homogenate of cells (5 � 106) by precipitation with 20%
trichloracetic acid solution in ice. Reduced thiol groups were de-
tected by the formation of colored adducts after reaction with
4 mM 5.50-dithio-bis (2-nitrobenzoic acid) solution (DTNB). The
absorbance of DTNB-treated samples at 412 nm was calculated
using GSH as a standard (Biteau et al., 2003; Murphy and Kehrer,
1989). The same procedure was used to estimate protein carbon-
yls. The protein carbonyls were identified by the hydrazones
formed with 10 mM dinitrophenylhydrazine (DNPH) in 0.25 M
HCl. Absorbance of the peak detected within the range of
340–380 nm was measured, and the carbonyl group concentration
was calculated based on the molar coefficient of e = 2.2 �
104 M�1 cm�1 (Murphy and Kehrer, 1989).

2.11. Protein determination

The total protein content of lymphocytes was measured by the
method of Bradford (Bradford, 1976), using BSA as standard.

2.12. Statistical analyses

All data are expressed as mean values and standard errors of at
least three independent experiments. Data were analyzed by one-
way ANOVA followed by the Tukey’s post hoc test. The software
employed for statistical analyses was GraphPad Prism (version4;
GraphPad Software, San Diego, CA, USA).

3. Results

3.1. Lymphocyte proliferation

The functional activity of lymphocytes was assayed by their
capacity to proliferate in response to a specific stimulation. Fig. 1
shows the MTT assay results after stimulation with Con A (a T lym-
phocytes mitogen) or LPS (a B lymphocytes mitogen) for 48 h. FA at
0.3 mM increased both basal (without stimulation) and LPS-stimu-
lated proliferative capacity of human lymphocytes by 38% and 30%,
respectively as compared with non stimulated control group. The
addition of astaxanthin to cells treated with FA caused a decrease
in the proliferation of lymphocytes in basal, Con A and LPS-stimu-
lated conditions by 43%, 26% and 30%, respectively as compared
with 0.3 mM of FA mixture.

3.2. Intracellular calcium concentration [Ca2+]i

Intracellular Ca2+ mobilization was significantly enhanced by
the mixture of FA in human lymphocytes (about 31-fold) when
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Fig. 1. Proliferation response of human lymphocytes to Con A and LPS-stimulation. Cell
added or not by 2 lM of ASTA. The results are presented as mean ± SEM (four different exp
treated with the fatty acid mixture 0.3 mM.
compared to the control group (Fig. 2). The increase in Ca2+ levels
was sustained during 20 min of kinetic monitoring. Treatment
with ASTA was unable to prevent the calcium increase induced
by FA. BSA (0.2%) addition was able to partially decrease calcium
mobilization probably by chelating free FA.

3.3. ROS and RNS production

To measure intracellular superoxide anion, hydrogen peroxide
and nitric oxide production, cells were acutely treated with the
FA mixture with or without ASTA as indicated in the material
and methods section. As shown in Fig. 3A, the treatment of human
lymphocytes with the FA mixture increased the intracellular
superoxide anion levels by 135% as compared with the PMA-con-
trol group and as assessed by using DHE probe. The addition of
ASTA to FA-treated cells promoted a reduction of 20% in superox-
ide production. Treatment of PMA-control cells with DPI, a
NADPH-oxidase inhibitor, totally inhibited superoxide anion pro-
duction, whereas sodium azide (SA) partially inhibited superoxide
anion production. DPI addition in cells treated with fatty acid mix-
ture partially decreased (20%) the superoxide anion production
(Fig. 3A).

A similar pattern was observed when DCFH-DA probe was used
as a general ROS probe (Fig. 3B). An increase of threefold in total
ROS production was observed in lymphocytes treated with the
FA mixture as compared with PMA-control group. ASTA-treatment
decreased the ROS production induced by FA in 20%. Addition of
BSA, used as a FA chelating agent, reduced the ROS production in
about 32%.

We observed an increase of up to twofold in the production of
hydrogen peroxide induced by the FA mixture as compared with
control without stimulation. ASTA-treatment partially reduced
(23%) the H2O2 production observed in FA group as compared with
PMA-control group (Fig. 3C).

There was an increase of 97% in NO production after treatment
with 0.3 mM of FA as compared with control group without LPS.
Treatment of cells with ASTA in the FA group did not prevent the
increase caused by the presence of FA. ASTA per se, raises nitric
oxide production by 99% as compared with control group without
LPS (Fig. 3D). N-acetylcysteine (NAC) and BSA partially reduced the
NO production induced by the FA mixture.

