

Available online at www.sciencedirect.com

JOURNAL OF Functional Analysis

Journal of Functional Analysis 231 (2006) 90-110

www.elsevier.com/locate/jfa

On the S-transform over a Banach algebra \overleftrightarrow{x}

Kenneth J. Dykema[∗]

Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

> Received 11 January 2005; accepted 7 April 2005 Communicated by Dan Voiculescu Available online 11 July 2005

Abstract

The S-transform is shown to satisfy a specific twisted multiplicativity property for free random variables in a *B*-valued Banach noncommutative probability space, for an arbitrary unital complex Banach algebra *B*. Also, a new proof of the additivity of the R-transform in this setting is given.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Free convolution; S-transform

1. Introduction and statement of the main result

Let *B* be a unital complex Banach algebra. (In this paper, all Banach algebras will be over the complex numbers.) A *B*-valued Banach noncommutative probability space is a pair (A, E), where *A* is a unital Banach algebra containing an isometrically embedded copy of *B* as a unital subalgebra and where $E : A \rightarrow B$ is a bounded projection

0022-1236/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jfa.2005.04.008

 \overrightarrow{r} The work is supported in part by NSF Grant DMS-0300336 and by the Alexander von Humboldt Foundation. [∗] Permanent address: Department of Mathematics, Texas A&M University, College Station TX

^{77843–3368,} USA.

E-mail address: [kdykema@math.tamu.edu.](mailto:kdykema@math.tamu.edu)

satisfying the conditional expectation property

$$
E(b_1ab_2) = b_1E(a)b_2 \quad (a \in A, b_1, b_2 \in B).
$$

In the free probability theory of Voiculescu, see [\[7,10\],](#page-20-0) elements *x* and *y* of *A* are said to be free if their mixed moments $E(b_1a_1 \cdots b_na_n)$, where $a_j \in \{x, y\}$ and $b_j \in B$, are determined in a specific way from the moments of *x* and of *y*. Of particular interest, for example to garner spectral data, are the symmetric moments

$$
E(bxybxy\cdots bxy)
$$
 (1)

of the product *xy*, for $b \in B$.

In the case $B = C$, Voiculescu [\[8\]](#page-20-0) invented the S-transform of an element $x \in A$ satisfying $E(x) \neq 0$. The S-transform can be used to find the generating function for the symmetric moments (1) of *xy* in terms of those for *x* and *y* individually, when *x* and *y* are free and when $E(x) \neq 0$ and $E(y) \neq 0$. In particular, Voiculescu showed that the S-transform is multiplicative:

$$
S_{xy} = S_x S_y \tag{2}
$$

when *x* and *y* are free.

In [\[9\],](#page-20-0) Voiculescu gave a definition of an S-transform in the context of an arbitrary noncommutative probability space. However, this definition was quite complicated and involved differential equations.

Recently, Aagaard [\[1\]](#page-19-0) took the straightforward extension of Voiculescu's definition [\[8\]](#page-20-0) of the scalar-valued S-transform to the Banach algebra situation and generalized Voiculescu's result (2) to the case when *B* is a commutative unital Banach algebra and $E(x)$ and $E(y)$ are invertible elements of *B*.

In this paper, we treat the case when *B* is an arbitrary unital Banach algebra. We make an improvement in Aagaard's definition of the S-transform. For us, S_x is a *B*-valued analytic function defined in a neighborhood of 0 in *B*. We write S_{xy} in terms of S_x and S_y (again assuming $E(x)$ and $E(y)$ are invertible). Instead of simple multiplicativity (2), we have in general a twisted multiplicativity, as stated in our main theorem immediately below, which reduces to (2) when *B* is commutative.

Theorem 1.1. *Let B be a unital complex Banach algebra and let* (A, E) *be a B-valued Banach noncommutative probability space. Let* $x, y \in A$ *be free in* (A, E) *and assume both* E(x) *and* E(y) *are invertible elements of B. Then*

$$
S_{xy}(b) = S_y(b)S_x(S_y(b)^{-1}bS_y(b)).
$$
\n(3)

Our definition of the S-transform and our proof of Theorem 1.1 rely on the theory of analytic functions between Banach spaces—see, for example, Chapters III and XXVI of Hille and Phillips [\[5\]](#page-20-0) and papers cited there.

In [\[3\],](#page-20-0) Haagerup gave two new proofs of the multiplicativity of the S-transform in the case $B = C$. Our proof of Theorem [1.1](#page-1-0) is very much inspired by one of Haagerup's proofs, namely Theorem 2.3 of Haagerup [\[3\],](#page-20-0) which uses creation and annihilation operators in the full Fock space. In particular, we consider a *B*-valued Banach algebra analog of the full Fock space and we construct random variables having arbitrary moments up to a given finite order, using analogs of the creation and annihilation operators. These are reminiscent of, though slightly different from, Voiculescu's constructions in [\[9\].](#page-20-0)

In $\S2$ below, we define the S-transform S_a (assuming the expectation of *a* is invertible). Then, considering Taylor expansions about zero, we show that the *n*th order term in the expansion for S_a depends only on the moments up to *n*th order of *a*. In [3,](#page-6-0) we construct operators analogous to the creation and annihilation operators on full Fock space, and we use these to prove the main result, Theorem [1.1.](#page-1-0) In $\&4$, we offer a new proof of additivity of the R-tranfrom over a Banach space, using the operators and techniques introduced in the preceding sections.

2. The S-transform in a Banach noncommutative probability space

Let *B* be a unital Banach algebra. For $n \geq 1$ we will let $\mathcal{B}_n(B)$ denote the set of all bounded *n*-multilinear maps

$$
\alpha_n:\underbrace{B\times\cdots\times B}_{n \text{ times}}\to B,
$$

where multilinearity means over C and a multilinear map α_n is bounded if

$$
\|\alpha_n\| := \sup\{\|\alpha_n(b_1,\ldots,b_n)\| \mid b_j \in B, \|b_1\|,\ldots,\|b_n\| \leq 1\} < \infty.
$$

We say α_n is *symmetric* if it is invariant under arbitrary permutations of its *n* arguments.

From the theory of analytic functions between complex Banach spaces, any *B*-valued analytic function *F* defined on a neighborhood of zero in *B* has an expansion

$$
F(b) = F(0) + \sum_{n=1}^{\infty} F_n(b, \dots, b)
$$
 (4)

for some symmetric multilinear functions $F_n \in \mathcal{B}_n(B)$, with $\limsup_{n \to \infty} ||F_n||^{1/n} < \infty$; see, for example, Theorem 3.17.1 of Hille and Phillips $[5]$ and its proof. Here, F_1 is just the Fréchet derivative of F at 0 and the multilinear function F_n appearing in (4) is $1/n!$ times the *n*th variation of *F*, i.e. $n!F_n(h_1,\ldots,h_n)$ is the *n*-fold Fréchet derivative taken with respect to increments h_1, \ldots, h_n . For convenience we will write F_0 for $F(0)$. We will refer to (4) as the *power series expansion* of $F(b)$ around 0 and to $F_n(b, \ldots, b)$ as the *n*th term in this power series expansion. Note that the

full symmetric multilinear function F_n can be recovered from knowing its diagonal $b \mapsto F_n(b, \ldots, b)$; for example, $n! F_n(b_1, \ldots, b_n)$ is the obvious partial derivative of

$$
F_n(t_1b_1+\cdots+t_nb_n,\ldots,t_1b_1+\cdots+t_nb_n)
$$

at $(0, \ldots, 0)$, where t_1, \ldots, t_n are real variables.

