
Towards Composition Management for

Component-based Peer-to-Peer Architectures

Sascha Alda 1 Armin B. Cremers 1

Institute for Applied Computer Science
University of Bonn
Bonn, Germany

Abstract

Recent peer-to-peer architectures do not fulfill the idea of a service-oriented architecture to allow the
flexible composition of services towards concrete applications. This can be justified by the absence
of flexible notations for the composition of services that incorporate the dynamic nature exposed
by peer-to-peer architectures. In this work, the peer-to-peer architecture DeEvolve is presented
that provides novel ways for the composition of services including the handling of exceptions such
as the failure of peers. The intention of this approach is to facilitate even less-skilled end-users to
compose and to maintain service-oriented applications.

Keywords: Component technology, composition languages, peer-to-peer architectures, exception
handling.

1 Introduction

Software architectures represent software systems as a coherent set of high-
level computational elements such as components, objects, or services together
with their interactions and dependencies. The merit of an architecture-based
development is to drift away from a low-level, code-based development towards
a more flexible development focusing on the composition of self-contained
building blocks. The structure of software architectures is often specified in
a declarative manner by an external, formal notation. Prominent approaches
for these notations are architecture description languages (ADLs) or workflow

1 Email: {alda, abc}@cs.uni-bonn.de

Electronic Notes in Theoretical Computer Science 114 (2005) 47–64

1571-0661 © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.067
Open access under CC BY-NC-ND license. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82418085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alda@cs.uni-bonn.de
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


languages. Each approach comes along with appropriate assembly or adapta-
tion tools in order to support the process of realizing software architectures
even for less skilled end-users.

The notion of a software architecture makes at first no proposition con-
cerning the actual organization, distribution, or availability of the constituting
building blocks. Therefore, designers usually revert to so-called architectural
styles to design software architectures on top of appreciated and established
architectural organizations [5]. Well-known architecture styles for instance
are the client-server, layered, or pipe and filters style. The selection of a style
depends strongly on the intended use of the architecture.

In this work, the peer-to-peer paradigm [10] [2] is examined as another ar-
chitectural style. Following this style, a peer-to-peer architecture constitutes a
distributed architecture that consists of equal clients or so-called peers. Peers
are capable not only of consuming, but also of providing computer resources
that are encapsulated by peer services. In contrast to other architectures,
peer-to-peer architectures assume an unstable, dynamic topology as an im-
portant constraint. Peers are solely responsible to affiliate to a peer-to-peer
network. This degree of freedom permitted for peers could lead to unantici-
pated behavior or exceptions within the whole peer-to-peer architecture.

Though recent peer-to-peer architectures do already provide for various
options for the interaction between peers, they exhibit two major drawbacks.
First, neither architecture allows for the composition of peers (or their offered
services) by means of appropriate notations. Moreover, current architectures
are hardly resistant against unanticipated exceptions such as the failure of sin-
gle peers, which is due to the absence of sophisticated models for exception de-
tection and resolution. On the other hand, existing composition languages are
not sufficiently flexible to describe compositions of services that reside within
an unstable environment as typical for peer-to-peer architectures. There is
also no explicit exception handling to describe alternative configurations in
an exceptional case.

The major contribution of this work is a novel approach for the composition
of peer services within a peer-to-peer architecture to overcome the drawbacks
of existing architectures and notations. A notation called PeerCAT is pre-
sented for the composition of various peer services in a declarative manner.
PeerCAT also allows to define exception handlers itemizing resolution plans in
the case of exceptions caused for instance by the failure of peers. The structure
of peer services is modelled by the composition of components. A component
model does thereby prescribe the valid remote and local interaction primitives
between services in a unified way. Both the component model and PeerCAT
constitute the foundation for the component-based runtime environment DeE-

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6448



volve that allows to deploy component-based peer-to-peer applications.

This rest of this article is structured as follows. In the second chapter,
the notion of the peer-to-peer architecture style as assumed in this work and
a review of existing peer-to-peer architectures are pointed out. The third
chapter presents the DeEvolve component architecture, covering the novel
approach for composition management and exception handling. The related
work presented in chapter 4 concentrates on the comparison of the illustrated
solutions with other issue-related approaches. Chapter 5 finally concludes this
paper and gives a brief outlook for future work.

