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In this paper we extend the color dipole formalism for the study of leading neutron production in 
e + p → e + n + X collisions at high energies and estimate the related observables which were measured 
at HERA and could be analyzed in future electron–proton (ep) colliders. In particular, we calculate the 
Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the 
photon–pion total cross section. In the color dipole formalism, the photon–pion cross section is described 
in terms of the dipole–pion scattering amplitude, which contains information about the QCD dynamics 
at high energies and gluon saturation effects. We consider different models for the scattering amplitude, 
which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model 
dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate 
the recently released H1 leading neutron spectra can be described using the color dipole formalism and 
that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In high energy collisions the outgoing baryons which have large 
fractional longitudinal momentum (xL ≥ 0.3) and the same va-
lence quarks (or at least one of them) as the incoming particles 
are called leading particles (LP). The momentum spectra of lead-
ing particles have been measured already some time ago [1,2]. 
Very recently, high precision data on leading neutrons produced in 
electron–proton reactions at HERA at high energies became avail-
able [3].

Leading neutron production is a very interesting process. In 
spite of more than ten years of intense experimental and theoret-
ical efforts, the xL (Feynman momentum) distribution of leading 
neutrons remains without a satisfactory theoretical description [5,
4,6–13]. Monte Carlo studies, using standard deep inelastic scatter-
ing (DIS) generators show [3,14] that these processes have a rate 
of neutron production a factor of three lower than the data and 
produce a neutron energy spectrum with the wrong shape, peak-
ing at values of xL below 0.3. In order to fit the data the existing 
models need to combine different ingredients including pion ex-
change, reggeon exchange, baryon resonance excitation and decay 
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and independent fragmentation [9–13]. Moreover, the incoming 
photon interacts with the pion emitted by proton and then rescat-
ters, interacting also with the emerging neutron and giving origin 
to significant absorptive corrections, which are difficult to calcu-
late [10–13]. As it can be seen in Fig. 1, this process is essentially 
composed by a soft pion (or reggeon) emission and by the subse-
quent photon–pion interaction at high energies. Pion emission has 
been studied for a long time and according to the traditional wis-
dom it can be described by a simple interaction Lagrangian of the 
form gψ̄γ5πψ , where ψ and π are the nucleon and pion field 
respectively. The corresponding pion–nucleon amplitude must be 
supplemented with a form factor, which represents the extended 
nature of hadrons and at the same time regularizes divergent in-
tegrals. The precise functional form of the form factor is very hard 
(if not impossible) to extract from first principle calculations. We 
must then resort to models. Very recently [15,16] it has been ar-
gued that the Lagrangian which is more consistent with the chiral 
symmetry requirements is the one with a pseudovector coupling. 
One of the goals of the present study is to test in a new con-
text the better founded splitting function, f (y), derived in [15]. 
Additionally, forward hadron production is very important also for 
cosmic ray physics, where highly energetic protons reach the top 
of the atmosphere and undergo successive high energy scatterings 
off light nuclei in the air. In each of these collisions, a projectile 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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proton (the leading baryon) looses energy, creating showers of par-
ticles, and goes to the next scattering. The interpretation of cosmic 
ray data depends on the accurate knowledge of the leading baryon 
momentum spectrum and its energy dependence. A crucial ques-
tion of practical importance is the existence or non-existence of 
the Feynman scaling, which says that the xL spectra of secondaries 
are energy independent. In cosmic ray applications we are sensi-
tive essentially to the large xL region (the fragmentation region), 
which probes the low Bjorken-x component of the target wave 
function. In this kinematical range nonlinear effects are expected 
to be present in the description of the QCD dynamics (for recent 
reviews see [17]), associated to the high parton density. The state-
of-art framework to treat QCD at high energies is the Color Glass 
Condensate (CGC) formalism [18], which predicts gluon saturation 
at small-x, with the evolution with the energy being described by 
an infinite hierarchy of coupled equations for the correlators of 
Wilson lines – the Balitsky–JIMWLK hierarchy [17]. In the mean 
field approximation, this set of equations can be approximated by 
the Balitsky–Kovchegov (BK) equation [19,20], which describes the 
evolution of the dipole-target scattering amplitude with the rapid-
ity Y = ln(1/x).

