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SUMMARY

Cancers are believed to arise from cancer stem cells (CSCs), but it is not known if these cells remain
dependent upon the niche microenvironments that regulate normal stem cells. We show that endo-
thelial cells interact closely with self-renewing brain tumor cells and secrete factors that maintain
these cells in a stem cell-like state. Increasing the number of endothelial cells or blood vessels in
orthotopic brain tumor xenografts expanded the fraction of self-renewing cells and accelerated
the initiation and growth of tumors. Conversely, depletion of blood vessels from xenografts ablated
self-renewing cells from tumors and arrested tumor growth. We propose that brain CSCs are main-
tained within vascular niches that are important targets for therapeutic approaches.
INTRODUCTION

There is now compelling evidence that the bulk of the

malignant cells in cancers are generated by rare fractions

of self-renewing, multipotent, and tumor-initiating cells,

termed cancer stem cells (CSCs) (Al-Hajj et al., 2003; Lap-

idot et al., 1994; Singh et al., 2004). Whether CSCs arise

from normal stem cells or more differentiated cells is not

known. Nevertheless, CSCs resemble the normal stem

or progenitor cells of the corresponding tissue of origin.

For example, brain CSCs express CD133 and Nestin

that mark neural stem and progenitor cells (Galli et al.,

2004; Singh et al., 2004; Taylor et al., 2005), and we

recently reported that CSCs isolated from ependymomas

are remarkably similar to radial glia that are neural precur-

sor cells (Taylor et al., 2005).

If tumors are derived entirely from CSCs, then drugs that

kill these cells could prove highly effective treatments of

cancer. On the other hand, the similarities between normal

and malignant stem cells predict that such treatments

may also possess significant toxicities. Recent encourag-
ing data have provided proof of principle that selective

targeting of CSCs is possible (Yilmaz et al., 2006). How-

ever, the development of anti-CSC therapies for each

type of cancer is likely to require the identification of

factors that maintain CSCs, but not normal stem cells, in

each tissue.

One important difference between normal stem cells

and CSCs might be the degree to which these cells are

regulated by the immediate microenvironment. Stem cells

of various tissues exist within protective niches that are

composed of a number of differentiated cell types (Fuchs

et al., 2004; Moore and Lemischka, 2006). These mature

cells provide direct cell contacts and secreted factors

that maintain stem cells primarily in a quiescent state.

For example, histologic and ex vivo cell culture studies

of mouse tissues suggest that neural stem cells lie within

a vascular niche in which endothelial cells regulate stem

cell self-renewal (Louissaint et al., 2002; Palmer et al.,

2000; Ramirez-Castillejo et al., 2006; Shen et al., 2004).

Thus, CSCs might arise from normal stem cells that

have acquired mutations that enable them to escape
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from niche control (Wodarz and Gonzalez, 2006). Alterna-

tively, deregulation of extrinsic factors within the niche

might lead to uncontrolled proliferation of stem cells and

tumorigenesis (Clarke and Fuller, 2006). If CSCs depend

upon aberrant niche microenvironments, then these

niches might represent targets for treatments of cancer.

Here, we demonstrate that Nestin+/CD133+ cancer

cells that include the CSC fraction are located next to

capillaries in brain tumors. We show further that endothe-

lial cells interact selectively with Nestin+/CD133+ brain

cancer cells in culture and supply secreted factors that

maintain these cells in a self-renewing and undifferenti-

ated state. Increasing the number of endothelial cells or

blood vessels in orthotopic brain tumor xenografts ex-

panded the numbers of self-renewing Nestin+/CD133+

cancer cells and accelerated the initiation and growth of

tumors. Conversely, antiangiogenic therapies depleted

tumor blood vessels and associated self-renewing

Nestin+/CD133+ cancer cells from xenografts and ar-

rested tumor growth. Thus, we propose that the brain

tumor microvasculature forms niche microenvironments

that maintain CSCs and that represent therapeutic targets

in brain tumors.

RESULTS

Nestin+ Brain Tumor Cells Associate

with the Tumor Vasculature

Normal neural stem and precursor cells and brain CSCs

express the major intermediate filament protein Nestin

(Galli et al., 2004; Hemmati et al., 2003; Palmer et al.,

2000; Singh et al., 2004; Taylor et al., 2005). In the hippo-

campus, Nestin+ cells are located close to capillaries

where endothelial cells are believed to regulate the self-

renewal and differentiation of stem cell daughters (Palmer

et al., 2000; Wurmser et al., 2004). As a first step to estab-

lish if brain CSCs are located within a vascular niche, we

determined the incidence of Nestin+ cells, and the proxim-

ity of these cells to tumor capillaries in sections of medul-

loblastoma (n = 20), ependymoma (n = 23), oligodendro-

glioma (n = 20), and glioblastoma (n = 10).

In keeping with the low incidence of CSCs within brain

tumors (Galli et al., 2004; Singh et al., 2004; Taylor et al.,

2005), between 0.15% and 0.22% of cells within tumors

were Nestin+ (>500 cells counted per tumor section;

Figure 1A). The number of Nestin+ cells in brain tumors ap-

peared to correlate with microvessel density (MVD): oligo-

dendrogliomas and glioblastomas that had the highest

MVD also contained the greatest numbers of Nestin+ cells

(Figure 1A). Further, Nestin+ cells were located signifi-

cantly closer to tumor capillaries than Nestin� cells, inde-

pendent of histologic diagnosis (Figures 1A and 1B).

Since individual tumor sections represent three dimen-

sional tissues in only two dimensions, it is difficult using

standard histology to determine the precise relationship

between individual cells and the vasculature (Palmer

et al., 2000). Therefore, we used multiphoton laser-

scanning microscopy to reconstruct, in three dimensions,

serial images taken through 50 mm sections of four
70 Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc.
gliomas that were coimmunostained for CD34 and Nestin

(�70 images per section). This analysis showed clearly

that Nestin+ tumor cells directly contact tumor capillaries

(Figure 1C).