2 Peer-to-Peer Architectures

The following sections present basic characteristics of the peer-to-peer paradigm
and how this paradigm can be adopted as an architectural style.

2.1 Definition of Peer-to-Peer

Many definitions of peer-to-peer focus on the sharing of computer resources.
The Peer-to-Peer Working Group for instance defines peer-to-peer as the shar-
ing of computer resources and services by direct exchange of systems, where
services and resources may include the exchange of information, processing cy-
cles, and disk storage for files [10]. Peers thereby represent Internet-connected,
unreliable, personal computers (PC) rather than high-end servers. Peer-to-
peer architectures span a decentral network across existing network bound-
aries, without any central node or server, where data or services can be placed.
This avoids a single-point-of-failure as typical for client-server systems: the
failure of one individual peer does not affect the stability of the overall system.

Obviously, considering peer-to-peer as an interaction model between two
equal nodes (or peers) is not new: it constitutes the original interaction model
as apprehended in the ARPANET, the predecessor of the Internet. But for
recent peer-to-peer architectures, however, the unexpected failure or unavail-
ability of a peer is an important constraint to be taken into account. This
constraint can be reasoned by the autonomous nature of a single peer: peers
are free to decide, to what time and to what extend they offer their resources
to other peers. The consequence of this autonomy could be the unavailability
of peers and associated resources, which may in turn lead to failures of peers
depending on these resources. While such an unstable environment for a DNS
fragment would by no means be acceptable, peer-to-peer architectures have
to put up with this circumstance.

Beyond the possibility of direct resource sharing, some authors point out
the self-organization of peers into groups as another important aspect [2] [3].

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 49



Peer-to-peer computing should enable users to organize in groups without
the assistance of a central authority. These self-governed communities can
share, collaborate, and communicate, or participate in their own private web.
Peer groups can thereby restrict the access of their computer resources to
authorized peers. A peer first has to apply for group membership before it
can join a group.

2.2 Peer-to-Peer as an Architecture Style

This section summarizes the different notions and characteristics of peer-to-
peer architectures found in the literature and proposes a common peer-to-peer
architecture style that is adopted throughout this work.

The peer-to-peer architecture style represents a pattern for distributed ar-
chitectures consisting of equal nodes or peers, which do not exhibit a perma-
nent affiliation to the topology of the architecture. Each peer thereby serves
as a client and server at the same time, that is, it can not only revert to com-
puter resources from other peers, but also provide resources to other remote
peers. In the following, typical properties of the proposed style are elaborated
based on a description catalogue for architecture styles provided in [5].

Design vocabulary. The fundamental design element is a peer. A peer
is a node within a network topology that is not imposed to have a permanent
affiliation to this topology. Peers can be logically grouped together to peer
groups. A peer group is represented by a super peer. A super peer is the
initiator of a group and is, from that point of time on, responsible to maintain
the group. A single peer first has to apply for a membership, before it can join
a distinct group. At any time, a membership can be resigned by both the peer
or the super peer. Furthermore, each peer has the ability to provide computer
resources such as data or services. Either type of resource is represented by
a peer service. A peer service encapsulates resources and accomplishes the
unified access to them through dedicated ports. A semantical description of
a service and its belonging ports as well as an information how to contact
a service are specified in terms of a meta-description. This meta-description
is published by the peer providing a distinct peer service. Other peers can
discover these descriptions, enabling them to contact the providing peer and,
eventually, to use the particular peer service. If the consumer does not belong
to the same group as the provider of a peer service, the peer first has to apply
for membership as illustrated above.

Configuration rules. Conceptually, each peer is capable of being server
and client at the same time, that is, capable of being provider and consumer
of a peer service. Hence, there is a n:m relationship among all peers. The
interaction between two peers takes place between two peer services or, more

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6450



exactly, between the ports of the services. A message-based event flow that
can be designed based on the observer or publish-subscriber pattern [4] is
assumed as a minimal interaction primitive.