In this paper we propose to treat the leading neutron produc-
tion at HERA using the color dipole formalism, which is able to 
describe the inclusive and diffractive HERA ep data. Our goal is 
to extend this successful formalism, which has its main parame-
ters well determined, to leading neutron production. Moreover, the 
use of the color dipole formalism allows to estimate the contribu-
tion of gluon saturation effects to leading neutron production in 
the kinematical range which was probed by HERA and which will 
probed in future electron–proton colliders. Finally, it allows to in-
vestigate the relation between Feynman scaling (or its violation) 
and the description of the QCD dynamics at high energies. It is 
important to emphasize that, in the near future, Feynman scaling 
will be investigated experimentally at the LHC by the LHCf Collab-
oration [21–23].

This paper is organized as follows. In the next Section we 
present a brief review of leading neutron production in ep colli-
sions and the different models for the pion flux are discussed as 
well. Moreover, the treatment of the process using the color dipole 
formalism is presented and the main assumptions are analyzed. In 
Section 3 we analyze the dependence of our predictions on the 
pion flux and on the scattering amplitude. A comparison with the 
recent H1 data is presented and Feynman scaling is discussed. Fi-
nally, in Section 4 we summarize our main conclusions.

2. Leading neutron production in the color dipole formalism

2.1. The cross section

Let us review the main formulas of leading neutron production. 
At high energies, this scattering can be seen as a set of three fac-
torizable subprocesses (see Fig. 1): i) the photon fluctuates into 
a quark–antiquark pair (the color dipole), ii) the color dipole in-
teracts with the pion emitted by the incident proton, and iii) the 
leading neutron is formed. The differential cross section reads:

d2σ(W , Q 2, xL, t)

dxLdt
= fπ/p(xL, t)σγ ∗π (Ŵ 2, Q 2) (1)

where Q 2 is the virtuality of the exchanged photon and Ŵ is the 
center-of-mass energy of the virtual photon–pion system. It can 
be written as Ŵ 2 = (1 − xL) W 2, where W is the center-of-mass 
energy of the virtual photon–proton system. As it can be seen in 
Fig. 1, xL is the proton momentum fraction carried by the neutron 
and t is the square of the four-momentum of the exchanged pion. 
Fig. 1. Leading neutron n production in ep → enX interactions at high energies. xL

is momentum fraction of the proton carried by the neutron n.

In terms of the measured quantities xL and transverse momentum 
pT , the pion virtuality is:

t � − p2
T

xL
− (1 − xL)(m2

n − m2
pxL)

xL
(2)

The flux of virtual pions emitted by the proton is represented by 
fπ/p and σγ ∗π (Ŵ 2, Q 2) is the cross section of the interaction be-
tween the virtual-photon and the virtual-pion at center-of-mass 
energy Ŵ .

2.2. The pion flux

The pion flux fπ/p(xL, t) (also called sometimes pion splitting 
function) is the virtual pion momentum distribution in a physical 
nucleon (the bare nucleon plus the “pion cloud”). It was first cal-
culated in the early studies [24] of deep inelastic scattering (DIS), 
where a pseudoscalar nucleon–pion–nucleon vertex was added to 
the standard DIS diagram. These early calculations were further re-
fined in Refs. [25,26] and even extended to the strange and charm 
sector [27]. Since pion emission is a nonperturbative process, once 
we depart from the single nucleon state, we should consider a 
whole tower of meson–baryon states, having to deal with a series 
for which there is no rigorous truncation scheme. This led some 
authors to use light cone models [28] for the pion momentum dis-
tribution, where the dynamical origin of the pion is not mentioned 
and one tries to determine phenomenologically the relative weight 
of the higher Fock states.

In all the calculations of the pion flux a form factor was in-
troduced to represent the non-pointlike nature of hadrons and 
hadronic vertices, which contain a cut-off parameter determined 
by fitting data. The most frequently used parametrizations of the 
pion flux [5,4,6–13] have the following general form:

fπ/p(xL, t) = 1

4π

2g2
pπ p

4π

−t

(t − m2
π )2

(1 − xL)
1−2α(t)[F (xL, t)]2 (3)

where g2
pπ p/(4π) = 14.4 is the π0 pp coupling constant, mπ is the 

pion mass and α(t) will be defined below. The form factor F (xL , t)
accounts for the finite size of the nucleon and pion. We will con-
sider the following parametrizations of the form factor:

F1(xL, t) = exp

[
R2 (t − m2

π )

(1 − xL)

]
, α(t) = 0 (4)

from Ref. [5], where R = 0.6 GeV−1.