3.4. Antioxidant enzyme activities and oxidative damage

To determine whether the increased levels of ROS induced by
the FA mixture can modulate antioxidant status of cells, we evalu-
ated the antioxidant enzyme activities after 24 h of treatment (Ta-
ble 1). The FA mixture decreased the activity of CAT by 42% and
increased the total-SOD activity by 27% as compared to the control
FA + ASTA ASTA control FA FA + ASTA ASTA

A - stimulated LPS - stimulated

aa b b

s (5 � 105/well) were cultured for 48 h with 0.3 mM of the fatty acid mixture (FA)
eriments). ap < 0.05 compared to control group. bp < 0.05 as compared with the cells
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Fig. 2. Total intracellular Ca2+ mobilization (nM) in human lymphocytes. Cells (1 � 106/well) were previously loaded with 5 lM Fura 2-AM during 1 h and then incubated
with 0.3 mM of the fatty acid mixture added or not of 2 lM of ASTA for 20 min. The results are presented as mean ± SEM. ap < 0.05 compared to control group. bp < 0.05 as
compared with the cells treated with the fatty acid mixture 0.3 mM.
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group. The FA group with ASTA restored total-SOD activity to those
of the control group, whereas CAT activity decreased by 71% and
GR activity increased by 80% as compared with the control group.
Among all front line antioxidant enzymes tested, total-SOD was in-
creased by 52% and GR activity was decreased by 28% due to ASTA
treatment.

Oxidative damages in biomolecules were also modulated by the
FA mixture. TBARS levels were dramatically increased by treat-
ment of cells with a FA mixture (210%) and ASTA-treatment par-
tially restored TBARS levels (112%) as compared with the control
cells. Free protein SH-group was decreased in 69% in cells treated
with FA. After treatment with 2 lM of ASTA a partial restoring of
41% was observed in thiol content groups. Carbonyl groups were
not modulated by the treatment of cells with FA and ASTA (data
not shown).

3.5. Glutathione redox status

A significant reduction in the content of GSH and GSSG of 73%
and 35%, respectively was observed in lymphocytes treated with
0.3 mM of the FA mixture when compared to the control group.
This reduction was not prevented by ASTA addition (Fig 4).

4. Discussion

It has been postulated that FA may influence cells of the im-
mune system, including lymphocytes by modifying cell-membrane
composition (Fan et al., 2004; Li et al., 2006), altering intracellular
signaling pathways (Gorjao et al., 2007; Lee et al., 2004; Madani
et al., 2001; Mizota et al., 2009), proliferation capacity, interleukins
release (Nunes et al., 2008; Sacerdote et al., 2005; Verlengia et al.,
2004), ROS production (Cury-Boaventura and Curi, 2005; Stentz
and Kitabchi, 2006; Otton et al., 2007), gene expression (Verlengia
et al., 2004) and calcium mobilization (Otton et al., 2007).

Overall, the mixture of FA used in the present study caused a
marked increase in the production of superoxide anion, hydrogen
peroxide and nitric oxide, which was accompanied by an increase
in total-SOD activity and in levels of TBARS as well as a reduction of
catalase, levels of free thiol groups and GSH content. These param-
eters could be understood as an increase in oxidative stress. The FA
mixture also promoted an increase in intracellular Ca2+ mobiliza-
tion and in the proliferative capacity of B-lymphocytes. Treatment
of cells with the antioxidant ASTA partially decreased the oxidative
stress imposed by the FA mixture.
Ca2+ signaling is essential for diverse biological processes. Ca2+