Semantic interpretation. The underlying peer group concept has two
semantic interpretations. The first intention is to subdivide peers into groups
according to common interests or knowledge independent from any given orga-
nizational or network boundaries. Only peers that are interested or, moreover,
are authorized to a group, are able to receive internal group messages. The
second purpose is rather technically funded: the transmission of messages to
a restricted number of (interested) peers instead of to all peers does actually
reduce the network traffic.

Analyses. There are a plethora of possible analysis that can be conceived
for this style. An important task is to schedule all connections or dependencies
to other peers. The violation of a dependency to a peer during use time (for
instance due to a failed peer) may not only result to local exceptional cases
within a single peer, but also to global misbehavior within the entire peer-
to-peer architecture. Exception handling therefore is a primary challenge for
a peer-to-peer architecture. Exceptions can also occur during the start of
an application, if remote peer services belonging to a previously composed
application can not be resolved and integrated. This might lead to cases that
the respective application cannot be started correctly. Besides, the adaptation
of a peer service (for instance the deletion of single ports) can be erroneous,
if dependencies from other peer services are violated.

Implementation Issues The adoption of the proposed style is not suf-
ficient to obtain a practicable peer-to-peer architecture. For a concrete im-
plementation, one has to incorporate a notation to describe the composition
of peer services towards concrete applications. A composition language de-
termines, which peer services constitute a composition and how these services
interact with each other. Most notably, a language has to cope with the dy-
namic, unstable environment that is imposed on a peer-to-peer architecture.
Assembly tools could not only enhance the process of service composition, but
also the discovery and publication of peer service descriptions.

2.3 Review of existing Peer-to-Peer Architectures

Most peer-to-peer architectures, today, provide an infrastructure to share doc-
uments among peers. Prominent file sharing architectures for example are
Gnutella, Freenet, or Napster. However, none of these architectures feature the
sharing of services among peers, nor the composition of services towards new
applications. Neither architecture does employ the concept of self-organization
of peer into peer groups. For this reason, these architectures do not fulfill en-

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 51



tirely the proposed peer-to-peer architecture style of Section 2.2.

In order to consolidate the efforts for the design of peer-to-peer architec-
tures towards a unified architecture, Sun has announced the JXTA project.
The result of this project is a generic set of open protocols providing a frame-
work for the development of peer-to-peer architectures together with an open
source reference implementation for the Java platform [15]. In contrast to the
aforementioned file sharing architectures, JXTA relies on a service-oriented
architecture (SOA) model. The common resource that is shared among peers
are services, which can be discovered, published, and accessed through the
interplay of the individual JXTA protocols described below. The central con-
cept of JXTA is the notion of peer groups as a way for the self-organization
of peers. Peers having joined a distinct group can use services, which are only
available to authorized group members. The PEER MEMBERSHIP PROTO-
COL (PMP) thereby regulates the application and the access to peer groups,
as well as the exclusion from groups through dedicated authentification rou-
tines. Peer Groups are represented by super peers called rendezvous peers.
The PEER DISCOVERY PROTOCOL (PDP) allows a peer to discover other
peers, peer groups, and services from other peers. All discoverable resources
are described by advertisements, which are XML-based meta-descriptions of
the respective resources. The Discovery Protocol is also applied to advertise
or to publish advertisements to other peers. The actual communication be-
tween two peer services is established by the PIPE BINDING PROTOCOL
(PBP). This protocol is used by a peer to build up virtual channels or pipes
between two services, which can then be used for a message-based commu-
nication between services. In addition to these three protocols, a couple of
other, rather auxiliary protocols are supplied, which are implemented by these
main protocols (see [15] for more information).

The JXTA framework constitutes the most sophisticated peer-to-peer ar-
chitecture due to its generic nature. The framework fulfills the characteristics
of a peer-to-peer architecture style remarkably. However, JXTA does not
address most of the implementation issues and analysis recommendations as
elucidated in Section 2.2:

• Though services can necessarily be retrieved and integrated from within an
application, there is no formal notation nor a tool support that allows to
compose services in a declarative and persistent manner. The discovery
and publication of resources as well as the management of groups is only
supported through a command line tool (JXTA Shell).