F2(xL, t) = 1 , α(t) = α(t)π (5)

from Ref. [4], where απ(t) � t (with t in GeV2) is the Regge trajec-
tory of the pion.

F3(xL, t) = exp
[

b(t − m2
π )

]
, α(t) = α(t)π (6)

from Ref. [6], where b = 0.3 GeV−2.
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F4(xL, t) = �2
m − m2

π

�2
m − t

, α(t) = 0 (7)

from Ref. [7], where �m = 0.74 GeV.

F5(xL, t) =
[

�2
d − m2

π

�2
d − t

]2

, α(t) = 0 (8)

also from Ref. [7], where �d = 1.2 GeV. In the case of the more fa-
miliar exponential (4), monopole (7) and dipole (8) forms factors, 
the cut-off parameters have been determined by fitting low en-
ergy data on nucleon and nuclear reactions and also data on deep 
inelastic scattering and structure functions.

In all analyses of pion cloud effects in DIS the authors have 
used pseudoscalar (PS) coupling, which is, by itself, inconsistent 
with chiral symmetry. More recently, in [15] the authors used an 
effective chiral Lagrangian for the interaction of pions and nu-
cleons consistent with chiral symmetry. Unlike the earlier chiral 
effective theory calculations which only computed the light-cone 
distributions of pions or considered the non-analytic behavior of 
their moments to lowest order in the pion mass, in [15] the au-
thors have computed the complete set of diagrams relevant for DIS 
from nucleons dressed by pions resulting from their Lagrangians, 
without taking the heavy baryon limit. In particular, they have 
demonstrated explicitly the consistency of the computed distribu-
tion functions with electromagnetic gauge invariance. In [16] they 
applied the previously computed pion distribution to the study of 
the d̄–ū asymmetry in the nucleon. For our purposes, the relevant 
contribution of the pion momentum distribution reads [15]:

fπ/p(y) = g2
Am2

n

(4π fπ )2

�2
c∫

0

dp2
T

y(p2
T + y2m2

n)

[p2
T + y2m2

n + (1 − y)m2
π ]2

(9)

where y = 1 − xL , g A = 1.267 is the nucleon axial charge, fπ =
93 MeV and �c = 0.2 GeV. In order to obtain the final cross sec-
tion we multiply (9) by 2 (see [15,16]) and insert it into (1) after 
integrating the latter over t (or over pT ).

In what follows, we shall use the pion fluxes listed above, in 
equations (4)–(9), denoting them by f1, f2, . . . , f6, respectively. 
The main purpose of our calculation will be to show that the 
dipole approach gives a good description of data and the pion flux 
is just one element of the calculation. Therefore we will make no 
effort to choose one particular form. Nevertheless, we note that 
one important phenomenological constraint that these pion fluxes 
must satisfy is to reproduce the d̄–ū asymmetry in the proton sea 
measured by the E866 Collaboration [29]. Among the pion fluxes 
mentioned above only (8) (see [30]) and (9) have been confronted 
with these data. As it will be seen later, the results discussed here 
are very sensitive to the choice of the pion flux and hence leading 
neutron spectra may be used to constrain its shape.

Before closing this subsection we would like to mention that 
the diagram shown in Fig. 1 represents only the dominant con-
tribution to leading neutron production. Other isovector meson 
exchanges, such as ρ or a2, can also contribute to the leading neu-
tron spectrum. Moreover the p → 	 transition can also contribute 
to neutron production through the subsequent decay 	 → nπ . 
Theoretical studies show that processes other than direct pion ex-
change are expected to give a contribution of less than 25% of the 
cross section [5–8,31]. The effect of this background to the one 
pion exchange is to increase the rate of neutron production. How-
ever this effect is partially compensated by the absorptive rescat-
tering of the neutron, which decreases the neutron rate [10–13]. 
The absorptive corrections are usually represented by a factor K
which multiplies the uncorrected cross section of leading neutron 
production. This factor has a weak dependence on xL and we shall 
consider it as a constant.