Endothelial cells have been reported to express Nestin

(Aihara et al., 2004). However, the morphology of Nestin+

cells in brain tumors was more typical of neural stem cells,

and less than 0.1% of these cells coexpressed the endo-

thelial marker CD34. Furthermore, 73.4% ± 20% of Nes-

tin+ cells in tumor sections coexpressed the cell surface

protein CD133, which marks quite specifically normal

neural stem and precursor cells and brain CSCs (>800

cells counted per tumor; Figure 1D) (Singh et al., 2004;

Taylor et al., 2005; Uchida et al., 2000).

Focusing on medulloblastoma, we next sought to deter-

mine if Nestin+ cells in brain tumors are cancer cells or

entrapped normal neural stem and precursor cells. First,

we performed consecutive coimmunofluorescence (Nes-

tin and CD34) and fluorescence in situ hybridization

(FISH) analysis of sections of medulloblastomas that

we had shown previously to contain an isochromosome

of 17q (Thompson et al., 2006). Over one-third of the

Nestin+-vessel-associated cells in these tumors con-

tained an isochromosome 17q, confirming that they are

cancer cells (Figure 1D). It is likely that a greater proportion

of Nestin+ cells in these tumors are cancer cells, since

FISH underestimates the frequency of low-copy-number

cytogenetic alterations because portions of cell nuclei

are lost during tissue sectioning. Indeed, Ki-67/Nestin

coimmunofluorescence demonstrated that 29.1% ±

11.6% of Nestin+ cells in these tumors are proliferating

(>500 cells counted per section; Figure 1D). Less than

1% of cells in the normal human subventricular zone

express Ki-67 (Quinones-Hinojosa et al., 2006; Sanai

et al., 2004). Therefore, Nestin+ cells in medulloblastoma

appear to possess aberrant proliferative capacity, sug-

gesting further that they are cancer cells.

Finally, we prelabeled Daoy (Jacobsen et al., 1985) and

MEB-MED-8A (Pietsch et al., 1994) medulloblastoma cells

with green fluorescence protein (GFP) by retroviral trans-

duction and transplanted 1 3 106 GFP+ cells orthotopi-

cally into the brains of immunocompromised mice (n = 3

mice per cell line). Engrafted Daoy and MEB-MED-8A cells

formed highly infiltrative primitive neuroectodermal tu-

mors (Figure 1E and data not shown). CSCs have been

identified in established brain tumor cell lines and are

responsible for the in vivo malignancy of these cells

(Kondo et al., 2004). In keeping with our analysis of

primary medulloblastomas, 0.83% and 1.3% of cells

in Daoy and MEB-MED-8A xenografts, respectively, ex-

pressed Nestin (>300 cells counted per tumor; Figure 1E),

and these cells were located significantly closer to capil-

laries (Daoy, 32 ± 3.3 mm; MEB-MED-8A, 44 ± 5.6 mm)

than were Nestin� cells (Daoy, 74 ± 2.5 mm; MEB-MED-

8A, 80 ± 3.6 mm; p < 0.0001 for both cell lines). Nestin+

cells in these xenografts coexpressed GFP, confirming

that they are cancer cells (Figure 1E). Together, these

data indicate that the great majority of Nestin+ cells in

brain tumors are vessel-associated cancer cells.
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Figure 1. Nestin+ Cells in Brain Tumors Are Located Next to Capillaries

(A) Coimmunofluorescence analysis of Nestin and CD34 expression in sections of a primary medulloblastoma (MB), ependymoma (EP), oligodendro-

glioma (OLIG), and glioblastoma (GBM). Arrows indicate Nestin+ cells. The microvessel density (MVD) and percentage Nestin+ tumor cells are shown

for each tumor type.

(B) Graph reports the percentage of Nestin+ and Nestin� cells that were located in incremental distances of 5 mm from the nearest CD34+ endothelial

cell in each tumor type (**p < 0.005, ***p < 0.0005 for the average distance of Nestin+ versus Nestin� cells from CD34+ cells).

(C) Reconstruction in three dimensions of capillaries (CD34, red) and Nestin+ tumor cells (green) in 50 mm sections of two gliomas.

(D) Nestin and CD133 coimmunofluorescence (left), concurrent coimmunofluorescence (Nestin/CD34) and FISH (17p/17q) (middle), and coimmuno-

fluorescence (Nestin/Ki-67) staining (right) of primary medulloblastoma. Asterisks marks a capillary lumen.

(E) Hematoxylin and eosin staining (left), Nestin and GFP coimmunofluorescence (middle), and Nestin and CD34 coimmunofluorescence (right)

of orthotopic xenografts of GFP+ Daoy medulloblastoma cells. Arrows indicate Nestin+ cancer cells. All nuclei are stained with DAPI.
CD133+ Brain Tumor Cells Interact Physically

with Endothelial Cells in Culture

To investigate further if brain CSCs interact directly with

endothelial cells, we prepared single-cell suspensions
from a freshly resected primary medulloblastoma (MB5)

and ependymoma (EP1) that we obtained direct from the

operating room and labeled these with a green fluorescent

dye (PKH67). We then used antibody-based cell sorting to
Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc. 71
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Figure 2. CD133+ Brain Tumor Cells

Associate with Endothelial Cells in 3D

Matrigel Cultures

(A) Overlay of phase-contrast and autofluores-

cence photomicrographs of unlabeled endo-

thelial cells or astrocytes that were cocultured

with CD133+ or CD133� green fluorescence-

labeled primary medulloblastoma (MB5) or

ependymoma (EP1) cells.

(B) The number of green fluorescent (tumor

cells) that contacted directly an unlabeled cell

(endothelial or astrocyte) was determined by

high-power microscopic review of cocultures.