• The exception handling in JXTA is realized only to a minor degree. There
are no protocols or mechanisms that can handle an exception such as the
failure of peer. The only mechanism to detect a potential failure is to define

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6452



Fig. 1. The architecture of DeEvolve incorporating the JXTA peer-to-peer framework

a time-out for the discovery of peers and services.

In the next chapter, a novel approach for a peer-to-peer architecture is pre-
sented that incorporates the JXTA framework, and features additional con-
cepts to overcome the mentioned drawbacks of JXTA.

3 The DeEvolve Peer-to-Peer Architecture

This section presents DeEvolve, our notion of a component-based peer-to-
peer architecture that fully implements the architecture style of Section 2.2.
DeEvolve is a further development of FreEvolve, a client-server architecture
aimed to deploy component-based groupware applications [12] [13]. The un-
derlying idea of DeEvolve is to model the inner structure of a peer service
as compositions of software components. Software components can be seen
as self-contained units of composition with contractually specified interfaces,
whereas the interaction among components takes place only through these in-
terfaces [16]. A component model prescribes the valid interaction primitives
for both local interaction of components within a service and remote inter-
action between distributed peer services in a unique way. Two composition
languages called CAT and PeerCAT are supplied to describe the composition
of components and the composition of services, respectively. DeEvolve is built
on top of the JXTA framework (section 2.3) to realize basic operations like
the advertisement or discovery of peer services. The overall architecture of
DeEvolve is depicted in Fig.1. In the following section, the integral parts of
this architecture are elaborated in more detail.

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 53



Fig. 2. An example Remote-CAT description for a grammar checker

3.1 Component-based Peer Services

DeEvolve incorporates the FlexiBeans [13] component model to describe the
structure as well as the valid interaction primitives for a peer service. This
model is an extension of the conventional JavaBeans model [14]. FlexiBeans
components are accomplished to interact remotely through the explicit inte-
gration of the RMI technology. There are two interaction primitives for com-
ponents, event notification and interaction through a shared object. Shared
objects serve as an abstraction for a data flow between two components.
FlexiBeans allows to define ports, in order to discriminate between type-equal
event or shared objects primitives. For the event flow primitive, a port can
either function as the source (provided port) or as the sink (required port)
of an event flow. The same distinction is made for a shared object: the port
that initially provides the shared object is indicated as (provided port).

The composition of FlexiBeans components to declare a single peer service
is formulated in a language called CAT [12]. A peer service always consists of
two different compositions, a local composition (Local-CAT) that implements
the actual service and a remote composition (Remote-CAT) that constitutes
the interface to this service (Fig. 1). The necessary remote interaction be-
tween these two compositions is described by a third description called DCAT.
During deployment (start) of a peer service, these descriptions are parsed by
DeEvolve. Based on the respective files, all specified components (correspond
to concrete class-files) are then instantiated. In a third step, all bindings
among the generated components are established. A remote peer can access
the interface composition through a modified classloader. Each service can
also be used by the local peer providing the service; here no remote access via
classloader is necessary.

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6454



Fig. 3. Example for a class advertisement

An example for a Remote-CAT description is depicted in Fig. 2. This CAT
description illustrates the interface for a grammar checker service that can be
used by other peers. The actual grammar checking is executed on the origi-
nating peer providing this service. The remote part of this service consists of
a shared object port to supply the text to the service and an event notification
port to start the grammar check on the supplied text. Both ports are imple-
mented by a single component (i component GrammarCheckerComponent).
The bind command connects the internal ports of the component to the cor-
responding external ports belonging to the service. The external ports repre-
sent the public interface to this service, which can be used by remote peers.
The next section describes how peer services can be advertised and discovered
within a peer-to-peer architecture.

3.2 Advertisement of Peer Services

The Discovery Service of JXTA has been used to publish the existence of
a component-based peer services to all other peers within a given topology.
Other peers can discover service advertisements and, thus, access a service.
According to the advertisement concept in JXTA, three different advertise-
ment will be provided for each peer service:

• Class Advertisement The class advertisement is used to advertise the exis-
tence of a peer service. It has the following structure as depicted in Fig. 3.
This advertisement basically consists of an informal description for a peer
service, providing other peers with the semantics or meaning of a service.
The advertisement also determines the group affiliation of a service. A peer
that wants to access a service has to be a member of at least one group
listed in the advertisement. If the tag ruledForAll is set to ”yes”, then
a peer must belong to all quoted groups. In the given example, the peer

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 55



Fig. 4. Graphical (a) and declarative (b) representation of the Word Processor Composition (ex-
cerpt)

service GrammarCheckerService belongs to the groups Bonn and Employee.