Let (A, E) be a Banach noncommutative probability space over *B*, let $a \in A$ and suppose $E(a)$ is an invertible element of *B*. Consider the function

$$
\Psi_a(b) = E((1 - ba)^{-1}) - 1 = \sum_{n=1}^{\infty} E((ba)^n), \tag{5}
$$

defined for $||b|| < ||a||^{-1}$. Then Ψ_a is Fréchet differentiable on its domain, i.e. is analytic there. We also have

$$
\Psi_a(b) = b\Phi_a(b),\tag{6}
$$

where

$$
\Phi_a(b) = E(a(1 - ba)^{-1});\tag{7}
$$

clearly Φ_a is analytic on the domain of Ψ_a . The Fréchet differential of Ψ_a at $b=0$ is easily found to be the bounded linear map

$$
h \mapsto hE(a) \tag{8}
$$

from *B* to itself. By hypothesis, this linear map has bounded inverse $h \mapsto hE(a)^{-1}$. By the usual Banach space inverse function theorem, there are neighborhoods *U* and *V* of zero in *B*, such that *U* lies in the domain of Ψ_a and the restriction of Ψ_a to *U* is a homeomorphism onto *V*. Moreover, letting $\Psi_a^{(-1)}$ denote the inverse with respect to composition of the restriction of Ψ_a to *U*, the function $\Psi_a^{(-1)}$ is Fréchet differentiable on its domain and is, therefore, analytic there.

Lemma 2.1. *Assuming* E(a) *is invertible*, *there is an open neighborhood of* 0 *in B and unique analytic B-valued function* H_a *defined there, such that* $\Psi_a^{(-1)}(b) = bH_a(b)$.

Proof. Uniqueness of H_a is clear by uniqueness of power series expansions about zero. Let us show existence. Using (6), we seek H_a , such that $bH_a(b)\Phi_a(bH_a(b)) = b$, and it will suffice to find H_a , such that

$$
H_a(b)\Phi_a(bH_a(b)) = 1.
$$
\n(9)

The existence of H_a follows from an easy application of the implicit function theorem for functions between Banach spaces, which is a result of Hildebrandt and Graves [\[4\]](#page-20-0) (see also the discussion on p. 655 of Graves [\[2\]\)](#page-19-0). Indeed, $H_a(0) = E(a)^{-1}$ is a solution of [\(9\)](#page-3-0) at $b = 0$ and the Fréchet differential of the function $x \mapsto x \Phi_a(bx)$ at $b = 0$ is the map [\(8\)](#page-3-0), which has bounded inverse. \square

Definition 2.2. Let $a \in A$ and assume $E(a)$ is invertible. The *S-transform* of a is the *B*-valued analytic function

$$
S_a(b) = (1+b)H_a(b),
$$
\n(10)

which is defined in some neighborhood of 0 in *B*, where H_a is the function from Lemma [2.1.](#page-3-0)

Note that $S_a(0) = E(a)^{-1}$. We may write

$$
S_a(b) = (1+b)b^{-1}\Psi_a^{\langle -1 \rangle}(b),\tag{11}
$$

which is the same formula given by Voiculescu [\[8\]](#page-20-0) and used by Aagaard [\[1\].](#page-19-0) In the case $B = \mathbb{C}$, the definition (10) yields, of course, the same function as Voiculescu's S-transform. Moreover, the only difference between the definition (10) and the one appearing in [\[1\]](#page-19-0) is that we have used the implicit function theorem to show that (11) makes sense for all *b* in a neighborhood of zero.

If *F*, *G* and *H* are *B*-valued analytic functions defined on neighborhoods of 0 in *B*, then the product *FG* is analytic and, if $H(0) = 0$, also the composition $F \circ H$ is analytic in some neighborhood of 0 in *B*. Straightforward asymptotic analysis yields the following formulas for the diagonals of the multilinear functions appearing in the power series expansions of FG and $F \circ H$.

Lemma 2.3. We have for $n \geq 0$

$$
(FG)_n(b, \ldots, b) = \sum_{k=0}^n F_k(b, \ldots, b) G_{n-k}(b, \ldots, b)
$$
 (12)

and for $n \ge 1$

$$
(F \circ H)_n(b, \dots, b) = \sum_{k=1}^n \sum_{\substack{p_1, \dots, p_k \ge 1 \\ p_1 + \dots + p_k = n}} F_k(H_{p_1}(b, \dots, b), \dots, H_{p_k}(b, \dots, b)).
$$
 (13)

Lemma 2.4. *Let F be analytic in a neighborhood of 0. If* F (0) *is an invertible element of B*, then $G(b) = F(b)^{-1}$ *defines a function that is analytic in a neighborhood of* 0, *and the nth term of its power series expansion is* $G_0 = F_0^{-1}$ *and, for* $n \ge 1$,

$$
G_n(b,\ldots,b) = -F_0^{-1} \sum_{k=1}^n F_k(b,\ldots,b) G_{n-k}(b,\ldots,b).
$$
 (14)

On the other hand, if $F(0) = 0$ *and if* F_1 *has a bounded inverse, then* F *has an inverse* $with$ respect to composition, denoted $F^{(-1)}$, that is analytic in a neighborhood of 0. *Taking* $H = F^{-1}$, *we have* $H_1 = (F_1)^{-1}$ *and, for* $n \ge 2$,

$$
H_n(b,\ldots,b)
$$

$$
=-(F_1)^{(-1)}\left(\sum_{k=2}^n\sum_{\substack{p_1,\ldots,p_k\geqslant 1\\p_1+\cdots+p_k=n}}F_k(H_{p_1}(b,\ldots,b),\ldots,H_{p_k}(b,\ldots,b))\right).
$$
 (15)

Proof. Assuming $F(0)$ is invertible, that $G(b) = F(b)^{-1}$ is analytic is clear, and we have $(FG)_0 = 1$ and $(FG)_n = 0$ for $n \ge 1$. Now the expression (14) results from solving [\(12\)](#page-4-0) for G_n .