The reviewer was blinded to CD133 tumor

cell status. Graph reports the percentage of

CD133+ and CD133� tumor cells in each co-

culture that formed a direct contact with cocul-

tured cells. Each bar is marked with the total

number of tumor cells in each culture (*p <

0.05, **p < 0.005, ***p < 0.0005 reports the

difference between CD133+ and CD133�

tumor cell contacts with cocultured cells).
isolate CD133+ cells from these brain tumors since this

fraction is enriched for CSCs (Singh et al., 2004; Taylor

et al., 2005). Subsequent karyotype analysis of these

tumor cells that we have reported elsewhere confirmed

that they are cancer cells (Taylor et al., 2005). We similarly

fractionated populations of Daoy medulloblastoma cells.

We then mixed CD133+ or CD133� tumor cells with pri-

mary human endothelial cells (PHECs) in a 3D matrigel

assay in which the endothelial cells form vascular tubes

(n = 8 separate cultures per cell population).

PHECs formed vascular tubes within 5–7 hr indepen-

dent of the CD133 status of the cocultured tumor cells

(Figure 2A). CD133+ tumor cells, independent of origin, as-

sociated rapidly with endothelial vascular tubes, forming

intimate contacts often along the entire length of an endo-

thelial tube (Figures 2A and 2B). In contrast, significantly

fewer CD133� tumor cells made contacts with endothelial

cells and generally remained rounded and separate from

the vascular-like structures. To control for the possibility

that CD133� tumor cells are unable to form cell-cell con-

tacts in 3D matrigel cultures, we repeated these ex-

periments using primary human astrocytes (PHAs) instead

of PHECs. Both CD133+ and CD133� tumor cells inter-

acted readily, but not differently, with PHAs in these cocul-

tures (Figures 2A and 2B). Thus, CD133+ brain tumor cells

that contain the CSC fraction, but not CD133� cells,

interact closely with vascular endothelial cells in culture.
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Endothelial Cells Maintain Self-Renewing

and Undifferentiated Brain Tumor Cells

Endothelial cells secrete soluble factors that maintain the

self-renewal and undifferentiated phenotype of normal

neural stem cells (Ramirez-Castillejo et al., 2006; Shen

et al., 2004). To test if endothelial-derived factors similarly

maintain self-renewing brain tumor cells, we first pas-

saged tumor spheres of CD133+ cells that we isolated

from a primary medulloblastoma (MB1), a primary epen-

dymoma (EP1), and the Daoy medulloblastoma cell line,

under conditions that promote stem cell growth (Taylor

et al., 2005). Tumor spheres derived from each of these

cell populations could be passaged serially and ex-

pressed CD133 and Nestin, confirming that these are clo-

nogenic, self-renewing stem-like cells (Figures 3A–3C). We

then transferred tertiary tumor spheres of these cells to the

base of culture wells while the upper transwell compart-

ment was seeded with PHECs or control cells (CD133� tu-

mor cells, fibroblasts, or PHAs) (Figure 3D). This transwell

system allows the exchange of diffusible factors, but not

cells, between chambers. Cocultures were maintained

for 2 weeks in reduced-serum-containing medium.

Tumor spheres that were cocultured with PHECs in-

creased in size and after 2 weeks were up to five times

larger than those grown in the presence of control cells

(Figure 3E). Further, significantly more PHEC-cocultured

tumor spheres remained as intact CD133+/Nestin+ tumor
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Figure 3. Endothelial Cells Maintain Self-Renewing and Undifferentiated Brain Tumor Cells in Culture

(A–C) CD133 and Nestin immunofluorescence analysis of Daoy (A)-, primary medulloblastoma (MB1) (B)-, and primary ependymoma (EP1)

(C)-derived tertiary tumor spheres.

(D) Cartoon depicting the experimental approach adopted to determine the ability of PHECs to maintain the self-renewal and undifferentiated

phenotype of brain tumor cells.

(E) Comparison of the size (top images: DAPI staining of four representative tumor spheres; top graph: average total sphere area of tumor spheres in

the appropriate cultures), maintenance (bottom graph: percentage of tertiary tumor spheres remaining after 120 hr of coculture), and self-renewal

(bottom figures report the percentage of quaternary-forming tumor spheres derived from cocultured tertiary spheres) of Daoy medulloblastoma cells

and primary medulloblastoma (MB1) and primary ependymoma (EP1) cells cocultured with PHECs (+) or control cells (�). Results are shown for

differentiated tumor cells as controls. Similar results were obtained when PHAs or fibroblasts were used as controls (*p < 0.05, **p < 0.005, exact

Wilcoxon test).
spheres compared to those cultured with control cells.

Thus, PHECs maintained the proliferation of tumor sphere

cells even under reduced-serum conditions that caused

control cultured spheres to disaggregate, spread out
over the culture surface, and lose expression of CD133

and Nestin (Figure 3E and data not shown).

To test if PHECs maintained also the self-renewal

capacity of brain tumor cells, we disaggregated tertiary
Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc. 73
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tumor spheres that had been cocultured for 2 weeks with

either PHECs or control cells and reseeded suspensions

of these cells in stem cell culture medium that was serum

free (Figure 3D). Although we were unable to recover any

quaternary tumor spheres from cultures of MB1 cells,

both Daoy- and EP1-derived sphere cells that had been

cocultured with PHECs were significantly more likely to

generate quaternary tumor spheres than cells isolated

from control cocultures (Figure 3E). These data identify

striking similarities between normal neural stem cells

and self-renewing brain tumor cells and suggest that

stem-like properties of brain CSCs are enhanced by

endothelial-cell-secreted factors.

Endothelial Cells Promote the Propagation of Brain

Tumors In Vivo

If endothelial-derived factors support the self-renewal of

brain CSCs, then we reasoned that endothelial cells

should promote the propagation of brain tumors in vivo.

