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a b s t r a c t

In this paperwe consider the classes of k-uniformly convex and k-starlike functions defined
in Kanas andWiśniowska (1999, 2000) [1,2]which generalize the class of uniformly convex
functions introduced by Goodman (1991) [3]. We discuss the real part of f (z)/z, when f is
k-starlike. We find the minimum of Ref (z)/z improving the results obtained recently in
Wiśniowska-Wajnryb (2009) [11].
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1. Introduction

Let U = {z : |z| < 1} be the unit disk in the complex plane C. Let A denote the class of all functions f that are analytic in
U and normalized by f (0) = 0, f ′(0) = 1. By S we denote the class of functions f ∈ A that are univalent in U. A function
f ∈ A is said to be starlike of order α, 0 ≤ α < 1, if and only if

Re


zf ′(z)
f (z)


> α, z ∈ U. (1.1)

Wedenote byST (α) the subset ofA consisting of all functionswhich satisfy (1.1). Forα = 0we get the classST of functions
f that maps U onto a starlike domain with respect to the origin.

A set E is said to be convex if and only if it is starlike with respect to each of its points, that is if and only if the linear
segment joining any two points of E lies entirely in E. A function f ∈ S maps U onto a convex domain E if and only if

Re


1 +

zf ′′(z)
f ′(z)


> 0, z ∈ U. (1.2)

Such a function f is said to be convex in U (or briefly convex) and we denote by CV the set of all functions which satisfy
(1.2). Let us recall the classes of k-uniformly convex and of k-starlike functions: for a fixed k ≥ 0

k-UCV :=


f ∈ S : Re


1 +

zf ′′(z)
f ′(z)


> k

 zf ′′(z)
f ′(z)

 , z ∈ U


,

k-ST :=


f ∈ S : Re


zf ′(z)
f (z)


> k

 zf ′(z)
f (z)

− 1
 , z ∈ U


.

These classes were introduced by Kanas and Wiśniowska in [1,2], respectively, where their geometric definitions and
connections with the conic domains were considered. For a fixed k ≥ 0, the class k-UCV is defined purely geometrically

∗ Corresponding author.
E-mail addresses: jsokol@prz.edu.pl, jsokol@prz.rzeszow.pl (J. Sokół), agawis@prz.edu.pl (A. Wiśniowska-Wajnryb).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.10.064

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82418498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.10.064
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:jsokol@prz.edu.pl
mailto:jsokol@prz.rzeszow.pl
mailto:agawis@prz.edu.pl
http://dx.doi.org/10.1016/j.camwa.2011.10.064


4734 J. Sokół, A. Wiśniowska-Wajnryb / Computers and Mathematics with Applications 62 (2011) 4733–4741

as a subclass of univalent functions which map the intersection of U with any disk centered at ζ , |ζ | ≤ k, onto a convex
domain. The notion of k-uniform convexity is a natural extension of the classical convexity. Observe that, if k = 0 then
the center ζ is the origin and the class k-UCV reduces to the class CV . Moreover for k = 1 it coincides with the class of
uniformly convex functions UCV introduced by Goodman [3] and studied extensively by Rønning [4] and independently
by Ma and Minda [5]. The class k-ST is related to the class k-UCV via the well-known Alexander equivalence between the
usual classes of convex and starlike functions (see also theworks [2,4–8] concerning the classes k-UCV and k-ST ). The class
k-ST has the following geometric characterization (see [9]): If f ∈ k-ST than it maps a lens-like domain U(ζ , r) ∩ U(0, R)
onto a starlike domain, where U(ζ , r) is a disk of radius r with center ζ , and 0 < R ≤ 1, |ζ | ≤ k, r ≥


|ζ |2 + R2.