ions are especially suited as intracellular second messengers be-
cause of the strong homeostatic mechanisms that maintain intra-
cellular free Ca2+ concentrations ([Ca2+]i) in resting cells at
100 nM or less. In the face of extracellular Ca2+ concentrations
([Ca2+]o) that are four orders of magnitude higher (1–2 mM). Cyto-
plasmic Ca2+ concentrations are maintained at low levels primarily
through the action of plasma membrane Ca2+-ATPases (PMCAs)
that pump Ca2+ out of the cell across the plasma membrane. Addi-
tionally, the sarco-endoplasmic reticulum Ca2+-ATPases (SERCAs)
pumps Ca2+ into the lumen of the endoplasmic reticulum (ER). In
the longer term (hours), sustained Ca2+ entry is critical for essen-
tially all responses initiated through T cell, B cell, and Fc receptors,
including proliferation and cytokine production by T cells, cytokine
production by mast cells and natural killer (NK) cells, differentia-
tion of B cells into plasma cells, and the differentiation of naive T
cells into Th1, Th2, and Th17 effectors subtypes (Hogan et al.,
2010). As showed in our work, intracellular calcium concentration
was exceptionally enhanced and sustained during 20 min of mon-
itoring in cells treated with FA mixture (Fig. 2) and addition of
ASTA to FA-treated cells was unable to restore calcium to basal lev-
els. At the same time, proliferative capacity of lymphocytes was in-
creased by the presence of FA mixture, and ASTA addition restored
proliferative capacity of lymphocytes to control values (Fig. 1).
Based on this data we are able to suggest that proliferative re-
sponse of lymphocytes, which is a well-known calcium-dependent
process is not the only mechanism involved in this process since
ASTA decreased proliferative capacity of cells treated with FA but
did not reduce intracellular calcium concentration. It has been
shown that ASTA is a potent inhibitor of tyrosine kinases, inhibit-
ing the MAPK pathway, decreasing the phosphorylation of extra-
cellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK
and MEK pathway, down regulating the NF-jB activation and
ERK1/2 and pMSK-1 pathway (Lee et al., 2003; Kim et al., 2010).
Whether ASTA is reducing lymphocyte proliferation by inhibiting
the phosphorylation of key proteins implicated in the process of
lymphocyte proliferation remains to be elucidated.

Concerning NO�, calcium also seems not be involved in both
ASTA and FA-induction of its production (Fig 3D) since the treat-
ment of cells with EGTA (used as a calcium chelating agent) was
not able to reduce NO� levels, which demonstrates that NO� produc-
tion induced by FA and ASTA occurs by activation of iNOS gene
expression, which is a calcium-independent isoenzyme. In fact, it
has been demonstrated that the saturated FA are potent inducers
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Fig. 3. ROS and RNS production by using DHE (A), DCFH-DA (B), phenol red (C) and Griess reagent (D) in human lymphocytes treated with 0.3 mM of the fatty acid mixture
added or not by 2 lM of ASTA, NAC (N-acetylcysteine), BSA (bovine serum albumin) and EGTA (ethylene glycol tetraacetic acid). Cells (5 � 105/well) were stimulated with
PMA (20 ng/well) or LPS (10 lg/well) when indicated. The results are presented as mean ± SEM from at least four different experiments. (a) p < 0.05 compared to group
control without stimulation; (b) p < 0.05 compared to stimulated-control group; (c) p < 0.05 as compared with the cells treated with the fatty acid mixture 0.3 mM.
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Table 1
Activities of the antioxidant enzymes and oxidative damages in biomolecules.

Control FA FA + ASTA ASTA

Total/SODa 9 ± 0.5 12 ± 0.3* 9 ± 0.8** 14 ± 0.9*

Mn/SODb 9 ± 0.7 8 ± 0.6 6 ± 0.8 8 ± 1.2
CATc 10 ± 0.6 5 ± 0.4* 1 ± 0.1** 12 ± 0.6
GPxd 40 ± 2.1 38 ± 1.5 25 ± 2.3** 20 ± 2.1**

GRe 33 ± 0.9 47 ± 4.5 60 ± 5.2* 24 ± 0.8**

TBARSf 75 ± 3.6 233 ± 35.4* 160 ± 12.9* 131 ± 1.3
Protein-SHg 287 ± 19 89 ± 4.4* 167 ± 18.6** 291 ± 19.4

a Total/SOD expressed in (unit mg protein�1).
b MnSOD expressed in (unit mg protein�1).
c CAT expressed in (lmol H2O2 min�1 L�1 mg protein�1).
d GPx expressed in (mU mg protein�1).
e GR expressed in (unit mg protein�1).
f TBARS expressed in (nmol MDA mg protein�1).
g Protein-SH expressed in (lmol-SH mg protein�1).

* p < 0.05 compared to group control.
** p < 0.05 as compared with the cells treated with the fatty acid mixture 0.3 mM.
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treated with the fatty acid mixture 0.3 mM.
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of activation of the transcription factor NF-jB, through its connec-
tion with the Toll like receptor 4 (TLR4) (Lee et al., 2004). When the
FA binds to the receptor TLR4, there is an immediate activation of
intracellular pathway leading to NF-jB activation and increased
gene transcription of iNOS with subsequent increase in NO� pro-
duction. In FA-treated cells with BSA, there was a total inhibition
of NO� production. Therefore, we can assume that the increase of
NO� production induced by the mixture of FA could be due to acti-
vation of NF-jB and increased iNOS expression by direct activation
of TLR4. It was recently shown by our group that ASTA also in-
creases the production of NO� in human lymphocytes and neutro-
phils (Bolin et al., 2010; Macedo et al., 2010). As previously
shown, ASTA was able to reduce the arterial blood pressure medi-
ated by increase of NO� production (Hussein et al., 2005). However,
ASTA reduced the activation the transcription factor NF-jB and de-
creased the IL-6 production in microglial cells (Kim et al., 2010). In
the current study, ASTA led to an increase in NO� production and
association of ASTA and FA-treated cells was not able to restore
the NO� production (Fig 3D). Therefore, we can suggest the ROS
participation on NO� induction, since a slight reduction on ROS pro-
duction promoted by ASTA also promoted a small reduction in NO�

levels on FA + ASTA group. In fact, NAC treatment partially reduced
the production of NO� induced by FA, indicating a partial contribu-
tion of ROS in the NO� production by FA. Contrasting results were
obtained by Choi et al. (2008) which showed astaxanthin inhibiting
the production of inflammatory mediators by blocking iNOS and
COX-2 activation or by the suppression of iNOS and COX-2 degra-
dation. Then, as in our FA mixture there is a great content of satu-
rated FA and this FA can induce both the activation of TLR4
pathway which in turn activates nuclear transcriptor factor NFjB
by different ways as previously described by other authors (Lee
et al., 2004), we can assume there is the activation of TLR4-path-
way, with a consequent induction of NFjB, followed by iNOS acti-
vation, which culminates in increased NO levels. ASTA was unable
to abrogate the NO� producing induced by the FA mixture.

Excessive levels of reactive oxygen species not only directly
damage cells by oxidizing DNA, protein and lipids, but indirectly
damage cells by activating a variety of stress-sensitive intracellular
signaling pathways such as NF-jB, p38 MAPK, JNK/SAPK, hexosa-
mine and others. Activation of these pathways results in the in-
creased expression of numerous gene products that may cause
cellular damage and play a major role in the etiology of the late
complications of diabetes (Newsholme et al., 2007). In our study
we showed that the FA mixture caused a large increase in superox-
ide anion and hydrogen peroxide production as showed by dihy-
droethidium, DCFH-DA and phenol red assays (Fig 3). This
increase in ROS production was accompanied by an increase of
damage in lipids and proteins (Table 1), whereas catalase activity
and GHS content were decreased. In an attempt to reduce the
ROS production induced by the mixture of FA we added ASTA
which resulted in a partial reduction of 20% (on average) in ROS
production. Many antioxidants are particularly known to provide
protection from ROS-mediated cellular damage. This effect is con-
sidered to be a defense mechanism against the attack of ROS. In
addition, antioxidants have been linked to regulatory functions in
cell growth, survival, cytotoxicity, and transformation possibly
involving redox regulation and chemical toxicity (Larcombe et al.,
2010).

One mechanism to explain the increase in ROS production in-
duced by FA could be by the interaction of polyunsaturated, satu-
rated and monounsaturated FA, which are present in our FA
mixture, with components of the respiratory chain, thereby inhib-
iting the electron transport chain, when electrons are directly
delivered to Complex III, e.g. from succinate. FA strongly enhance
complex III-associated superoxide anion generation (Schonfeld
and Reiser, 2006; Schonfeld and Wojtczak, 2007). Also, an eleva-
tion of intracellular Ca2+ induced by increased Ca2+ influx through
voltage-gated Ca2+ channels caused by the FA mixture can stimu-
late mitochondrial generation of ROS. Moreover, Ca2+ via protein
kinase C (PKC) activation enhances NADPH oxidase-dependent
generation of ROS, and thus induces oxidative stress (Kruman
et al., 1998; Morgan et al., 2007; Yu et al., 2006). Interestingly,
the high levels of ROS induced by FA were not totally inhibited
by DPI (Fig. 3A), whereas in PMA-control group there was a reduc-
tion on ROS production to basal levels. This phenomenon indicates
that not only NADPH-oxidase is involved in ROS production of lym-
phocytes treated with FA. Furthermore, when SA was used as an
electron transport chain inhibitor there was no reduction in ROS
production induced by FA (Fig 3A).

In summary, our data suggest that FA induces oxidative stress
through increased production of superoxide anion, hydrogen per-
oxide and NO production, decreasing enzymatic activity of catalase
and GSH content and increasing intracellular calcium concentra-
tion, which can be involved in increasing B-lymphocyte prolifera-
tion. Moreover, the increase in ROS and NO production explains
the increase in lipid peroxidation and damage to cell proteins.
Our data also show that ASTA can decrease the exacerbated pro-
duction of ROS induced by FA, but only partially. Based on these re-
sults we can conclude that ASTA can partially prevent oxidative
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stress in human lymphocytes induced by a fatty acid mixture,
probably by blenching/quenching free radical production.
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