To test this, we injected 1 3 106 unsorted GFP+ Daoy

medulloblastoma cells either alone or in combination

with red fluorescence dye (PKH26)-labeled PHECs, under

cranial windows in the cerebral cortex of immunocompro-

mised mice (n R 3 mice per cell mix). Tumor cells (green)

were readily distinguished from endothelial cells (red)

using dual-color fluorescence microscopy (Figure 4A).

Injections of GFP+ Daoy cells alone resulted in a steady

increase in tumor fluorescence (green) that could be

detected using intravital fluorescence microscopy via

the cranial window, and that correlated closely with

increasing tumor burden (Figure 4A and Figure S1 in the

Supplemental Data available with this article online).

Tumor fluorescence reached a peak in these mice at

around 7 weeks postinjection, at which point the animals

succumbed to their disease (mean peak fluorescence at

7 weeks; 526 ± 176 SD; n = 6 independent animals; see

Figure S1). Remarkably, 1 3 106 GFP+ Daoy medulloblas-

toma cells that were coinjected with 100,000 PHECs

formed tumors much more rapidly, reaching peak tumor

burden after only 4 weeks (Figure 4A). This acceleration

of xenograft growth occurred in a cell-dose- and cell-

specific manner: increasing numbers of coinjected PHECs

produced a stepwise increase in tumor growth rate, but

coinjection of PHAs did not affect xenograft growth

(Figure 4A). Red fluorescence declined steadily in PHEC/

tumor cell xenografts, since the half-life of PKH26 dye

in vivo is �2 weeks. Thus, the increasing tumor fluores-

cence in these xenografts resulted entirely from the ex-

pansion of the tumor cell population.

Xenografts that were established in the presence of

PHECs contained up to 25 times more Nestin+/GFP+

tumor cells than did xenografts of Daoy cells alone (cells

detected by Nestin/GFP coimmunofluorescence; Fig-

ure 4B). PHECs (differentiated from endogenous mouse

endothelial cells using a human CD34-specific antibody;

Figure S2) coclustered with Nestin+/GFP+ tumor cells

in xenografts (Figure 4C). Importantly, PHECs remained

separate from tumor capillaries and did not increase the

MVD of xenografts relative to that observed in tumors
74 Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc.
formed by GFP+ Daoy cells alone (data not shown).

Together, these data suggest the hypothesis that endo-

thelial cells contribute specific factors to the tumor micro-

environment that expand the CSC pool and accelerate the

initiation and/or growth of brain tumor xenografts.

To test more directly if endothelial cells promote tumor

growth by supporting CSCs, and if freshly resected pri-

mary tumor cells are responsive to these signals, we

repeated our cranial window transplant experiments using

50,000 CD133+ or CD133� cells that we isolated from

two primary medulloblastomas (MB4 and MB5). Primary

tumor cells were obtained direct from the operating room,

GFP-labeled by lentiviral transduction, and then trans-

planted as described below after less than four passages

in culture. Two out of every three primary medulloblasto-

mas can be expected to generate tumors following ortho-

topic transplant of 50,000 CD133+ tumor cells, but no

significant tumor growth has been reported from injec-

tions of CD133� tumor cells (Singh et al., 2004). As ex-

pected, CD133� primary tumor cells grew only transiently

(MB4) or not at all (MB5) as transplants, even in the pres-

ence of coinjected PHECs (Figure 5). In contrast, CD133+

tumor cells formed fluorescent masses within 7 days

of injection. The growth of CD133+ cell masses was

enhanced dramatically by the presence of PHECs and

resulted in the formation of a rapidly growing tumor in

mice that were injected with CD133+ MB5 cells. While

coinjection of PHECs also enhanced initially the growth

of transplanted CD133+ MB4 cells, the growth of these

tumor cells was not sustained. Together, these data

support the hypothesis that endothelial cells contribute

to a niche microenvironment that promotes the initiation

of brain tumors by CSCs.

Depletion of Brain Tumor Blood Vessels Eradicates

Self-Renewing Tumor Cells

Our finding that endothelial-derived factors enhance the

initiation of brain tumors by CD133+ tumor cells suggests

that antiangiogenic drugs could inhibit brain tumor

growth, at least in part, by disrupting a CSC vascular

niche. To test this, we investigated the impact of antian-

giogenic therapies on the numbers of self-renewing tumor

cells in, and growth of, medulloblastoma and glioma

orthotopic xenografts.

Angiogenic signaling in tumors is often initiated by

oncogenic cell signal pathways (Jain et al., 2006). There-

fore, we first upregulated angiogenic signaling in GFP+

Daoy cells by transfection with the ERBB2 oncogene

(DaoyERBB2). ERBB2 is overexpressed in aggressive forms

of medulloblastoma (Gajjar et al., 2004) and elicits a cell

signal that upregulates vascular endothelial growth factor

(VEGF) (Saucier et al., 2004). DaoyERBB2 cells secreted

60-fold more VEGF than did vector control (DaoyV) cells,

and treatment of these cells with Erlotinib—a selective in-

hibitor of the EGFR and ERBB2 tyrosine kinases (Akita and

Sliwkowski, 2003)—or an anti-ERBB2 siRNA downregu-

lated VEGF expression (see Figures S3A and S3B). We

then established orthotopic xenografts of 1 3 106 GFP+

DaoyERBB2 or DaoyV cells under cranial windows in the
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Figure 4. Endothelial Cells Promote the Growth of Orthotopic Brain Tumor Xenografts

(A) The first column shows autofluorescence micrographs of mixed suspensions of GFP+ Daoy cells (green) and PHECs or PHAs (red) just prior to

orthotopic injection. Numbers of PHECs and PHAs are in thousands. Subsequent columns show overlaid intravital red and green fluorescence pho-

tomicrographs of xenografts that were captured via the cranial window at the indicated time intervals following transplantation. Numbers report the

level of green and red fluorescence in each xenograft at each time point (percentage of day 0 value).