In [10] it was proved that for every function f ∈ CV

Re

f ′(z) >

1
2
, z ∈ U,

and the bound is the best possible. Equivalently, every function f ∈ ST satisfies

Re


f (z)
z

>
1
2
, z ∈ U. (1.3)

These results were generalized in [11] to k-uniformly convex functions for all k ≥ 0. It was proved there that, for k ≥ 0,
every function f ∈ k-ST satisfies the condition

Re


f (z)
z

> exp


−1

0

pk(t)− 1
2t

dt


≥
k + 1
k + 2

, z ∈ U, (1.4)

where

p1(z) = 1 +
2
π2


log

1 +
√
z

1 −
√
z

2

, z ∈ U,

and if 0 ≤ k < 1, then

pk(z) =
1

1 − k2
cosh


2
π

arccos k

log

1 +
√
z

1 −
√
z


−

k2

1 − k2
, z ∈ U, (1.5)

and if k > 1, then

pk(z) =
1

k2 − 1
sin


π

2K(κ)

 u(z)
√
κ

0

dt
√
1 − t2

√
1 − κ2t2


+

k2

k2 − 1
, z ∈ U, (1.6)

where

u(z) =
z −

√
κ

1 −
√
κz
, z ∈ U,

and κ ∈ (0, 1) is chosen such that k = cosh (πK ′(κ)/(4K(κ))). Here K(κ) is Legendre’s complete elliptic integral of first
kind and K ′(κ) = K(

√
1 − κ2).

The first inequality in (1.4) is the best possible, moreover for k = 0 it becomes (1.3), while for k = 1 it becomes the
recent result [12] of Mannino. The function pk mapsU onto domain bounded by the conic curve (see [1]) andmore precisely
f ∈ k-ST iff zf ′(z)/f (z) ≺ pk, where ≺ denotes the subordination in the unit disk U. The extremal function for (1.4) is
fk ∈ k-ST , defined by the conditions

zf ′

k(z)
fk(z)

= pk(z), z ∈ U and fk(0) = f ′

k(0)− 1 = 0. (1.7)

The function fk is extremal for various problems in the class k-ST . Note that the first inequality in (1.4) is the best possible
because

fk(−1)
−1

= exp


−1

0

pk(t)− 1
2t

dt


so any increase in the smaller side makes the assertion false. It seems there is no way to obtain explicitly the value of the
integral on the right-hand side of (1.4) except in the special casewhen k =

√
2/2 and then the extremal valuewas computed

explicitly in [11, p. 2639], and it is not far from the estimate (k + 1)/(k + 2).
It is an interesting and important problem to find

q(r) = min


Re
f (z)
z

: f ∈ F , |z| = r < 1

, (1.8)

in the given class F , or to find the largest radius ρ(β) of the disk |z| < ρ(β) < 1 in which Re (f (z)/z) > β over all f ∈ F .
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Reade and Silverman [13] obtained the solution of the above problem in the classes S and ST (α) for α = 0 and 1/2 ≤

α < 1. They left the case of α ∈ (0, 1/2) as an open problem, which was solved by Wiśniowska [14]. In [11, pp. 2639–40]
the number q(r) was computed in the class k-ST for all k ≥ 1. The remaining case k ∈ (0, 1) is more difficult similarly
to the caseα ∈ (0, 1/2)omitted byReade and Silverman in the classST (α). In thepresent paper amoreprecise investigation
of the properties of the functions pk permit us to fill partially the gap 0 < k < 1.

2. Preliminary results

Theorem 2.1. Suppose that 0 ≤ k < 1 and pk is given by (1.5). Then

Re
zp′

k(z)
pk(z)− 1

>
1
π


1 + k
1 − k

arccos k (2.1)

for all z ∈ U. The result is sharp.

Proof. For a fixed 0 ≤ k < 1 we have

pk(z) = 1 +
2

1 − k2


sinh


A
2
log

1 +
√
z

1 −
√
z

2
,

where A = A(k) =
2
π
arccos k. Hence

zp′

k(z)
pk(z)− 1

=
A
√
z

1 − z
coth


A
2
log

1 +
√
z

1 −
√
z


and then

eitp′

k(e
it)

pk(eit)− 1
=

Ai
2 sin t

2

coth

A
2
log


i cot

t
4



=
A

2 sin t
2

2 sin Aπ
2


cot t

4

A
+ i


cot t

4

2A
− 1



cot t

4

2A
− 2 cos Aπ

2


cot t

4

A
+ 1

.