If $F(0) = 0$ and the Fréchet derivative F_1 of F at 0 has bounded inverse, then by the inverse function theorem for Banach spaces, *F* has an inverse with respect to composition F^{-1} that is analytic in a neighborhood of 0. Taking $H = F^{-1}$, we have $(F \circ H)_1 = \text{id}_B$ and $(F \circ H)_n = 0$ for all $n \ge 2$. Solving in [\(13\)](#page-4-0) for H_n yields the expression (15). \Box

Consider an element $a \in A$ as at the beginning of this section. We say the *nth moment function* of *a* is the multilinear function $\mu_{a,n} \in \mathcal{B}_n(B)$ given by

$$
\mu_{a,n}(b_1,\ldots,b_n)=E(b_1ab_2a\cdots b_na).
$$

Proposition 2.5. Assume $E(a)$ is an invertible element of B. Then the nth term $(S_a)_n$ (b, . . . , b) *in the power series expansion of the S-transform* Sa *of a about zero depends* only on the first *n* moment functions $\mu_{a,1}$, $\mu_{a,2}$, ..., $\mu_{a,n}$ of *a*.

Proof. The symmetric *n*-multilinear function $(\Psi_a)_n$ appearing in the power series expansion of Ψ_a is the symmetrization of $\mu_{a,n}$. Using Lemma 2.4, we see that the *n*th term $(\Psi_a^{(-1)})_n(b,\ldots,b)$ in the power series expansion of $\Psi_a^{(-1)}(b)$ around 0 depends only on $\mu_{a,1}, \ldots, \mu_{a,n}$. But

$$
(\Psi_a^{\langle -1 \rangle})_n(b,\ldots,b)=b(H_a)_n(b,\ldots,b),
$$

$$
(S_a)_n(b,\ldots,b) = (1+b)(H_a)_n(b,\ldots,b)
$$

and the result is proved. \square

3. Twisted multiplicativity of the S-transform

Let *B* be a unital Banach algebra over **C** and let *I* be a set. Let $D = \ell^1(I, B)$ be the Banach space of all functions $d: I \to B$, such that $||d|| := \sum_{i \in I} ||d(i)|| < \infty$. For $i \in I$, $\delta_i \in D$ will denote the function taking value 1 at *i* and 0 at all other elements of *I*. We have the obvious left action of *B* on *D* by $(bd)(i) = bd(i)$, and the resulting algebra homomorphism $B \to \mathcal{B}(D)$ is isometric. (Whenever *X* is a Banach space, we denote by $\mathcal{B}(X)$ the Banach algebra of all bounded linear operators from X to itself.) For $k \geq 1$, let $D^{\hat{\otimes}k} = D\hat{\otimes} \cdots \hat{\otimes} D$ be the *k*-fold Banach space projective tensor product of *D* with itself (over the complex field). Consider the Banach space

$$
\mathcal{F} = B\Omega \oplus \bigoplus_{k=1}^{\infty} D^{\hat{\otimes}k} \hat{\otimes} B, \tag{16}
$$

where also $\hat{\otimes}$ B is the Banach space projective tensor product and where the we take the direct sum with respect to the ℓ^1 -norm. Here, $B\Omega$ signifies just a copy of *B* and Ω denotes the identity element of this copy of *B*, considered as a vector in \mathcal{F} . Let $\lambda: B \to \mathcal{B}(\mathcal{F})$ be the map defined by

$$
\lambda(b)(b_0\Omega) = (bb_0)\Omega,
$$

$$
\lambda(b)(d_1 \otimes \cdots \otimes d_k \otimes b_0) = (bd_1) \otimes d_2 \otimes \cdots \otimes d_k \otimes b_0
$$

for $k \in \mathbb{N}$, $d_1, \ldots, d_k \in D$ and $b_0 \in B$. Then λ is an isometric algebra homomorphism. We will often omit to write λ , and just think of *B* as included in $\mathcal{B}(\mathcal{F})$ by this left action.

Remark 3.1. For specificity, we took the ℓ^1 norms in the definitions of *D* and *F*, but we actually have considerable flexibility. For *D* we need only a Banach space completion of the set of all functions $d: I \rightarrow B$ vanishing at all but finitely many elements in *I* with the property $\|\overrightarrow{b}\|_{\mathcal{V}}=\|b\|_{\mathcal{V}}$, and similarly for *F*. Moreover, we could replace the projective tensor norm $\hat{\otimes}$ B in (16) with any tensor norm so that $\Vert d \otimes B \Vert = \Vert d \Vert \Vert b \Vert$ for all $d \in D^{\hat{\otimes}k}$ and $b \in B$.

Let $P : \mathcal{F} \to B$ be the projection onto the summand $B\Omega = B$ that sends all summands $D^{\otimes k} \hat{\otimes} B$ to zero and let $\mathcal{E} : \mathcal{B}(\mathcal{F}) \to B$ be $\mathcal{E}(X) = P(X\Omega)$. Then \mathcal{E} has norm 1 and satisfies $\mathcal{E} \circ \lambda = id_B$. Let $\rho : B \to \mathcal{B}(\mathcal{F})$ be the map defined by

$$
\rho(b)(b_0\Omega) = (b_0b)\Omega,
$$

$$
\rho(b)(d_1\otimes\cdots\otimes d_k\otimes b_0)=d_1\otimes\cdots\otimes d_k\otimes (b_0b).
$$

Then ρ is an isometric algebra isomorphism from the opposite algebra B^{op} into $\mathcal{B}(\mathcal{F})$. Let $\mathcal{B}(\mathcal{F}) \cap \rho(B)'$ denote the set of all bounded operators on $\mathcal F$ that commute with $\rho(b)$ for all $b \in B$. Note that $\lambda(B) \subseteq \mathcal{B}(\mathcal{F}) \cap \rho(B)$.

Proposition 3.2. The restriction of \mathcal{E} to $\mathcal{B}(\mathcal{F}) \cap \rho(B)'$ satisfies the conditional *expectation property*

$$
\mathcal{E}(b_1 X b_2) = b_1 \mathcal{E}(X) b_2 \quad (X \in \mathcal{B}(\mathcal{F}) \cap \rho(B)', b_1, b_2 \in B).
$$

Proof. We have

$$
\mathcal{E}(b_1 X b_2) = P(\lambda(b_1) X \lambda(b_2) \Omega) = P(\lambda(b_1) X \rho(b_2) \Omega)
$$

=
$$
P(\rho(b_2) \lambda(b_1) X \Omega) = P(\lambda(b_1) X \Omega) b_2 = b_1 P(X \Omega) b_2 = b_1 \mathcal{E}(X) b_2.
$$

For $i \in I$, let $L_i \in \mathcal{B}(\mathcal{F})$ be defined by

$$
L_i(b_0\Omega) = \delta_i \otimes b_0,
$$

$$
L_i(d_1 \otimes \cdots \otimes d_k \otimes b_0) = \delta_i \otimes d_1 \otimes \cdots \otimes d_k \otimes b_0.
$$

Thus,

$$
b_1\delta_{i_1}\otimes b_2\delta_{i_2}\otimes\cdots\otimes b_k\delta_{i_k}\otimes b_0=b_1L_{i_1}b_2L_{i_2}\cdots b_kL_{i_k}b_0\Omega.
$$