(B) Coimmunofluorescence (Nestin and human-specific CD34) analysis of the orthotopic xenografts in (A) that were established by transplantation of

Daoy cells alone (left) or Daoy cells plus 500 3 103 PHECs (right). Numbers at the bottom of each photomicrograph report the percentage of Nestin

(green) and human CD34 (red)-expressing cells in each tumor (**p < 0.005, exact Wilcoxon test).

(C) Map of the distribution of Nestin and human CD34-expressing cells across an entire section of a Daoy orthotopic xenograft that included 500 3 103

PHECs. The map was generated from a composite review of high-power coimmunofluorescence photomicrographs.
Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc. 75
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Figure 5. Endothelial Cells Promote the Initiation of Orthotopic Brain Tumor Xenografts by CD133+, but Not CD133� Primary

Medulloblastoma Cells

Autofluorescence photomicrographs of the growth of orthotopic xenografts of 50,000 GFP-labeled CD133+ or CD133� cells that we isolated from two

primary medulloblastomas (MB4 and MB5) and transplanted orthotopically under cranial windows into the cerebral cortex of nude mice. Tumor cells

were transplanted alone or with 50,000 red fluorescence-labeled PHECs. The first column shows autofluorescence micrographs of cells immediately

prior to transplantation. Subsequent columns show overlaid intravital red and green fluorescence microscopy images of tumors captured via the cra-

nial window at the indicated time intervals following implantation. Numbers report the level of green and red fluorescence in each xenograft at each

time point (percentage of day 0 value).
cerebral cortex of nude mice. To target both the ‘‘up-

stream’’ and ‘‘downstream’’ components of angiogenic

signaling in this model, we treated tumor-bearing mice

with either Erlotinib (50 mg/kg/23 day for 5 days), which

abolishes ERBB2 signaling in vivo (Hernan et al., 2003);

a single dose of 10 mg/kg of the anti-VEGF monoclonal

antibody Bevacizumab; or vehicle-only control (n = 10

mice bearing each xenograft for each treatment). Tumors

were then excised and analyzed as outlined in Figure 6A.
76 Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc.
As expected, DaoyERBB2 xenografts expressed much

higher levels of VEGF, contained a significantly higher

MVD (compare vehicle-only treated tumors in Figures 6B

and 6C), and grew more rapidly following transplantation

(Figure S4) than did DaoyV tumors. Also, single-cell

suspensions of excised DaoyERBB2 tumors generated

five times more self-renewing CD133+/Nestin+ tumor

spheres than cells from DaoyV tumors (compare vehicle-

only treated tumors in Figure 6D). All tumor sphere cells
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Figure 6. Antiangiogenic Therapy De-

pletes the Tumor Vasculature, Ablates

Self-Renewing Tumor Cells, and Inhibits

the Growth of DaoyERBB2 Orthotopic

Xenografts

(A) Cartoon depicting the experimental

approach adopted to determine whether

depletion of blood vessels from brain tumors

ablates the CSC fraction.

(B–G) Graphs (all error bars = mean ± SE)

report VEGF expression levels (B), microvessel

density (C), self-renewal capacity (serial tumor

sphere-forming assay) (D), growth (tumor

fluorescence) (E), apoptosis (TUNEL) (F), and

proliferation (Ki67 labeling) (G) of vehicle

(‘‘V’’)-, Erlotinib (‘‘E’’)-, or Bevacizumab (‘‘B’’)-

treated DaoyERBB2 and DaoyV orthotopic xeno-

grafts (*p < 0.05, **p < 0.005, ***p < 0.0005,

exact Wilcoxon test).

(H) Coimmunofluorescence analysis of tumor

spheres formed ex vivo by cells that were

derived from vehicle-treated DaoyERBB2 and

DaoyV xenografts.
coexpressed GFP, confirming that they were derived from

transplanted tumor cells and not normal mouse cells

(Figure 6H), and displayed evidence of multipotency
when cultured under conditions that promote differentia-

tion (Figure S5). Importantly, ERBB2 signaling in Daoy

cells does not impact directly cell proliferation, apoptosis,
Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc. 77
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or self-renewal (see Figures S6A to S6D). Thus, expansion

of the tumor vasculature in DaoyERBB2 relative to DaoyV

tumors was associated with an increased number of self-

renewing, multipotent cancer cells.

Both Erlotinib and Bevacizumab treatments induced

a profound antiangiogenic response in DaoyERBB2 xeno-

grafts that was associated with significant tumor growth

arrest (Figures 6B, 6C, and 6E). Interestingly, despite

these marked antiangiogenic and growth inhibitory

effects, neither drug altered the level of apoptosis or

necrosis in DaoyERBB2 xenografts, and only Erlotinib

decreased slightly cell proliferation in these tumors rela-

tive to vehicle treatment (Figures 6F and 6G and data

not shown). However, both drugs resulted in a complete

loss of self-renewing GFP+/Nestin+/CD133+ tumor cells

from single-cell suspensions of treated DaoyERBB2 xeno-

grafts (Figure 6D). In stark contrast, since the ERBB2-

VEGF axis in DaoyV tumors is much less active than in

DaoyERBB2 xenografts, neither Erlotinib nor Bevacizumab

affected the MVD in DaoyV tumors (Figure 6C). In agree-

ment with our hypothesis, these treatments also failed to

alter the number of self-renewing GFP+/Nestin+/CD133+

cells in DaoyV tumors (Figure 6D). Although both Erlotinib

and Bevacizumab therapy produced a moderate increase

in DaoyV tumor cell apoptosis that presumably resulted

from blockade of endogenous EGFR/ERBB2 and VEGF

signaling, this did not impact tumor growth (Figures 6E

and 6F). Importantly, neither Erlotinib nor Bevacizumab

affect directly the self-renewal, proliferation, or apoptosis

of Daoy cells in culture (see Figure S6E and data not

shown). Together, these data provide strong support for

the hypothesis that brain tumor growth depends critically

upon the presence of an intact CSC vascular niche and

identifies this niche as a potential target for treatments

of brain tumors. As a first step to determine if this thera-

peutic approach might have clinical benefit, we treated

DaoyERBB2 and DaoyV tumor-bearing mice for 2 weeks

with 50 mg/kg/23 day of Erlotinib (n = 8 mice with each

tumor per treatment). Erlotinib prolonged significantly

the survival of mice bearing DaoyERBB2 tumors (median

survival of Erlotinib-treated mice = 66 ± 3.4 days versus

45 ± 2.9 days in vehicle-treated mice; exact log rank p <

0.05), but not those harboring DaoyV xenografts (median

survival of Erlotinib-treated mice = 53 ± 2.8 days versus

54 ± 3.1 days in vehicle-treated mice; log rank p = 0.73).