Therefore

Re
eitp′

k(e
it)

pk(eit)− 1
=

A sin Aπ
2


cot t

4

A
sin t

2


cot t

4

2A
− 2 cos Aπ

2


cot t

4

A
+ 1

 . (2.2)

Moreover,

−p′

k(−1)
pk(−1)− 1

=
eiπp′

k(e
iπ )

pk(eiπ )− 1
=

A sin Aπ
2

2

1 − cos Aπ

2


=

A
2
cot

Aπ
4

=


1
π

arccos k

cot


1
2
arccos k


=

1
π


1 + k
1 − k

arccos k =
A
2


1 + k
1 − k

, (2.3)

that is the right-hand side of (2.1). Therefore in order to prove (2.1) it suffices to show

Re
zp′

k(z)
pk(z)− 1

>
−pk(−1)

pk(−1)− 1
, (2.4)

for all z = eit and since the function pk has the real coefficients we may assume t ∈ [0, π]. Note that k = cos πA2 , thus from
(2.2) and (2.3) the condition (2.4) becomes

A
√
1 − k2


cot t

4

A
sin t

2


cot t

4

2A
− 2k


cot t

4

A
+ 1

 ≥
A
2


1 + k
1 − k

for all t ∈ [0, π], (2.5)

or equivalently

xA + xA+2

x2A+1 − 2kxA+1 + x
≥

1
1 − k

for all x ≥ 1, (2.6)
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where x = cot t
4 , t ∈ [0, π]. Since 0 ≤ k < 1 we have

x2A+1
− 2kxA+1

+ x > x2A+1
− 2xA+1

+ x = x

xA − 1

2
≥ 0

and the required inequality (2.6) is equivalent to

(1 − k)(1 + x2)− xA+1
+ 2kx − x1−A

≥ 0 for all x ≥ 1.

Let

h(x) = (1 − k)(1 + x2)− xA+1
+ 2kx − x1−A, x ≥ 1.

Then

h′(x) = 2(1 − k)x − (A + 1)xA + 2k + (A − 1)x−A,

h′′(x) = 2(1 − k)− A(A + 1)xA−1
+ (1 − A)Ax−A−1,

h′′′(x) = (1 − A)A(1 + A)xA−2
− (1 − A)A(1 + A)x−A−2.

Since x ≥ 1 we get h′′′(x) ≥ 0 and h′′ is increasing. From h′′(1) = 2(1 − k) − 2A2
≥ 0 (see Lemma 2.2) we conclude that

h′′(x) ≥ 0 and h′ is also increasing for x ≥ 1. Note that

h′(1) = 2(1 − k)− (A + 1)+ 2k + A − 1 = 0

and so h′(x) > 0 for x > 1. Hence h increases and since h(1) = 0 we get h(x) ≥ 0 for x ≥ 1, as desired. The bound (2.1) is
the best possible because

−pk(−1)
pk(−1)− 1

=
1
π


1 + k
1 − k

arccos k

so any increase in the smaller side makes the assertion false, which ends the proof. �

Lemma 2.2. For 0 ≤ A ≤ 1 we have 1 − k ≥ A2, where k = cos πA2 .

Proof. Note that 1 − k = 1 − cos πA2 = 2 sin2 πA
4 . Therefore it suffices to prove that

√
2 sin

πA
4

≥ A.

Let

g(A) =
√
2 sin

πA
4

− A, 0 ≤ A ≤ 1.

Then

g ′(A) =
π

√
2

4
cos

πA
4

− 1,

and

g ′′(A) = −

√
2π2

16
sin

πA
4
< 0 for 0 ≤ A ≤ 1.

Moreover

g ′(A) = 0 ⇔ A =
4
π

arccos
2
√
2

π
:= A0.