• Specification Advertisement The purpose of the specification advertisement
is to provide all information necessary to access a service. There can be
multiple specification advertisements for a given class advertisement. The
intention is to provide multiple versions of a given peer services.

• Implementation Advertisement This advertisement provides the Remote-
CAT description of a peer services and, hence, a detailed specification, how
to access the peer service. This advertisement is essential, if the peer services
should be composed with other peer services (see Section 3.3).

So far, the concepts enables peers to advertise, discover, and to access peer
servics. In the subsequent section, it is elucidated how one can compose
services to yield a new application or even a new peer service.

3.3 Composition of Peer Services

The composition language PeerCAT is intended to fix compositions of peer
services that constitute a new application. The main task of PeerCAT is to
identify the services that belong to a composition and to bind the public ports
of the respective peer services. Similar to the CAT language, port equality is
assumed in two ways: (1) all binded connections must exhibit the same port
type and (2) only provided and required ports can be connected. The type of
a port is clearly determined by the name of a port and the class definition of
the respective event or shared object. In Fig. 4 (a), an example composition
representing a simple word processor application is depicted. This composi-

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6456



tion consists of three different peer services: a local service WordProcessor

residing on the consuming peer and two remote services GrammarChecker and
SpellChecker. The corresponding PeerCAT declaration of this composition
is given in Fig. 4 (b). All service declarations consist of an address statement
indicating the service providing peer. Exactly one service has to be declared
as the main service of the composition (tag main). Within the Bind tag, the
provided port text of the word processor is connected with both required
ports text of service GrammarChecker and of service SpellChecker, respec-
tively. The information concerning the ports of the remote peer services can
be obtained by the corresponding implementation advertisements. Through
these bindings, both remote services can refer to the text, to which they can
pursue their checking procedures. A checked text annotated with corrections
can be referenced by the word processor through the same shared object. All
other bindings have been omitted for the sake of brevity. After the composi-
tion of these single services, the resulting application can be advertised and
published as a peer service to other peers. Remote peers can thereby refer to
the Remote-CAT description of the main service Wordprocessor to use the
composition. This description is inserted in the implementation advertisement
automatically.

During the deployment of this composition, the DeEvolve runtime environ-
ment tries to resolve the peer services by connecting the corresponding peers
providing the service. Obviously, the application is incomplete and, in the first
instance, not executable, if at least one peer service could not be resolved. In
the next chapter, the notion of minimal composition is explained as a way to
cope with this problem.

3.4 Minimal Compositions

In some application scenarios it is conceivable to indicate a composed appli-
cation as executable, if a minimal subset of the overall composition has been
resolved. A so-called minimal composition accomplishes to utilize an applica-
tion in a minimal fashion. This assumes that the user of an application can
abdicate from some services temporarily.

The declaration of a minimal composition is also inserted in the PeerCAT
description of a regular composition. For the composition of a word processor
as exemplified in Section 3.3, the following minimal composition as provided
in Fig. 5 could be reasonable. In this example, service WordProcessor and
SpellChecker are regarded as a minimal composition. The justification for
this constellation is that a user normally checks the spelling of a text at regular
intervals, while the grammar of a text is checked only at the end of the text
preparation. Thus, he can do without the grammar service for a short time,

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 57



Fig. 5. PeerCAT declaration including the definition of a Minimal Composition for the Word
Processor (excerpt)

without interrupting the entire preparation of his text.

During deployment of the minimal composition, the missing services are
substituted by so-called mock services, which are generated by DeEvolve au-
tomatically. While running the minimal composition, DeEvolve still tries to
resolve the missing services and to deploy them belatedly by replacing the
respective mock services. This kind of deployment is indicated as lazy deploy-
ment. The Deployment tag indicates, how long the system is instructed to
resolve the missing services. After this time, the user himself can use the DeE-
volve console to discover an alternative service. The Accessable tag denotes,
if a composition that has been advertised as peer service can be accessed by
other peers, even if only a minimal composition has been resolved.