Recall that $\mathcal{B}_n(B)$ denotes the set of all bounded multilinear functions from the *n*-fold product of *B* to *B*. We will also let $\mathcal{B}_0(B) = B$. If $i \in I$, $n \in \mathbb{N}$ and $\alpha_n \in \mathcal{B}_n(B)$, define $V_{i,n}(\alpha_n)$ and $W_{i,n}(\alpha_n)$ in $\mathcal{B}(\mathcal{F})$ by

$$
V_{i,n}(\alpha_n)(b_0\Omega)=0,
$$

$$
V_{i,n}(\alpha_n)(d_1 \otimes \cdots \otimes d_k \otimes b_0) = \begin{cases} 0, & k < n, \\ \alpha_n(d_1(i), \ldots, d_n(i))b_0\Omega, & k = n, \\ \alpha_n(d_1(i), \ldots, d_n(i))d_{n+1} \otimes \cdots \otimes d_k \otimes b_0, & k > n \end{cases}
$$

and

$$
W_{i,n}(\alpha_n)(b_0\Omega)=0,
$$

$$
W_{i,n}(\alpha_n)(d_1 \otimes \cdots \otimes d_k \otimes b_0)
$$

=
$$
\begin{cases} 0, & k < n, \\ \alpha_n(d_1(i), \ldots, d_n(i))\delta_i \otimes b_0, & k = n, \\ \alpha_n(d_1(i), \ldots, d_n(i))\delta_i \otimes d_{n+1} \otimes \cdots \otimes d_k \otimes b_0, & k > n. \end{cases}
$$

Finally, taking $n = 0$ and $\alpha_0 \in B$, let

$$
V_{i,0}(\alpha_0) = \alpha_0, \quad W_{i,0}(\alpha_0) = \alpha_0 L_i.
$$

These formulas are guaranteed to define bounded operators on F , because we took the projective tensor product in $D^{\hat{\otimes}k}$. The expression $V_{i,n}(\alpha_n)$, $n\geq 1$, is a sort of *n*fold annihilation operator, while $W_{i,n}(\alpha_n)$ is *n*-fold annihilation combined with single creation, and, of course, $W_{i,0}$ is a single creation operator. Note that in all cases we have $V_{i,n}(\alpha_n)$, $W_{i,n}(\alpha_n) \in \mathcal{B}(\mathcal{F}) \cap \rho(B)'$.

The relations gathered in the following lemma are easily verified.

Lemma 3.3. *Let* $n, m \in \mathbb{N}$ *and* $\alpha_n \in \mathcal{B}_n(B)$, $\beta_m \in \mathcal{B}_m(B)$ *and take* $b \in B$ *. Then* (i)

$$
V_{i,n}(\alpha_n)\lambda(b) = V_{i,n}(\tilde{\alpha}_n), \quad W_{i,n}(\alpha_n)\lambda(b) = W_{i,n}(\tilde{\alpha}_n),
$$

where

$$
\tilde{\alpha}_n(b_1,\ldots,b_n)=\alpha_n(bb_1,b_2,\ldots,b_n);
$$

(ii) *if* $n = 1$ *, then*

$$
V_{i,1}(\alpha_1)L_i = \lambda(\alpha_1(1)), \quad W_{i,1}(\alpha_1)L_i = \lambda(\alpha_1(1))L_i
$$

and for $n \geq 2$ *we have*

$$
V_{i,n}(\alpha_n)L_i=V_{i,n-1}(\tilde{\alpha}_{n-1}),\quad W_{i,n}(\alpha_n)L_i=W_{i,n-1}(\tilde{\alpha}_{n-1}),
$$

where here

$$
\tilde{\alpha}_{n-1}(b_1,\ldots,b_{n-1})=\alpha_n(1,b_1,\ldots,b_{n-1});
$$

(iii) *we have*

$$
V_{i,n}(\alpha_n)V_{i,m}(\beta_m) = V_{i,n+m}(\gamma_{n+m}), \quad W_{i,n}(\alpha_n)V_{i,m}(\beta_m) = W_{i,n+m}(\gamma_{n+m}),
$$

where

$$
\gamma_{n+m}(b_1,\ldots,b_{m+n})=\alpha_n(\beta_m(b_1,\ldots,b_m)b_{m+1},b_{m+2},\ldots,b_{m+n});
$$

(iv)

$$
V_{i,n}(\alpha_n)W_{i,m}(\beta_m) = V_{i,n+m-1}(\gamma_{n+m-1}),
$$

$$
W_{i,n}(\alpha_n)W_{i,m}(\beta_m) = W_{i,n+m-1}(\gamma_{n+m-1}),
$$

where

$$
\gamma_{n+m-1}(b_1,\ldots,b_{m+n-1})=\alpha_n(\beta_m(b_1,\ldots,b_m),b_{m+1},b_{m+2},\ldots,b_{m+n-1});
$$

(v)

$$
\lambda(b)V_{i,n}(\alpha_n)=V_{i,n}(b\alpha_n),
$$

(vi) *if* $i' \neq i$ *and* $n \geq 1$ *, then*

$$
V_{i,n}(\alpha_n)L_{i'}=0=W_{i,n}(\alpha_n)L_{i'}.
$$

Proposition 3.4. *For* $i \in I$ *let* $\mathfrak{A}_i \subseteq \mathcal{B}(\mathcal{F}) \cap \rho(B)'$ *be the subalgebra generated by*

$$
\lambda(B) \cup \{L_i\} \cup \{V_{i,n}(\alpha_n) \mid n \in \mathbf{N}, \alpha_n \in \mathcal{B}_n(B)\} \cup \{W_{i,n}(\alpha_n) \mid n \in \mathbf{N}, \alpha_n \in \mathcal{B}_n(B)\}.
$$

Then the family $(\mathfrak{A}_i)_{i\in I}$ *is free with respect to* $\mathcal{E}.$

Proof. Using Lemma [3.3,](#page-8-0) we see that every element of \mathfrak{A}_i can be written as a sum of finitely many terms of the following forms:

(i) $\lambda(b)$, (ii) $\lambda(b_0)L_i\lambda(b_1)\cdots L_i\lambda(b_n),$ (iii) $V_{i,n}(\alpha_n)$, (iv) $\lambda(b_0)L_i\lambda(b_1)L_i\cdots\lambda(b_k)L_iV_{i,n}(\alpha_n),$ (v) $\lambda(b)W_{i,n}(\alpha_n),$ (vi) $\lambda(b_0)L_i\lambda(b_1)L_i\cdots\lambda(b_{k-1})L_i\lambda(b_k)W_{i,n}(\alpha_n).$

Now all terms of the forms (ii)–(vi) lie in ker \mathcal{E} , while $\mathcal{E}(\lambda(b)) = b$. Therefore, $\mathfrak{A}_i \cap \ker \mathcal{E}$ is the set of all finite sums of terms of the forms (ii)–(vi).