2.3. The photon–pion cross section

In order to obtain the photon–pion cross section we will use 
the color dipole formalism, as usually done in high energy deep in-
elastic scattering off a nucleon target. In this formalism, the cross 
section is factorized in terms of the photon wave functions 
 , 
which describes the photon splitting in a qq̄ pair, and the dipole–
pion cross section σdπ . We have

σγ ∗π (x̂, Q 2) =
1∫

0

dz

∫
d2r

∑
L,T

∣∣∣
T ,L(z, r, Q 2)

∣∣∣2
σdπ (x̂, r) (10)

where

x̂ = Q 2 + m2
f

Ŵ 2 + Q 2
= Q 2 + m2

f

(1 − xL)W 2 + Q 2
(11)

is the scaled Bjorken variable and the variable r defines the rela-
tive transverse separation of the pair (dipole). Moreover, the pho-
ton wave functions are given by

|ψL(z, r)|2 = 3αem

2π2

∑
f

e2
f 4Q 2z2(1 − z)2 K 2

0 (εr) (12)

|ψT (z, r)|2

= 3αem

2π2

∑
f

e2
f

{
[z2 + (1 − z)2]ε2 K 2

1 (εr) + m2
f K 2

0 (εr)
}

(13)

for a longitudinally (L) and transversely (T) polarized photon, re-
spectively. In the above expressions ε2 = z(1 − z)Q 2 + m2

f , K0 and 
K1 are modified Bessel functions and the sum is over quarks of fla-
vor f with a corresponding quark mass m f . As usual z stands for 
the longitudinal photon momentum fraction carried by the quark 
and 1 − z is the longitudinal photon momentum fraction of the 
antiquark.

The main input in the calculations of σγ ∗π is the dipole–pion 
cross section. In what follows, for simplicity, we will assume the 
validity of the additive quark model, which allows us to relate σdπ

with the dipole–proton cross section, usually probed in the typ-
ical inclusive and exclusive processes at HERA. Basically, we will 
assume that

σdπ (x, r) = Rq · σdp(x, r) (14)

where Rq = 2/3 is the ratio between the number of valence quarks 
in the hadrons. This assumption is supported by the study of the 
pion structure function in the low x regime presented in [32]. It 
also gives a good description of the previous ZEUS leading neu-
tron spectra, as shown in [10,11]. On the other hand, the direct 
application of (1) to HERA photoproduction data [33] leads to the 
result σ tot

γπ /σ tot
γ p = 0.32 ± 0.03, which is factor 2 lower than the 

ratio given above. The effective value of Rq was more recently dis-
cussed in [34] on more theoretical grounds with the conclusion 
that this number could reach the value of Rq = 0.5. We shall use 
relation (14) to estimate σdπ letting Rq vary from 1/3 to 2/3.

In the eikonal approximation the dipole–proton cross section 
σdp is given by:

σdp(x, r) = 2
∫

d2bN p(x, r,b) , (15)

where N p(x, r, b) is the imaginary part of the forward ampli-
tude for the scattering between a small dipole (a colorless quark–
antiquark pair) and a dense hadron target, at a given rapidity 
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interval Y = ln(1/x). The dipole has transverse size given by the 
vector r = x − y, where x and y are the transverse vectors 
for the quark and antiquark, respectively, and impact parameter 
b = (x + y)/2. As mentioned in the introduction, at very high 
energies (and very low x) the evolution with the rapidity Y of 
N p(x, r, b) is given by the Balitsky–Kovchegov (BK) equation [19,
20] assuming the translational invariance approximation, which 
implies N p(x, r, b) = N p(x, r)S(b) and σdp(x, r) = σ0 · N p(x, r), 
with the normalization of the dipole cross section (σ0) being fit-
ted to data. Alternatively, we can describe the scattering ampli-
tude N p(x, r) using phenomenological models based on saturation 
physics constructed taking into account the analytical solutions 
of the BK equation which are known in the low and high den-
sity regimes. The main advantage in the use of phenomenological 
models is that we can easily compare the linear and nonlinear
predictions, which is useful to determine the contribution of the 
saturation effects to the process under analysis. In what follows 
we will consider as input the phenomenological models proposed 
in Refs. [35–37]. In particular, the IIMS model, proposed in Ref. [36]
and updated in [37], was constructed so as to reproduce two lim-
its of the LO BK equation analytically under control: the solution 
of the BFKL equation for small dipole sizes, r � 1/Q s(x), and the 
Levin–Tuchin law for larger ones, r � 1/Q s(x). In the updated 
version of this parametrization [37], the free parameters were ob-
tained by fitting the new H1 and ZEUS data. In this parametriza-
tion the forward dipole–proton scattering amplitude is given by

N p(x, r) =
⎧⎨
⎩N0

(
r Q s

2

)2
(
γs+ ln(2/r Q s)