The concept of minimal compositions and lazy deployment facilitate the
exception handling during the start-up or deployment of a composition. How-
ever, these concepts do yet not support the treatment of exceptions during
the use time of an application. Exception handling during use time will be
the topic of the next section.

3.5 Exception Handling during Use Time

PeerCAT facilitates the definition of exception handlers to react on unantici-
pated exceptions during the use time of an application. Thereby, two different
levels for exception handling are supplied, exception handling on architecture
level and on a service level.

The benefit of exception handling on an architectural level is that devel-
opers are not forced to extend or to adapt the code of single components to
detect and to handle exceptions. Actually, only the formal PeerCAT notation
of a composition has to be augmented by additional statements. This allows

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6458



Fig. 6. PeerCAT example for exception handling on architecture level

developers of peer services to purely concentrate on the development of the
business code rather than on exception handling. An example of this type of
exception handling is depicted in Fig. 6. This example handles the potential
failure of peer service MySpellChecker belonging to the word processor exam-
ple. For exception handling on architecture level mainly three parts have to
be specified: the exception type (here: FAILURE denoting the failure of a ser-
vice), the context in which this exception might occur (service SpellChecker)
as well as an ordered list of exception handlers. If attribute selection of tag
handlers is set to true, then the user himself can determine, which handler
is to be executed. If false, the system tries to execute the first handler of
the given list of handlers. In the example of Fig. 6 two handlers are defined.
The first handler tries to discover an equivalent service with the same name.
If the timeout is exceeded, the user himself can search for and integrate an
alternative service. Alternatively, the application can be left as is without a
new spell checking service. Initially, a notification text about the exception is
displayed.

Exception handling on the level of a service is useful, if an exception should
actually be handled by a single service. A service could for instance ensure
that for the failure of a dependent service a distinct service has to be discovered
and integrated. In order to forward the occurrence of an exeception, dedicated
ports of a service can be bound to predefined system ports of DeEvolve. All
necessary information of an exception (e.g. the context) is encapsulated by
an event object and sent to this service. An example is illustrated in Fig. 7.
In this example, the WordProcessor service can react on any failed service;
the information, which service has failed can be referred from the event ob-
ject. Based on this information, adequate exception handling routines can be

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 59



Fig. 7. PeerCAT example for exception handling on service level

invoked from within the service.

For both types of handling exceptions, DeEvolve keeps track to which
remote peers a peer has established a connection to consume a service. These
peers are pinged in regular intervals. If each ping follows a response from a
peer, then the peer is said to be alive. If no response occurs, an exception is
assumed. Besides the failure of service or peers, other types of exceptions are
supported by DeEvolve, such as the loss of group access rights, the violation
of constraints defined on public attributes of services, or the violation of a
minimal composition during runtime.

3.6 Prototypical Implementation and Evaluation

A first prototype of DeEvolve has been implemented in Java and is based on
the Java reference implementation of JXTA as well as on the original FreE-
volve platform. Basically, we have fully implemented the concepts concerning
the management of compositions as explained in the beginning of this chap-
ter. The underlying JXTA framework is accessed by the DeEvolve peer, which
uses core JXTA services including the search service, the peer and peer group
management, the publishing service, and the concepts of module specification.
DeEvolve is already accompanied by a couple of useful tools. The DeEvolve
console (Fig. 8 (a) supports the discovery and composition of peer services,
the definition of minimal compositions. Another tool (Fig. 8 (b) supports
the definition and advertisement of single peer services and the management
of peer groups). Besides, the TailorClient [19] has been adopted by the orig-
inal FreEvolve architecture for the adaptation of peer services by means of
component-based adaptation mechanisms [13]. All other concepts - especially
the exception handling in peer-to-peer architectures - are work in progress.