Let $p \in \mathbb{N}$ with $p \geq 2$ and take $i_1, \ldots, i_p \in I$ with $i_1 \neq i_2, i_2 \neq i_3, \ldots, i_{p-1} \neq i_p$. Suppose $a_j \in \mathfrak{A}_{i_j} \cap \mathcal{E}$ $(1 \leq j \leq p)$ and let us show $\mathcal{E}(a_1 \cdots a_p) = 0$. From Lemma [3.3](#page-8-0) part (vi), we see $a_1a_2\cdots a_p=0$ unless either $\forall j$ a_j is of the form (ii) or $\forall j$ a_j is of the form (iii) or (v). But $V_{i,n}(\alpha_n) \Omega = 0 = W_{i,n}(\alpha_n) \Omega$ when $n \ge 1$, so if a_p is of the form (iii) or (v), then $\mathcal{E}(a_1 \cdots a_p) = 0$. We are left to consider the case when $a_1 \cdots a_p$ can be written as

$$
(\lambda(b_0)L_{i_1}\lambda(b_1^{(1)})L_{i_1}\lambda(b_2^{(1)})\cdots L_{i_1}\lambda(b_{k(1)}^{(1)}))(L_{i_2}\lambda(b_1^{(2)})\cdots L_{i_2}\lambda(b_{k(2)}^{(2)}))
$$

$$
\cdots (L_{i_p}\lambda(b_1^{(p)})\cdots L_{i_p}\lambda(b_{k(p)}^{(p)})),
$$

where all $k(j) \ge 1$. But in this case, clearly $\mathcal{E}(a_1 \cdots a_p) = 0$. \Box

Lemma 3.5. *Let* $N \in \mathbb{N}$ *and for every* $n \in \{0, 1, ..., N\}$ *let* $\alpha_n \in \mathcal{B}_n(B)$ *. Fix* $i \in I$ *and let*

$$
X = \sum_{n=0}^{N-1} (V_{i,n}(\alpha_n) + W_{i,n}(\alpha_n)),
$$

$$
Y = X + V_{i,N}(\alpha_N) + W_{i,N}(\alpha_N).
$$

Then for any $b_0, \ldots, b_N \in B$, *we have*

$$
\mathcal{E}(b_0 Y b_1 Y \cdots b_N Y) = b_0 \alpha_N (b_1 \alpha_0, b_2 \alpha_0, \ldots, b_N \alpha_0) + \mathcal{E}(b_0 X b_1 X \cdots b_N X).
$$

Proof. To evaluate $\mathcal{E}(b_0 Y b_1 Y \cdots b_N Y)$, first write

$$
Y = \sum_{n=0}^{N} (V_{i,n}(\alpha_n) + W_{i,n}(\alpha_n))
$$

and distribute. Now using the creation and annihilation properties of the $W_{i,n}(\alpha_n)$ and $V_{i,n}(\alpha_n)$ operators, we see that the only term involving α_N to contribute a possibly nonzero quantity to $\mathcal{E}(b_0 Y b_1 Y \cdots b_N Y)$ is

$$
\mathcal{E}(b_0V_{i,N}(\alpha_N)b_1W_{i,0}(\alpha_0)\cdots b_NW_{i,0}(\alpha_0)),
$$

whose value is $b_0\alpha_N (b_1\alpha_0, b_2\alpha_0, \ldots, b_N\alpha_0)$. The other terms involve only $\alpha_0, \ldots, \alpha_{N-1}$ and their sum is $\mathcal{E}(b_0Xb_1X\cdots b_NX)$. \square

Proposition 3.6. *Let* (A, E) *be a B-valued Banach noncommutative probability space and let* $a \in A$, $N \in \mathbb{N}$. *Suppose* $E(a)$ *is an invertible element of B. Let* $\alpha_0 = E(a)$ *. Then there are* $\alpha_1, \ldots, \alpha_N$, *with* $\alpha_n \in \mathcal{B}_n(B)$, *such that if*

$$
X = \sum_{n=0}^{N} (V_{i,n}(\alpha_n) + W_{i,n}(\alpha_n)) \in \mathcal{B}(\mathcal{F}),
$$

then

$$
\mathcal{E}(b_0 X b_1 X \cdots b_k X) = E(b_0 a b_1 a \cdots b_k a)
$$
\n(17)

for all $k \in \{1, ..., N\}$ *and all* $b_0, ..., b_N \in B$.

Proof. Using Lemma [3.5,](#page-10-0) The maps α_k can be chosen recursively in *k* so that (17) holds. \square

For the remainder of this section, we take $I = \{1, 2\}$.

Lemma 3.7. *Let* $\alpha_0 \in B$ *be invertible. Let* $N \in \mathbb{N}$ *and choose* $\alpha_n \in \mathcal{B}_n(B)$ *for* $n \in \{1, ..., N\}$, *and let*

$$
F(b) = \alpha_0 + \sum_{n=1}^N \alpha_n(b,\ldots,b).
$$

Note that $F(b)$ *is invertible for* $||b||$ *sufficiently small. Let*

$$
X = \sum_{n=0}^{N} (V_{1,n}(\alpha_n) + W_{1,n}(\alpha_n)) \in \mathcal{B}(\mathcal{F}).
$$
 (18)

Then the S-transform of X is $S_X(b) = F(b)^{-1}$.

Proof. For $b \in B$, $||b|| < 1$, let

$$
\omega_b = \Omega + \sum_{k=1}^{\infty} (b\delta_1)^{\otimes k} \otimes 1 \in \mathcal{F}.
$$

We have $V_{1,0}(\alpha_0)\omega_b = \alpha_0\omega_b$ and, for $n \ge 1$,

$$
V_{1,n}(\alpha_n)\omega_b=\alpha_n(b,\ldots,b)\Omega+\sum_{k=n+1}^{\infty}\alpha_n(b,\ldots,b)(b\delta_1)^{\otimes(k-n)}\otimes 1=\alpha_n(b,\ldots,b)\omega_b.
$$

Moreover, $W_{1,0}(\alpha_0)\omega_b = \alpha_0L_1\omega_b$ and, for $n \ge 1$,

$$
W_{1,n}(\alpha_n)\omega_b = \alpha_n(b,\ldots,b)\delta_1 \otimes 1 + \sum_{k=n+1}^{\infty} \alpha_n(b,\ldots,b)\delta_1 \otimes (b\delta_1)^{\otimes (k-n)} \otimes 1
$$

= $\alpha_n(b,\ldots,b)L_1\omega_b$.