Finally, since ongoing clinical trials of Bevacizumab

suggest that this drug has promising therapeutic activity

against glioblastoma (Reardon and Wen, 2006), we inves-

tigated if Bevacizumab might deplete self-renewing can-

cer cells from this brain tumor. To do this, we treated

with Bevacizumab or vehicle mice bearing orthotopic xe-

nografts of U87 glioma cells that express the Luciferase

reporter gene (U87GLuc). Transplantation of 1 3 106

U87Luc cells into the brains of immunocompromised

mice resulted in the formation of brain tumors that could

be detected readily using bioluminescence (Figure 7A).

As we observed in DaoyERBB2 medulloblastoma xeno-

grafts, a single dose of 10 mg/kg Bevacizumab, but

not vehicle, reduced markedly the MVD and growth of
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U87Luc tumors (n = 5 mice per treatment group; Figures

7A–7C). Furthermore, Bevacizumab decreased pro-

foundly the numbers of vessel-associated Nestin+ tumor

cells in U87Luc xenografts and the number of self-renew-

ing GFP+/Nestin+/CD133+ tumor cells that could be recov-

ered from these tumors, without impacting tumor cell pro-

liferation, apoptosis, or necrosis (Figures 7A and 7D–7G

and data not shown). Interestingly, residual Nestin+ cells

in Bevacizumab-treated glioma xenografts were not dis-

tributed randomly through tumors but were associated

with persisting tumor vessels (Figure 7A). Thus, we pro-

pose that antiangiogenic drugs arrest brain tumor growth,

at least in part, by disrupting a vascular niche microenvi-

ronment that is critical for the maintenance of CSCs.

DISCUSSION

Evidence suggests that normal neural stem cells exist in

vascular niches, into which endothelial cells secrete fac-

tors that regulate neural stem cell function (Palmer et al.,

2000; Ramirez-Castillejo et al., 2006; Shen et al., 2004).

Here, we provide several lines of evidence that the brain

tumor microvasculature forms a niche that is critical for

the maintenance of CSCs.

Since niches control stem cell function, it may seem

counterintuitive that CSCs would be located within these

regulatory microenvironments. However, our data support

the hypothesis that vascular niches in brain tumors are

abnormal and contribute directly to the generation of

CSCs and tumor growth. In the normal brain, neural

stem cell niches are restricted to the hippocampus and

subventricular zones where rates of cell proliferation are

quite low (Sanai et al., 2005). In contrast, we found that

a significant proportion of vessel-associated Nestin+

tumor cells are proliferating, and that these cells are dis-

tributed throughout tumors, from all regions of the cere-

brum and cerebellum. We show further that PHECs main-

tain self-renewing brain tumor cells in culture and promote

the initiation and growth of orthotopic brain tumor xeno-

grafts. Increasing the number of capillaries in orthotopic

brain tumors also expanded dramatically the number of

self-renewing and multipotent cells contained in these

tumors. Therefore, we propose that the tumor microvas-

culature generates specific niche microenvironments

that promote the formation and/or maintenance of brain

CSCs. Interestingly, atypical ectopic perivascular niches

were recently described around perivascular areas of

the inflamed CNS (Martino and Pluchino, 2006). These

entities behave as anatomically atypical, although highly

specialized, ectopic niches that regulate long-term sur-

vival and behavior of transplanted neural stem cells.

Thus, atypical and ectopic stem cell niches might play

central roles in a number of nervous system diseases,

including brain tumors.

If the recruitment of aberrant vascular niches is an

important component in the progression of brain tumors,

then this might explain why the most aggressive brain

tumors are highly angiogenic (Folkerth, 2004; Phillips

et al., 2006; Plate et al., 1992). Intriguingly, protein ligands
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Figure 7. Bevacizumab Therapy De-

pletes the Tumor Vasculature, Ablates

Self-Renewing Tumor Cells, and Inhibits

the Growth of U87Luc Glioma Orthotopic

Xenografts

(A) Coimmunofluorescence analysis of Nestin

and CD34 expression in sections of glioma

xenografts 1 week following treatment with

Bevacizumab or vehicle. Arrows point to

Nestin+ cells. Bioluminescence images of

these tumors generated prior to excision are

shown above.