The evaluation of the presented concepts will be an important task for
the nearer future. What basically needs to be proved is whether or not end-
users perceive the tools and techniques for the composition of services as well

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6460



Fig. 8. The DeEvolve Console (a) and the Service Dialog (b) support the composition of peer
services

as for the handling of exceptions as intuitive and easy to learn. The instru-
mentation of service compositions with exception handlers affords a relatively
good understanding of the semantics of the complete composition, for instance
the possible exceptions a composition may cause. Although the proposed in-
strumentation mechanisms are simple, end-user and, particularly, beginners
could be swamped with the composition, instrumentation, and the selection
of exception handlers. Similar observation were made in user tests for the
first adaptation and compostion environments of the FreEvolve platform [19].
In order to improve the intuitiveness and the ease to learn of DeEvolve, one
could think of further developments such as exploration environments, helping
systems or wizards.

4 Related Work

In the literature, a plethora of architecture description languages (ADLs) plus
accompanying toolsets and runtime environments can be found. In fact, most
approaches presume a stable environment without the ability to change the
topology dynamically, making them less practical for peer-to-peer architec-
tures as supposed in this work. Though approaches like C2 [17] and Darwin
[7] provide for dynamic modifications of compositions while the system is exe-
cuting, it is not possible to define, when or under what condition (for instance
due to an exception) configurations are to be carried out. Rapide [9] and
Wright [1] are the only languages that support conditional re-configuration of
architectures, but in a rather restricted way. Both notations provide a where
clause to determine, under which conditions changes in the topology of an
architectures are allowed. Components are thereby responsible to emit spe-
cial control events to trigger these changes. The surplus value of PeerCAT is

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 61



that components (and services) do not have to emit control events to trigger
changes. Exceptions are recognized by the DeEvolve runtime environment.
Components only have to implement their business logic, but do not have to
care about triggering events to signal an exception. PeerCAT also allows the
interaction of an end-user to determine how an exception should be resolved.
Although the language Wright admits the declaration of multiple alternative
configurations, the involvement of an end-user is not designated. In addition,
PeerCAT allows the meta-description (advertisement) of compositions. These
descriptions improve the comprehension of a composition in particular for
end-users, who are willing to integrate a (remote) composition in their own
environment. The publication and discovery of compositions as well as the
logical allocation of compositions into groups is not utilized by any approach.

Recently, rather workflow-based composition languages like WSFL [6] and
XLANG [18] have emerged to describe the composition of web services. In
contrast to the peer-to-peer architectures as aspired in this article, Web service
architectures actually meet the conventional client-server architecture style.
Exception handling, for instance to react on unavailable web servers, is yet
missing in all these notations. Furthermore, the self-organization of web clients
into groups is neither supported by these languages nor by any of the well-
known standard protocols for web services like SOAP.

Exception handling on code-level is integrated in well-known programming
languages like Java. The advantage of this method of exception handling is
to handle a large number of different low-level types of exceptions for in-
stance within a single component. However, developers of components cannot
anticipate all situations, in which a distinct component will be deployed by
third-parties and, thus, the possible exceptions it will cause. Hence, it is
reasonable to integrate exception handlers after all components have been
composed to a concrete application. The abstraction towards a more course-
grained, declarative exception handling is intended to enable end-users the
intuitive instrumentation of PeerCAT structures through appropriate tools.

The idea of minimal compositions have also been elucidated in [8]. The au-
thor thereby gives a formal definition for a minimal composition based on first
order logic. However, no information is given how to resolve components into
a deployed composition subsequently, as it is aspired with the lazy deployment
concept outlined in this work.

5 Conclusions

This paper has presented a novel approach for the flexible composition of dis-
tributed services within software architectures that correspond to the peer-

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6462



to-peer architecture style. This style describes architectures consisting of
equal peers without a permanent affiliation to the topology of a particular
architecture. The dynamic nature of peer-to-peer architectures results in new
problems and challenges that pertains in particular the composition of peer
services. The DeEvolve peer-to-peer architecture addresses these issues by
offering various options to handle exceptions that arise on an architectural
level. The declaration of so-called exception handlers but also the composi-
tion of services is described by the composition language PeerCAT. Several
accompanying tools support the discovery and advertisement as well as the
composition of services. The further development of the existing tools to-
wards graphical and yet more intuitive assembly tools is considered as the
major future work. Besides, it would be reasonable to resign from the RMI
technology for remote service interaction and to revert to the interaction fa-
cilities of JXTA. All existing interaction primitives of the current FlexiBeans
model can be mapped by the Pipe mechanisms of JXTA. Admittedly, the inte-
gration of a new component model would not affect the presented approaches
of composition management and exception handling

References

[1] Allen, R., Douence, R., Garlan, D., “Specifying Dynamism in Software Architectures”,
Proceedings of Foundations of Component-Based Systems Workshop, Zurich, Switzerland,
September 1997.