Thus,

$$
X\omega_b = F(b)(1 + L_1)\omega_b.
$$

For $||b||$ sufficiently small, we get

$$
F(b)^{-1}X\omega_b = \omega_b + L_1\omega_b,
$$

\n
$$
bF(b)^{-1}X\omega_b = b\omega_b + (\omega_b - \Omega),
$$

\n
$$
\Omega = (1 + b)\omega_b - bF(b)^{-1}X\omega_b,
$$

\n
$$
\Omega = (1 - bF(b)^{-1}X(1 + b)^{-1})(1 + b)\omega_b,
$$

\n
$$
(1 - bF(b)^{-1}X(1 + b)^{-1})^{-1}\Omega = (1 + b)\omega_b,
$$

\n
$$
\mathcal{E}((1 - bF(b)^{-1}X(1 + b)^{-1})^{-1}) = P((1 + b)\omega_b)
$$

\n
$$
= 1 + b.
$$

Conjugating with $(1 + b)$ yields

$$
1 + b = \mathcal{E}((1 - (1 + b)^{-1}bF(b)^{-1}X)^{-1}) = 1 + \Psi_X((1 + b)^{-1}bF(b)^{-1}).
$$

Hence,

$$
\Psi_X^{(-1)}(b) = (1+b)^{-1} b F(b)^{-1}
$$

and $S_X(b) = F(b)^{-1}$. \Box

Lemma 3.8. *Let* $\alpha_0, \ldots, \alpha_N$, *F* and *X be as in Lemma [3.7.](#page-11-0) Let* $\beta_0 \in B$ *be invertible and let* $\beta_n \in \mathcal{B}_n(B)$ *for* $n \in \{1, ..., N\}$ *. Let*

$$
G(b) = \beta_0 + \sum_{n=1}^{N} \beta_n(b, \dots, b)
$$

and let

$$
Y = \sum_{n=0}^{N} (V_{2,n}(\alpha_n) + W_{2,n}(\alpha_n)) \in \mathcal{B}(\mathcal{F}).
$$
 (19)

Then the S-transform of XY is

$$
S_{XY}(b) = G(b)^{-1} F(G(b)bG(b)^{-1})^{-1} = S_Y(b) S_X(S_Y(b)^{-1} b S_Y(b)).
$$
 (20)

Proof. From Lemma [3.7,](#page-11-0) we have $S_Y(b) = G(b)^{-1}$ and $S_X(b) = F(b)^{-1}$, so the right-most equality in (20) is true. For $b \in B$ let

$$
Z_b = bL_2 + bG(b)^{-1}L_1G(b) + bG(b)^{-1}L_1G(b)L_2 \in \mathcal{B}(\mathcal{F})
$$

and insist that $||b||$ be so small that $||Z_b|| < 1$. Let

$$
\sigma_b = (1 - Z_b)^{-1} \Omega = \Omega + \sum_{k=1}^{\infty} Z_b^k \Omega.
$$

Using Lemma [3.3,](#page-8-0) we find for $n, k \geq 0$,

$$
V_{2,n}(\beta_n)Z_b^k = \begin{cases} V_{2,n-k}(\tilde{\beta}_{n-k}), & k < n, \\ \beta_n(b,\ldots,b), & k = n, \\ \beta_n(b,\ldots,b)Z_b^{k-n}, & k > n \end{cases}
$$

and

$$
W_{2,n}(\beta_n)Z_b^k = \begin{cases} W_{2,n-k}(\tilde{\beta}_{n-k}), & k < n, \\ \beta_n(b,\ldots,b)L_2, & k = n, \\ \beta_n(b,\ldots,b)L_2Z_b^{k-n}, & k > n, \end{cases}
$$

where

$$
\tilde{\beta}_{n-k}(b_1,\ldots,b_{n-k})=\beta_n(\underbrace{b,\ldots,b}_{k},b_1,\ldots,b_{n-k}).
$$

Therefore,

$$
V_{2,n}(\beta_n)Z_b^k\Omega = \begin{cases} 0, & k < n, \\ \beta_n(b,\ldots,b)\Omega, & k = n, \\ \beta_n(b,\ldots,b)Z_b^{k-n}\Omega, & k > n \end{cases}
$$

and

$$
W_{2,n}(\beta_n)Z_b^k\Omega = \begin{cases} 0, & k < n, \\ \beta_n(b,\ldots,b)L_2\Omega, & k = n, \\ \beta_n(b,\ldots,b)L_2Z_b^{k-n}\Omega, & k > n \end{cases}
$$

and we get

$$
Y\sigma_b = G(b)(1 + L_2)\sigma_b.
$$

Letting $b' = G(b)bG(b)^{-1}$, we similarly find for $n, k \ge 0$,

$$
V_{1,n}(\alpha_n)G(b)Z_b^k = \begin{cases} V_{1,n-k}(\tilde{\alpha}_{n-k})G(b), & k < n, \\ \alpha_n(b', \ldots, b')G(b)(1+L_2), & k = n, \\ \alpha_n(b', \ldots, b')G(b)(1+L_2)Z_b^{k-n}, & k > n \end{cases}
$$

and

$$
W_{1,n}(\alpha_n)G(b)Z_b^k = \begin{cases} W_{1,n-k}(\tilde{\alpha}_{n-k})G(b), & k < n, \\ \alpha_n(b', \ldots, b')L_1G(b)(1+L_2), & k = n, \\ \alpha_n(b', \ldots, b')L_1G(b)(1+L_2)Z_b^{k-n}, & k > n, \end{cases}
$$

where

$$
\tilde{\alpha}_{n-k}(b_1,\ldots,b_{n-k})=\alpha_n(\underbrace{b',\ldots,b'}_k,b_1,\ldots,b_{n-k}).
$$

Therefore, we get

$$
XY\sigma_b = F(b')(1+L_1)G(b)(1+L_2)\sigma_b.
$$

Thus, for $||b||$ sufficiently small we get

$$
F(b')^{-1}XY = (1 + L_1)G(b)(1 + L_2)\sigma_b,
$$

\n
$$
F(b')^{-1}XY = G(b)\sigma_b + (G(b)L_2 + L_1G(b) + L_1G(b)L_2)\sigma_b,
$$

\n
$$
bG(b)^{-1}F(b')^{-1}XY\sigma_b = b\sigma_b + Z_b\sigma_b,
$$

\n
$$
bG(b)^{-1}F(b')^{-1}XY\sigma_b = b\sigma_b + (\sigma_b - \Omega),
$$

\n
$$
\Omega = ((1 + b) - bG(b)^{-1}F(b')^{-1}XY)\sigma_b,
$$

\n
$$
\Omega = (1 - bG(b)^{-1}F(b')^{-1}XY(1 + b)^{-1})(1 + b)\sigma_b,
$$

\n
$$
(1 - bG(b)^{-1}F(b')^{-1}XY(1 + b)^{-1})^{-1}\Omega = (1 + b)\sigma_b,
$$

K.J. Dykema/Journal of Functional Analysis 231 (2006) 90-110 105

$$
\mathcal{E}((1 - bG(b)^{-1}F(b')^{-1}XY(1 + b)^{-1})^{-1}) = P((1 + b)\sigma_b)
$$

= 1 + b.