(B–G) Graphs (all error bars = mean ± SE)

report tumor growth (bioluminescence) (B),

microvessel density (C), percentage Nestin+

cells (D), self-renewal capacity (serial tumor

sphere-forming assay) (E), apoptosis (TUNEL)

(F), and proliferation (Ki67 labeling) (G) of vehi-

cle (‘‘V’’)- and Bevacizumab (‘‘B’’)-treated

xenografts (*p < 0.05, **p < 0.005, exact

Wilcoxon test).
that are found within the neural stem cell niche have been

shown to regulate both stem cell self-renewal and angio-

genesis, suggesting further that these two processes are

linked. For example, KIT ligand (also known as stem cell

factor), which is a potent glioma-derived proangiogenic

factor (Sun et al., 2006), also promotes the migration, sur-

vival, and proliferation of neural progenitor cells (Erlands-

son et al., 2004; Jin et al., 2002), and PEDF, which main-

tains neural stem cell self-renewal, is a potent regulator

of angiogenesis (Pumiglia and Temple, 2006; Ramirez-

Castillejo et al., 2006). Furthermore, very recent studies

of orthotopic glioblastoma xenografts suggest that

CSCs of this brain tumor secrete angiogenic factors that

promote the recruitment and formation of tumor blood

vessels (Bao et al., 2006). It is noteworthy that VEGFR-

1+ bone marrow progenitor cells were shown recently to

form niches at the sites of lung and melanoma tumor

metastasis (Kaplan et al., 2005), and that bone marrow

endothelial niches are required for the homing and reten-

tion of normal hematopoietic and leukemic stem cells (Kiel

et al., 2005; Sipkins et al., 2005). In the brain, the formation
of multiple vascular CSC niches, each with the capacity to

generate numerous tumor cells, might facilitate signifi-

cantly brain tumor growth and invasion.

As well as regulating stem cell proliferation and cell-fate

decisions, niches also play a protective role, shielding

stem cells from environmental insults. Thus, vascular

niches might protect brain CSCs from chemo- and radio-

therapies, enabling these cells to reform a tumor mass

following an initial clinical response. Evidence indicates

that endothelial cells can protect stem cells and tumor

cells from radiation damage (Garcia-Barros et al., 2003;

Paris et al., 2001). For example, solid tumor xenografts

grown in mice with radiation-resistant endothelial cells

are much less sensitive to radiation damage than tumors

grown in wild-type mice (Garcia-Barros et al., 2003). Our

data suggest a mechanism, at least in brain tumors, by

which endothelial cells might promote tumor radioresist-

ance. Further, studies of the hematopoietic stem cell niche

suggest that niche microenvironments can promote cell

survival signals in CSCs, enabling them to resist chemo-

therapies (De Toni et al., 2006; Dick and Lapidot, 2005).
Cancer Cell 11, 69–82, January 2007 ª2007 Elsevier Inc. 79
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If the notion that niches protect CSCs proves correct,

then targeting these microenvironments could prove

a highly effective treatment of cancer. We found that anti-

angiogenic therapies including Bevacizumab deplete

tumor blood vessels and self-renewing cancer cells from

orthotopic models of medulloblastoma and glioma, result-

ing in tumor growth arrest. Notably, VEGF has been shown

to enhance the survival of neural stem cells (Wada et al.,

2006). Thus VEGF-specific inhibitors like Bevacizumab

might impact brain tumor growth by targeting both a vas-

cular niche and the associated CSCs. Exciting early data

from clinical trials of Bevacizumab combined with the che-

motherapeutic drug CPT-11 suggest that this combina-

tion is one the most effective treatments of glioblastoma

identified to date (Reardon and Wen, 2006). In light of

our data, it is tempting to speculate that the activity of

this drug combination results from targeting CSCs, as

well as the disease bulk. This important mechanism of

drug action should be studied further in ongoing preclini-

cal and clinical trials of antiangiogenic drugs in brain

tumors.

EXPERIMENTAL PROCEDURES

Tumor Samples and Cell Lines

Tumor samples were obtained under protocol XPD01-092 (St. Jude

Children’s Research Hospital Institutional Review Board). Tumors

were immediately disaggregated into single-cell suspensions as

described in detail elsewhere (Taylor et al., 2005). Primary tumor cell

cultures were maintained in Neurobasal medium (Invitrogen) contain-

ing 2 mM L-glutamine, N2 supplement (Invitrogen), B27 supplement

(Invitrogen), 20 ng/ml hrEGF (Invitrogen), 20 ng/ml hrbFGF (Invitrogen),

and 50 mg/ml BSA. All experiments were conducted at cell passage <4.

Previous cytogenetic studies showed that all cultured primary tumor

cells were cancer cells (Taylor et al., 2005). PHECs, U87, and Daoy

cells were obtained from the ATCC (Manassas, VA). PHAs were from

Cambrex, MD. PHECs were cultured in endothelial cell growth medium

(EGM) containing 2% fetal bovine serum (GIBCO, USA). PHAs were

cultured in astrocyte growth medium that contains 2% serum (AGM,

Cambrex). Daoy cells were transfected with the complete coding re-

gion of ERBB2 (DaoyERBB2) or vector control (DaoyV), and U87 glioma

cells with the luciferase reporter, as described (Hernan et al., 2003).

GFP was expressed in DaoyV and DaoyERBB2 by transduction with

MSCV-IRES-GFP retrovirus. Primary tumor cells were labeled green

by GFP-lentiviral transduction. GFP+ tumor cells were isolated by

fluorescence-activated cell sorting (FACS). Daoy and U87 cells were

maintained under standard culture conditions in DMEM containing

10% FCS unless otherwise specified.

Tumor Sphere Initiation Assays

Single-cell suspensions were made in Neurobasal medium in 96-well

plates (diluted as 10,000 to 1 cells/well). The number of tumor spheres

that formed subsequently per well was quantified after 14 days. Tumor

spheres were then disaggregated and reseeded to evaluate self-

renewal by formation of secondary tumor spheres. Where indicated,

this process was repeated to form tertiary and quaternary tumor

spheres.

Coculture Studies

For transwell coculture studies, tumor spheres were added in 500 ml

of culture medium to each well of a 24-well coculture plate (BD Biosci-

ences). Transwell inserts containing 0.4 mm diameter membrane pores

that allow the passage of diffusible molecules, but not cells, were then

placed into each well and seeded with 1 3 104 PHECs or control cells
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(see text). Plates were then incubated under standard culture condi-

tions in medium containing 2% fetal calf serum for 120 hr, and the num-

ber of remaining tumor spheres was counted using phase-contrast

microscopy. The self-renewal of tumor sphere cells cocultured with

PHECs or control cells was determined using the tumor sphere initia-

tion assay described above. The differentiation of tumor sphere cells in

cocultures was determined by seeding tumor spheres in culture wells

on coated coverslips (poly-D-lysine/laminin) (BD Biosciences); tumor

cells were then fixed with 4% paraformaldehyde and analyzed by

immunofluorescence using previously published antibodies and tech-

niques (Taylor et al., 2005). Neurosphere size was measured by analyz-

ing 3200 magnification images of DAPI-stained tumor spheres and the

ImageJ analysis tool (http://rsb.info.nih.gov/ij/).