κ λ Y

)
, for r Q s(x) ≤ 2 ,

1 − e−a ln2 (b r Q s) , for r Q s(x) > 2 ,

(16)

where a and b are determined by continuity conditions at r Q s(x) =
2, γs = 0.7376, κ = 9.9, N0 = 0.7 and Q s is the saturation scale 
given by:

Q 2
s (x) = Q 2

0

( x0

x

)λ

(17)

with x0 = 1.632 × 10−5, λ = 0.2197, Q 2
0 = 1.0 GeV2. The first line 

of Eq. (16) describes the linear regime whereas the second one 
includes saturation effects. In the literature there is an improved 
version of the IIMS model, called bCGC [38] where the scattering
amplitude (16) and the saturation scale (17) depend on the impact 
parameter. We have used it in our calculations. The results were 
so close to those obtained with the IIMS, that we have decided to 
keep only the latter. Another well known dipole model is the GBW 
model [35], which captures the basic features of saturation physics 
and allows for simple analytical estimates. The GBW dipole–proton 
scattering amplitude is given by

N p(x, r) = 1 − exp

[
− Q 2

s r2

4

]
(18)

with Q 2
0 = 1.0 GeV2, x0 = 3 × 10−4 and λ = 0.288. Finally, we will 

also use the dipole–proton cross section estimated with the help 
of the DGLAP analysis of the gluon distribution, which is given by 
[39]:

σdip(x, r) = π2

3
r2αsxg(x,10/r2) (19)

where xg(x, Q 2) is the target gluon distribution, for which we use 
the CTEQ6 parametrization [40]. The above expression represents 
the linear regime of QCD and is a baseline for comparison with 
the nonlinear predictions.
3. Results

As it was seen in the previous sections, the leading neutron 
spectrum depends essentially on two main ingredients: the pion 
flux and the dipole–pion cross section. The latter is very sensitive 
to the value of the involved Bjorken x, or, in our case, x̂. In Fig. 2
we show x̂ as a function of xL . From the figure we can conclude 
that at the highest values of the present photon–hadron energies 
(W ) and at the lowest values of Q 2 we enter deeply in the low x
domain. This will be even more so if measurements can be carried 
out at higher energies, but already at the available energies we can 
see that the leading neutron spectrum receives a contribution from 
the kinematical range where the nonlinear effects are expected to 
be present and hence it is interesting to investigate their influence.

We now address the dependence of our predictions for the 
leading neutron spectra on the models of the pion flux and of 
the dipole–pion scattering amplitude. In Fig. 3 (a) we show the 
different parametrizations of the pion flux introduced in the pre-
vious section as a function of xL . In Fig. 3 (b) we show several 
dipole pion cross sections as a function of xL . From the figure we 
can see that in the low xL region the spread between the differ-
ent curves is wider. Moreover, from Fig. 2 we can see that in the 
low xL region we move to the low x̂ domain, where saturation ef-
fects become more pronounced. Data points in this region are thus 
crucial to discriminate between models.

It is important to emphasize that the spectrum is propor-
tional to the product of the pion flux and the dipole–pion scat-
tering amplitude. Consequently, in what follows we will initially 
assume a given model for one of these quantities and analyze
the dependence on the other quantity. Having done that, we will 
choose one combination, calculate the normalized cross section 
(1/σDIS)dσ/dxL and compare with the experimental data. The nor-
malization was taken from Ref. [41] and is given by:

σDIS = 4π2αem

Q 2

c

xβ
(20)

where c = 0.18, β = d ln(Q 2/�2
0) with d = 0.0481 and �0 =

0.292 GeV.
In Fig. 4 (a) we consider the IIMS model for the scattering 

amplitude and estimate the leading neutron spectrum using the 
different models of the pion flux discussed in the previous sec-
tion. We observe that the behavior at medium and small values 
of xL is strongly dependent on the choice of the model. Using the 
cut-off �c in the range defined in Ref. [16], our results suggest 
that model f6 is disfavored. In our analysis we have considered all 
the pion fluxes which have been previously used by the experi-
mental groups [2] to describe their data. Up to now there are still 
too many theoretical uncertainties to attempt an ultimate fit of 
the leading neutron spectra, determining unambiguously the best 
pion flux. Nevertheless, we can say that, in comparison to the 
other models, the f2 model has one interesting feature which is 
its long and comparatively flat tail in the low xL region, which 
makes possible a fit of the data in this region even without includ-
ing a contribution from other processes. The other models fall too 
quickly at low xL and this cannot be easily cured just by changing 
the values of Q 2, the factor K or the factor Rq . However, the sub-
leading contributions mentioned above are more important in the 
low xL region of the spectrum and their inclusion combined with 
other pion fluxes such as f1 or f3 might result in a good fit of the 
data as well. In view of this slight superiority of f2, we shall use 
it in the remainder of this section. In Fig. 4 (b) we consider the 
f2 model for the pion flux and estimate the spectra using different 
models of the scattering amplitude. We can see that the predic-
tions have similar behavior in the transition between the small 
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Fig. 2. Scaled Bjorken variable x̂, (Eq. (11)), as a function of xL for two different virtualities: (a) Q 2 = 10 GeV2 and (b) Q 2 = 53 GeV2.