Conjugating with $(1 + b)$ yields

$$
\Psi_{XY}((1+b)^{-1}bG(b)^{-1}F(b')^{-1}) = \mathcal{E}((1-(1+b)^{-1}bG(b)^{-1}F(b')^{-1}XY)^{-1}) - 1 = b.
$$

Hence,

$$
\Psi_{XY}^{(-1)}(b) = (1+b)^{-1}bG(b)^{-1}F(b')^{-1}
$$

and [\(20\)](#page-13-0) holds. \Box

Proof of Theorem 1.1. The formula [\(3\)](#page-1-0) asserts the equality of the germs of two analytic *B*-valued functions. This is equivalent to asserting the equality of the *n*th terms in their respective power series expansions around zero, for every $n \geq 0$. By Lemmas [2.3](#page-4-0) and [2.4,](#page-5-0) the *n*th term, call it RHS_n , in the expansion for the right-hand side of [\(3\)](#page-1-0) depends only on the 0th through the *n*th terms of the power series expansions for $S_x(b)$ and $S_y(b)$. Hence, by Proposition [2.5,](#page-5-0) RHS_n depends only on the moment functions $\mu_{x,1}, \ldots, \mu_{x,n}$ and $\mu_{y,1}, \ldots, \mu_{y,n}$. On the other hand, again by Proposition [2.5,](#page-5-0) the *n*th term in the power series expansion for the left-hand side of [\(3\)](#page-1-0), call it LHS_n, depends only on $\mu_{xy,1}, \ldots, \mu_{xy,n}$. But by freeness of *x* and *y*, for each $k \geq 1$ the moment function $\mu_{xy,k}$ depends only on $\mu_{x,1}, \ldots, \mu_{x,k}$ and $\mu_{y,1}, \ldots, \mu_{y,k}$. Thus, both LHS_n and RHS_n depend only on $\mu_{x,1}, \ldots, \mu_{x,n}$ and $\mu_{y,1}, \ldots, \mu_{y,n}$.

Hence, in order to prove [\(3\)](#page-1-0) at the level of the *n*th terms in the power series expansion, it will suffice to prove [\(3\)](#page-1-0) for some free pair *X* and *Y* of elements in a Banach noncommutative probability space over *B*, whose first *n* moment functions agree with those of *x* and *y*, respectively. However, by Propositions [3.4](#page-9-0) and [3.6,](#page-10-0) such *X* and *Y* can be chosen of the forms [\(18\)](#page-11-0) and [\(19\)](#page-12-0). By Lemma [3.8,](#page-12-0) the equality [\(3\)](#page-1-0) holds for these operators. \Box

4. A proof of the additivity of the R-transform over a Banach algebra

The R-transform over a general unital algebra *B* has been well understood since Voiculescu's work [\[9\]](#page-20-0) (and see also Speicher's approach in [\[6\]\)](#page-20-0). However, for completeness, in this section we offer a new proof, using the techniques and constructions of the previous two sections, of the additivity of the R-transform for free random variables in a Banach noncommutative probability space. This proof is, of course, analogous to Haagerup's proof of Theorem 2.2 of Haagerup [\[3\]](#page-20-0) in the scalar-valued case.

Let (A, E) be a Banach noncommutative probability space over *B* and let $a \in A$. Consider the function

$$
C_a(b) = E((1 - ba)^{-1}b) = \sum_{n=0}^{\infty} E((ba)^n b),
$$

defined and analytic for $||b|| < ||a||^{-1}$. We have $C_a(b) = b + b\Phi_a(b)b$, where Φ_a is as in [\(7\)](#page-3-0). Since the Fréchet differential of C_a at $b = 0$ is the identity map, C_a is invertible with respect to composition in a neighborhood of zero.

Proposition 4.1. *There is a unique B-valued analytic function* Ra, *defined in a neighborhood of* 0 *in B*, *such that*

$$
\mathcal{C}_a^{(-1)}(b) = (1 + bR_a(b))^{-1}b = b(1 + R_a(b)b)^{-1}.
$$
 (21)

Proof. Again, uniqueness is clear by the power series expansions.

The right-most equality in (21) holds for any analytic function R_a . We seek a function R_a , such that

$$
\mathcal{C}_a((1+bR_a(b))^{-1}b) = b.
$$

But

$$
C_a((1+bR_a(b))^{-1}b) = (1+bR_a(b))^{-1}b + (1+bR_a(b))^{-1}b\Phi_a
$$

$$
\times \left((1+bR_a(b))^{-1}b \right) (1+bR_a(b))^{-1}b,
$$

so it will suffice to find R_a so that any of the following hold:

$$
(1 + bR_a(b))^{-1} + (1 + bR_a(b))^{-1}b\Phi_a \left((1 + bR_a(b))^{-1}b \right) (1 + bR_a(b))^{-1} = 1,
$$

$$
1 + b\Phi_a \left((1 + bR_a(b))^{-1}b \right) (1 + bR_a(b))^{-1} = 1 + bR_a(b),
$$

$$
b\Phi_a \left((1 + bR_a(b))^{-1}b \right) (1 + bR_a(b))^{-1} = bR_a(b),
$$

$$
\Phi_a \left((1 + bR_a(b))^{-1}b \right) (1 + bR_a(b))^{-1} = R_a(b).
$$
 (22)

However, $R_a(0) = E(a)$ is a solution of (22) at $b = 0$, and the Fréchet differential of the function $x \mapsto \Phi_a((1+bx)^{-1}b)(1+bx)^{-1}-x$ at $b=0$ is the negative of the identity map, hence is invertible. The implicit function theorem of Hildebrandt and Graves [\[4\]](#page-20-0) (see also the discussion on p. 655 of Graves [\[2\]\)](#page-19-0) guarantees the existence of R_a . \Box

The *R-transform* of *a* is defined to be the analytic function R_a from Proposition 4.1. Analogously to Proposition [2.5,](#page-5-0) we have the following.

Proposition 4.2. *The nth term* $(R_a)_n(b, \ldots, b)$ *in the power series expansion for* R_a about zero depends only on the first $n+1$ moment functions $\mu_{a,1}, \ldots, \mu_{a,n+1}$ of a.

Here is the analog to Lemma [3.5,](#page-10-0) which can be proved similarly.