Hence the function g attains its unique local extremum, namely maximum, at the point A0. It follows from g(0) = g(1) = 0
that g(A) ≥ 0 for all 0 ≤ A ≤ 1. �

Lemma 2.3. The function

ψ(k) =
1
π


1 + k
1 − k

arccos k, k ∈ [0, 1) (2.7)

strictly increases from ψ(0) = 1/2 to

lim
k→1−

ψ(k) =
2
π

≈ 0.6366.
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Proof. After some calculations we obtain

ψ ′(k) =

√
1 − k


arccos k −

√
1 − k2


π

√
1 + k(1 − k)2

, k ∈ [0, 1).

Thus

ψ ′(k) > 0 ⇔ arccos k −


1 − k2 > 0. (2.8)

Let

V (k) = arccos k −


1 − k2.

We get

V (0) = π/2 − 1 > 0,
V (1) = 0,

V ′(k) =
k − 1

√
1 − k2

< 0 for all k ∈ [0, 1).

Thus V (k) > 0 for all k ∈ [0, 1) and by (2.8) we get ψ ′(k) > 0 for all k ∈ [0, 1). Therefore ψ(k) increases in [0, 1). �

The above Lemma 2.3 and Theorem 2.1 show that for k ∈ [0, 1)

Re
zp′

k(z)
pk(z)− 1

>
1
2
, z ∈ U. (2.9)

The function fk defined by the differential equation (1.7) has the form

fk(z) = z exp
 z

0

pk(t)− 1
t

dt

, z ∈ U (2.10)

(see [2]). We shall make use of Theorem 2.1 to show when fk(z)/z is convex univalent.

Theorem 2.4. Let r ∈ (0, 1] be a given number. Then the function fk(z)/z is convex univalent in |z| < r whenever k satisfies the
inequality

k + 3
k + 1

−
2
π


1 + k
1 − k

arccos k <
1
r
. (2.11)

Proof. It is known that fk(z)/z is convex univalent in |z| < r ≤ 1 if and only if the function

Hk(z) =
1

p′

k(0)


fk(z)
z

− 1

, z ∈ U (2.12)

satisfies the inequality (1.2) in |z| < r ≤ 1. In order to show that Hk ∈ CV note that

1 +
zH ′′

k (z)
H ′

k(z)
=

zp′

k(z)
pk(z)− 1

+ pk(z)− 1. (2.13)

Since Repk(z) > pk(−1) = k/(k + 1) in U (see [1]), we get

pk(z) ≺
1 − (2ϕ(k)− 1) z

1 − z
, ϕ(k) :=

k
k + 1

.

Moreover from (2.1) we have

zp′

k(z)
pk(z)− 1

≺
1 − [2ψ(k)− 1] z

1 − z
, ψ(k) :=

1
π


1 + k
1 − k

arccos k,

where 1/2 ≤ ψ(k) < 2/π ≈ 0.6366 by Lemma 2.3. Therefore, by the subordination principle, we have

Re{pk(z)} >
1 + [2ϕ(k)− 1]r

1 + r
for |z| < r (2.14)

and

Re


zp′

k(z)
pk(z)− 1


>

1 + [2ψ(k)− 1] r
1 + r

for |z| < r. (2.15)
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From (2.13), by (2.14) and by (2.15) we obtain

Re


1 +

zH ′′

k (z)
H ′

k(z)


>

1 + [2ψ(k)− 1] r
1 + r

+
1 + [2ϕ(k)− 1]r

1 + r
− 1

=
1 + r[2ψ(k)+ 2ϕ(k)− 3]

1 + r
for |z| < r. (2.16)

It is easy to see that the right-hand side of (2.16) is positive whenever k satisfies the inequality (2.11). �

In [11] it was shown that fk(z)/z is convex univalent for k ≥ 1. Now we shall consider the radius of convexity of fk(z)/z
for k ∈ [0, 1). We will need the following lemma.

Lemma 2.5. The function

L(k) =
k + 3
k + 1

−
2
π


1 + k
1 − k

arccos k, k ∈ [0, 1) (2.17)

strictly decreases from L(0) = 2 to

lim
k→1−

L(k) = 2 − 4/π ≈ 0.72676.

Proof. After some calculations we obtain

L′(k) = 2

√
1 − k2[k2 + k(2 + π)+ 1 − π ] − (k + 1)2 arccos k

π
√
1 − k2(1 − k)(1 + k)2

.