For Matrigel coculture studies, GFP+ DaoyV or DaoyERBB2 cells or

primary tumor cells prelabeled with PKH67 (Sigma) were sorted using

CD133-antibody-coated magnetic beads (100 ml/108 cells; Miltenyi

Biotec) as described (Taylor et al., 2005). Purity of CD133 populations

was confirmed by CD133 immunofluorescence. Sorted tumor cells

(6000 cells/ml) were cultured ± PHECs or PHAs (10,000 cells/ml) in

Matrigel-coated (35 ml; BD BioScience) 8-well culture slides (BD Bio-

Science) overnight at 37�C. PHECs or PHAs were imaged by phase-

contrast microscopy, and sorted cells expressing GFP or stained

with PKH67 were imaged using fluorescence microscopy.

Generation and Treatment of Orthotopic Transplants

Female CD-1 nu/nu mice (Charles River) aged 6–8 weeks were anes-

thetized and placed into stereotactic apparatus equipped with a Z

axis (Kopf instruments). A small portion of the scalp was removed,

a window (approximately 10 mm 3 5 mm) was made in the skull using

a dental drill, and the pial layer was removed. Tumor cells (1 3 106 in

5 ml Matrigel) were implanted with or without PHAs or PHECs into

the cerebral surface at a depth of 0.5–2 mm using a 25 ml Hamilton

syringe with an unbeveled 30G needle. The wound was then covered

with a sterile glass window fixed in place using tissue adhesive. Imme-

diately following wound closure, implanted animals were transferred to

the intravital imaging system (Nikon, USA) and imaged to obtain

a baseline measurement, and animals were reanesthetized as required

for subsequent imaging. Data analysis was performed using Meta-

Morph Imaging software (Universal Imaging, Downington, PA). Mea-

surements were restricted to a fixed region within each image through-

out the course of the study and are presented as maximum

fluorescence (Fmax) normalized to minimum fluorescence (Fmin), which

compensated for potential interday variation in lamp intensity. U87Luc

xenografts were prepared in a similar manner through small cranial

burr holes without cranial windows. Tumor burden was measured in

U87Luc tumor-bearing mice by bioluminescence using a Series IVIS

Imaging System (Xenogen Corporation, Alameda, CA). Mice received

an intraperitoneal injection of 15 mg/ml D-luciferin (Xenogen) in sterile

PBS and were imaged 5 min later. All animals were imaged at a range

of 25 cm for 10 s. Acquired images were analyzed with the use of Living

Image Software version 2.50 (Xenogen). Bioluminescence measure-

ments were recorded as photons per second.

Erlotinib (OSI Pharmaceuticals) was administered to tumor-bearing

mice per os (p.o.) in a vehicle of 10% DMSO, 10% Cremephor in a

1% CMC solution. Animals were treated with Erlotinib (50 mg/kg/twice

daily) or vehicle for 5 days. Treatment was repeated where indicated

following a 2 day break. Bevacizumab (Genentech Inc.) was adminis-

tered by tail-vein injection at a dose of 10 mg/kg. All animal procedures

were conducted in accordance with all appropriate regulatory stan-

dards under protocol #356 (St. Jude Children’s Research Hospital

Animal Care and Use Committee).

Histologic, FISH, and Gene Expression Analysis

Dual-color FISH, immunofluorescence, immunohistochemical, and

TUNEL analyses of formalin-fixed, paraffin-embedded tumor samples,

xenografts, or cultured tumor cells were performed using immunore-

agents, FISH probes, and methods as described previously (Taylor

et al., 2005; Thompson et al., 2006). Nestin-specific antibodies

http://rsb.info.nih.gov/ij/
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included a monoclonal antibody (Chemicon cat. no. MAB5326) that

recognizes the human but not the mouse protein and a polyclonal

antibody (Abcam) that recognizes human, mouse, and rat Nestin.

The distance between Nestin+ cells and CD34 endothelial cells was

measured in dual-immunofluorescence-stained images of brain tumor

sections using the line-measuring tool in ImageJ. In order to remove

observer bias and to allow analysis of large numbers of tumor sections,

immunohistochemical staining of xenografts, including assessment of

MVD (CD34 staining), was scored blind to the xenograft and treatment

using ImageJ software analysis. Briefly, images were processed at the

same magnification (3200) by removal of background hematoxylin

staining followed by monochromization. Monochrome images (giving

binary data: black areas of immunohistochemical stain and white non-

staining areas) were analyzed using ImageJ software, which calcu-

lated the absolute values for each channel, resulting in determination

of percentage of immunopositivity per unit area (constant 3200 field).

Two-photon microscopy was performed using an Ultima imaging

system (Prairie Technologies, Middletown WI), a Ti:sapphire Chame-

leon Ultra XR femtosecond-pulsed laser (920 nm) (Coherent, Santa

Clara, CA), and a 63 3 0.9 NA water-immersion IR objective (Olympus,

Center Valley, PA). Stacks of images were reconstructed in 3D using

Imaris software (Bitplane, Saint Paul, MN). VEGF mRNA expression

levels were determined in cultured cells and xenografts by reverse-

transcriptase real-time polymerase chain reaction analysis as

described previously (Thompson et al., 2006).

Supplemental Data

The Supplemental Data include six supplemental figures and can be

found with this article online at http://www.cancercell.org/cgi/

content/full/11/1/69/DC1/.
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