[2] Barkai, D., Peer-to-Peer Computing. Technologies for sharing and collaboration on the Net,
Intel Press, 2002.

[3] Brookshier, D., Govoni, D., and Krishnam, N., JXTA: Java P2P Programming, SAMS,
Indianapolis, USA, 2002.

[4] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Addison-Wesley, 1995.

[5] Garlan, D, Allen, R., and Ockerblum, “Exploiting Style in Architectural Design Environments”,
Proceedings of the ACM Symposium on Foundations of Software Engineering, New Orleans,
USA, 1994.

[6] Leymann, F., Web Services Flow Language (WSFL 1.0), May 2001.

[7] Magee, J., Dulay, N., Eisenbach, S. and Kramer J., “ Speci-fying Distributed Software
Architectures” Proceedings of 5th European Software Engineering Conference, LNCS 989,
Springer, Barcelona, 1995.

[8] Millen, J.K., “Local Reconfiguration Policies” Proceeding of the IEEE Symposium on Security
and Privacy, USA, 1999.

[9] Oreizy, P., Gorlick, M.M., Taylor, R.N., Medividovic, N., “An Architecture-based approach to
Self-Adaptive Software”, IEEE Intelligent Systems, May/June 1999.

[10] Peer-to-Peer Working Group, “What is Peer-to-Peer?”, 2002, URL: http://www.p2pwg.org/
whatis.

[11] Shirky, C. “Listening to Napster”, in: Oram, A (ed.). Peer-to-Peer: Harnessing the Power of
Disruptive Technologies, Sebastopol, O’Reilly, 2001.

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–64 63

http://www.p2pwg.org/whatis
http://www.p2pwg.org/whatis


[12] Stiemerling, O., Hinken, R., and Cremers, A. B., “The EVOLVE Tailoring Platform:
Supporting the Evolution of Component-Based Groupware”, in: Proceedings of EDOC’99,
IEEE Press, Mannheim. 1999.

[13] Stiemerling, O., Component-Based Tailorability, Dissertation, University of Bonn, 2000.

[14] Sun Microsystems Corp., Java Beans Specification, V1.01, 2000, URL: http://java.sun.com/
products/javabeans/docs/spec.html

[15] Sun Microsystems Corp., JXTA v2.0 Protocols Specification, 2003, URL: http://spec.jxta.
org/v2.0/

[16] Szyperski, C., Gruntz, D., and Murer, S., Component Software - Beyond Object-Oriented
Programming, Addison-Wesley, London, 2002.

[17] Taylor, R.N., “A Component- and Message-Based Architectural Style for GUI Software”, IEEE
Transactions on Software Engineering, Vol. 22, No. 6, 1996.

[18] Thatte, S., XLANG: Web Services for Business Design, Microsoft Corporation, 2001.

[19] Won, M., and Cremers, A.B., “Supporting End-User Tailoring of Component-Based Software
- Checking integrity of compositions”, in: Proceeding of CoLogNet 2002, Madrid, Spain, 2002.

S. Alda, A.B. Cremers / Electronic Notes in Theoretical Computer Science 114 (2005) 47–6464

http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/products/javabeans/docs/spec.html
http://spec.jxta.org/v2.0/
http://spec.jxta.org/v2.0/

	Introduction
	Peer-to-Peer Architectures
	Definition of Peer-to-Peer
	Peer-to-Peer as an Architecture Style
	Review of existing Peer-to-Peer Architectures

	The DeEvolve Peer-to-Peer Architecture
	Component-based Peer Services
	Advertisement of Peer Services
	Composition of Peer Services
	Minimal Compositions
	Exception Handling during Use Time
	Prototypical Implementation and Evaluation

	Related Work
	Conclusions
	References