Thus

L′(k) < 0 ⇔

√
1 − k[k2 + k(2 + π)+ 1 − π ]

(1 + k)3/2
− arccos k < 0. (2.18)

Let us denote

W (k) =

√
1 − k[k2 + k(2 + π)+ 1 − π ]

(1 + k)3/2
− arccos k.

Hence after calculations we get

W (0) = 1 − 3π/2 < 0,
W (1) = 0,

W ′(k) =

√
1 − k


(k + 1)2 + 3π


(1 + k)5/2

> 0 for all k ∈ [0, 1).

ThusW (k) < 0 for all k ∈ [0, 1) and by (2.18) we get L′(k) < 0 for all k ∈ [0, 1). Therefore L(k) decreases in [0, 1). �

Theorem 2.6. Each function fk(z)/z, k ≥ 0, is convex univalent in |z| < 1/2.

Proof. For k = 0 the function fk(z)/z becomes f0(z)/z = 1/(1− z)2 which is convex precisely in |z| ≤ 1/2. By Theorem 2.4
the function fk(z)/z is convex univalent in |z| < 1/2 whenever k satisfies the inequality

L(k) =
k + 3
k + 1

−
2
π


1 + k
1 − k

arccos k < 2,

but for k ∈ (0, 1) it is true by Lemma 2.5. For k ≥ 1 the function fk(z)/z is convex in the whole U (see the proof of Theorem
2.1 in [11]). �

Theorem 2.7. The function fk(z)/z is convex univalent in |z| < 1 for k > k0(1), where k0(1) is the unique in (1/2,
√
2/2)

solution of the equation

(1 + k)2
√
1 − k2

arccos k = π. (2.19)

Proof. Substituting r = 1 in (2.11) we see that the function fk(z)/z is convex univalent in |z| < 1 whenever

k + 3
k + 1

−
2
π


1 + k
1 − k

arccos k < 1,
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which yields

L(k) < 1,

where L(k) is given by (2.17). With this notation, after some calculations, the equation L(k) = 1 becomes (2.19). By
Lemma 2.5 the function L(k) is strictly decreasing in [0, 1) and it decreases from 2 to 2 − 4/π ≈ 0.72676. Therefore,
the equation L(k) = 1 has a unique solution k0(1) ∈ (0, 1) such that

L(k0(1)) = 1 and L(k) < 1 for k > k0(1).

It is easy to check that 1/2 < k0(1) <
√
2/2. �

Theorem 2.8. Let k ∈ (0, k0(1)) be a given number. Then the function fk(z)/z is convex univalent in |z| < r0(k), where r0(k) ∈

(1/2, 1) is the value of r given by the equation

k + 3
k + 1

−
2
π


1 + k
1 − k

arccos k =
1
r
. (2.20)

Proof. By Theorem 2.4 the function fk(z)/z is convex univalent in |z| < r whenever k satisfies the inequality (2.11). It can
be written as

L(k) <
1
r
,

where L(k), given by (2.17), is a strictly decreasing function in [0, 1) and it decreases from 2 to 2 − 4/π ≈ 0.72676, while
in (0, k0(1)) it decreases from 2 to 1. Therefore, there exists a unique r0(k) ∈ [1/2, 1) such that

L(k) =
1

r0(k)
and L(k) <

1
r

for r < r0(k). �

3. Concluding results

Using the results proved in the previous section we shall find

q(r) = min


Re
f (z)
z

: f ∈ k-ST , |z| = r < 1

. (3.1)

This problem is partially solved. In [13] Reade and Silverman it was proved that if f ∈ ST (which gives the case k = 0) then

min


Re
f (z)
z

: |z| = r ≤ 1/2


=
1

(1 + r)2
(3.2)

and

min


Re
f (z)
z

: |z| = r > 1/2


=
1 − 2r2

2(1 − r2)2
. (3.3)

Moreover, it was proved in [11, pp. 2639–40], that if k ≥ 1, then

min


Re
f (z)
z

: f ∈ k-ST , |z| = r < 1


= exp


−r

0

pk(t)− 1
t

dt

. (3.4)