Lemma 4.3. *Let* $N \in \mathbb{N}$ *and for every* $n \in \{0, 1, ..., N\}$ *let* $\alpha_n \in \mathcal{B}_n(B)$ *. Fix* $i \in I$ *and let*

$$
X = L_i + \sum_{n=0}^{N-1} V_{i,n}(\alpha_n),
$$

$$
Y = X + V_{i,N}(\alpha_N).
$$

Then for any $b_0, \ldots, b_N \in B$, *we have*

$$
\mathcal{E}(b_0 Y b_1 Y \cdots b_N Y) = b_0 \alpha_N(b_1, b_2, \ldots, b_N) + \mathcal{E}(b_0 X b_1 X \cdots b_N X).
$$

We immediately get the following analog of Proposition [3.6.](#page-10-0)

Proposition 4.4. *Let* (A, E) *be a B-valued Banach noncommutative probability space and let* $a \in A$, $N \in \mathbb{N}$. *Then there are* $\alpha_0, \alpha_1, \ldots, \alpha_N$, *with* $\alpha_n \in \mathcal{B}_n(B)$, *such that if*

$$
X = L_i + \sum_{n=0}^{N} V_{i,n}(\alpha_n) \in \mathcal{B}(\mathcal{F}),
$$

then

$$
\mathcal{E}(b_0 X b_1 X \cdots b_k X) = E(b_0 a b_1 a \cdots b_k a)
$$

for all $k \in \{1, ..., N\}$ *and all* $b_0, ..., b_N \in B$.

Now we have the following analogos of Lemmas [3.7](#page-11-0) and [3.8.](#page-12-0)

Lemma 4.5. *Let* $N \in \mathbb{N}$ *and choose* $\alpha_n \in \mathcal{B}_n(B)$ *for* $n \in \{0, 1, ..., N\}$ *, and let*

$$
F(b) = \alpha_0 + \sum_{n=1}^N \alpha_n(b,\ldots,b).
$$

Let

$$
X = L_1 + \sum_{n=0}^{N} V_{1,n}(\alpha_n) \in \mathcal{B}(\mathcal{F}).
$$

Then the R-transform of X is $R_X(b) = F(b)$ *.*

Proof. With ω_b defined as in the proof of Lemma [3.7,](#page-11-0) we have

$$
X\omega_b = L_1\omega_b + F(b)\omega_b,
$$

\n
$$
bX\omega_b = (\omega_b - \Omega) + bF(b)\omega_b,
$$

\n
$$
(1 + bF(b) - bX)\omega_b = \Omega,
$$

\n
$$
(1 - bX(1 + bF(b))^{-1})^{-1}\Omega = (1 + bF(b))\omega_b,
$$

\n
$$
\mathcal{E}((1 - bX(1 + bF(b))^{-1})^{-1}) = P((1 + bF(b))\omega_b)
$$

\n
$$
= 1 + bF(b).
$$

Conjugating yields

$$
\mathcal{E}((1 - (1 + bF(b))^{-1}bX)^{-1}) = 1 + bF(b),
$$

so

$$
\mathcal{C}_X((1+bF(b))^{-1}b) = \mathcal{E}((1-(1+bF(b))^{-1}bX)^{-1})(1+bF(b))^{-1}b = b.
$$

Thus,

$$
C_X^{\langle -1 \rangle}(b) = (1 + bF(b))^{-1}b
$$

and $R_a(b) = F(b)$. \Box

Lemma 4.6. *Let* $\alpha_0, \ldots, \alpha_n$, *F* and *X* be as in Lemma [4.5.](#page-17-0) *Let* $\beta_n \in \mathcal{B}_n(B)$ *for* $n \in \{0, 1, \ldots, N\}$. Let

$$
G(b) = \beta_0 + \sum_{n=1}^{N} \beta_n(b, ..., b)
$$

and let

$$
Y = L_2 + \sum_{n=0}^{N} V_{2,n}(\alpha_n) \in \mathcal{B}(\mathcal{F}).
$$

Then the R-transform of $X + Y$ *is*

$$
R_{X+Y}(b) = F(b) + G(b) = R_X(b) + R_Y(b).
$$

Proof. For $b \in B$ with $||b|| < \frac{1}{2}$, let

$$
\sigma_b = (1 - b(L_1 + L_2))^{-1} \Omega = \Omega + \sum_{k=1}^{\infty} (b\delta_1 + b\delta_2)^{\otimes k} \otimes 1 \in \mathcal{F}.
$$

Then

$$
(X+Y)\sigma_b = (L_1 + L_2)\sigma_b + (F(b) + G(b))\sigma_b,
$$

$$
b(X+Y)\sigma_b = (\sigma_b - \Omega) + b(F(b) + G(b))\sigma_b.
$$

Now arguing as in the proof of Lemma [4.5](#page-17-0) above yields $R_{X+Y}(b) = F(b) + G(b)$.

Finally, we get a proof, which is analogous to our proof of Theorem [1.1,](#page-1-0) of the additivity of the R-transform in a Banach noncommutative probability space.

Theorem 4.7 (*Voiculescu [\[9\]](#page-20-0)*). *Let B be a unital complex Banach algebra and let* (A, E) *be a B-valued Banach noncommutative probability space. Let* $x, y \in A$ *be free in* (A, E). *Then*

$$
R_{x+y}(b) = R_x(b) + R_y(b).
$$

Proof. By Proposition [4.2,](#page-16-0) it will suffice to show that given $n \in \mathbb{N}$ we have $R_{X+Y} =$ $R_X + R_Y$ for some free pair *X* and *Y* of elements in a Banach noncommutative probability space over *B* whose first *n* moment functions agree with those of *x* and *y*, respectively. Precisely this fact follows from Propositions [4.4,](#page-17-0) [3.4](#page-9-0) and Lemmas [4.5](#page-17-0) and [4.6.](#page-18-0) \Box

Acknowledgments

The author thanks Joachim Cuntz Siegfried Echterfoff and the Mathematics Institute of the Westfälische Wilhelms-Universität Münster for their generous hospitality during the author's year-long visit, when this research was conducted.

References

- [1] L. Aagaard, A Banach algebra approach to amalgamated R- and S-transforms, 2004, preprint.
- [2] L.M. Graves, Topics in functional calculus, Bull. Amer. Math. Soc. 41 (1935) 641–662 (Correction, Bull. Amer. Math. Soc. 42 (1936) 381–382).

- [3] U. Haagerup, On Voiculescu's R- and S-transforms for free non-commuting random variables, in: D. Voiculescu (Ed.), Free Probability Theory, Fields Institute Communications, vol. 12, 1997, pp. 127–148.
- [4] T.H. Hildebrandt, L.M. Graves, Implicit functions and their differentials in general analysis, Trans. Amer. Math. Soc. 29 (1927) 127–153.
- [5] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, revised ed., American Mathematical Society, Providence, RI, 1957.
- [6] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (627) (1998).
- [7] D. Voiculescu, Symmetries of some reduced free product C^* -algebras, in: H. Araki, C.C. Moore, Ş. Strătilă, D. Voiculescu (Eds.), Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Mathematics, vol. 1132, Springer, Berlin, 1985, pp. 556–588.
- [8] D. Voiculescu, Multiplication of certain noncommuting random variables, J. Operator Theory 18 (1987) 223–235.
- [9] D. Voiculescu, Operations on certain non-commutative operator-valued random variables, Recent Advances in Operator Algebras (Orléans, 1992), Astérisque, vol. 232, 1995, pp. 243–275.
- [10] D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992.