Now we are going to consider the case 0 < k < 1.
It follows from [1, Theorem 3.2, p. 333], that

f ∈ k-ST H⇒
f (z)
z

≺
fk(z)
z

= exp
 z

0

pk(t)− 1
t

dt


in U. (3.5)

Hence we get

min


Re
f (z)
z

: f ∈ k-ST , |z| = r < 1


= min
|z|=r

Re
fk(z)
z
. (3.6)

Theorem 3.1. Consider k ∈ (0, 1). Let k0(1) be the unique in (1/2,
√
2/2) solution of the Eq. (2.19) and let r0(k) ∈ (1/2, 1) be

the value of r given by the Eq. (2.20). Then

min


Re
f (z)
z

: f ∈ k-ST , |z| = r <
1
2


=

fk(−r)
−r

. (3.7)
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If 0 ≤ k < k0(1), then

min


Re
f (z)
z

: f ∈ k-ST , |z| = r0(k) < 1


=
fk(−r0(k))

−r0(k)
. (3.8)

If k0(1) ≤ k < 1, then

min


Re
f (z)
z

: f ∈ k-ST , |z| = r < 1


=
fk(−r)

−r
. (3.9)

Proof. In view of (3.5) and (3.6) to get the bounds (3.7)–(3.9) it suffices to find

min
|z|=r

Re
fk(z)
z

= min
|z|=r


exp

 z

0

pk(t)− 1
t

dt

. (3.10)

It seems to be difficult to obtain explicitly the value of (3.10) except for the special case when the function fk(z)/z maps
|z| < r onto a convex domain. It is known that the function fk(z)/z maps U onto a domain symmetric with respect to the
real axis thus if this domain is also convex, then (3.10) is attained at z = −r . The investigations in the previous chapter
make it possible to determine when fk(z)/z is convex. From Theorem 2.6 we obtain (3.7), by Theorem 2.8 we get (3.8) and
Theorem 2.7 yields (3.9). �

Corollary 3.2. If f ∈ k-ST for some k ≥ k0, where k0 is the unique in (1/2,
√
2/2) solution of the Eq. (2.19), then

Re
f (z)
z

> −fk(−1) for z ∈ U. (3.11)

Notice that for k ≥ 0

−fk(−1) = K(k-ST ),

where K(k-ST ) denote the Koebe constant for the class k-ST (see [2]). For example, if k =
√
2/2, then

−f√2/2(−1) = 16(
√
2 − 1)4 ≈ 0.47.

For k ≥ 1 and for every function f ∈ k-ST we have (see [11]) the following not sharp result

Re
f (z)
z

>
k + 1
k + 3

, z ∈ U.

Also in [11], the sharp inequality of the form (3.11) was proved for all f ∈ k-ST with k ≥ 1, so Corollary 3.2 somewhat
improves this result.

From Theorem 3.1 we can directly obtain the following results.

Theorem 3.3. Let k ∈ [k0(1), 1), where k0(1) is the unique in (1/2,
√
2/2) solution of the Eq. (2.19) and let K(k-ST ) ≤ β < 1.

Then for f ∈ k-ST we have

ρ(β) = max {r : Re f (z)/z > β, |z| < r} = min{r0, 1},

where r0 is given by the equation

log (1/β) =

 r0

0

1 − pk(−x)
x

dx,

Theorem 3.4. If f ∈ k-UCV for some k ≤ k0(1), where k0(1) is the unique in (1/2,
√
2/2) solution of the Eq. (2.19), then

Re f ′(z) >
fk(−r)

−r
= exp


−r

0

pk(t)− 1
t

dt

, |z| < r.

The result is sharp.

Remark. Suppose that 0 < k < k0(1), where k0(1) is a unique in (1/2,
√
2/2) solution of the Eq. (2.19). For 0 < k < k0(1)

the function fk(z)/z may be not convex in |z| < r with 1/2 < r < 1. The problem of determining (3.1) for such k and r
remains still open.
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