Fig. 3. a) Pion flux as a function of xL . b) Dipole–pion cross section as a function of xL .
and large-xL regimes, but with the magnitude being dependent 
on the description of the QCD dynamics. In doing the theoretical 
calculations we need to work with a fixed value of Q 2. However 
the data are given in such a way that for each value of xL there 
is a particular range of Q 2 values. We necessarily need to make 
a choice and we have taken the central value Q 2 = 53 GeV2 in 
the range covered by the experiment. In order to estimate the un-
certainty present in this choice, in Fig. 4 (c) we consider the f2
and IIMS models and calculate the spectrum for different values 
of the photon virtuality. We observe that our predictions are more 
compatible with the experimental data if larger values of Q 2 are 
assumed.

So far we have assumed that the photon hits only the pion, in 
a type of “impulse approximation”. However it has been shown in 
[10,11,13,26] that very often the photon hits also the neutron, spe-
cially in the low Q 2 domain, where the photon has low resolving 
power. In these cases the extra interactions generate the so called 
absorptive corrections, which can be estimated with models. In the 
case of leading neutron production, in [26] and in [13] the authors 
concluded that the corrections are not very large and affect almost 
uniformly all the xL spectrum. On the other hand, other calcula-
tions [10,11,34,42] found a strong reduction by about a factor 2 
in the cross section. In what follows we shall include the effect of 
absorptive corrections multiplying our spectra by a constant (inde-
pendent of xL ) factor K which can assume values from 0.5 to 1.
In Fig. 5 we give our description of data. All the parameters 
contained in the IIMS dipole cross section have been already fixed 
by the analysis of other DIS data from HERA. The f2 pion flux has 
been fixed by fitting previous data on leading neutron spectra. The 
bands account for the uncertainty in the choice of the factors Rq

and K . The upper limit of each band corresponds to the choice 
Rq = 2/3 and K = 1 whereas the lower limit corresponds to the 
choice Rq = 1/3 and K = 0.5. The central dashed lines represent 
the choice where Rq.K = 0.5, which could, for example, be real-
ized with Rq = 0.5 and K = 1. Our results follow the trend dictated 
by data. For now, it is not possible to be very precise. With a com-
bined analysis of other data on exclusive production with tagged 
leading neutrons we hope to reduce the bands.

Finally, we analyze the Feynman scaling in leading neutron 
spectra and the contribution of nonlinear effects to this process. 
As mentioned before this process is surprisingly sensitive to low 
x physics. In particular, at large xL we observe the transition from 
the large to small x domain. It is therefore interesting to check 
whether gluon saturation effects are already playing a significant 
role. As it can be seen from Eqs. (1) and (10), all the energy depen-
dence is contained in the dipole forward scattering amplitude N . 
Therefore, we can estimate the contribution of the nonlinear ef-
fects comparing the results obtained with saturation model, e.g. 
the IIMS model given in (16), with those obtained with the linear 
model, Eq. (19). Moreover, the theoretical expectation can be ob-
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Fig. 4. Leading neutron spectra compared with experimental data at W = 100 GeV
considering (a) the IIMS scattering amplitude and different choices of the pion flux 
(Q 2 = 53 GeV2); (b) the f2 pion flux and different choices for the scattering am-
plitude (Q 2 = 53 GeV2); and (c) the f2 pion flux and the IIMS scattering amplitude 
for different values of photon virtuality Q 2.

tained using the GBW model for the scattering amplitude, Eq. (18). 
In the linear limit, when the dipole radius is very small (or equiv-
alently Q 2 is very large) or the saturation scale is very small (and 
hence the energy is not very high), we can expand the exponent 
and obtain

σdπ (r, x̂) ∝ σ0 N (r, x̂) � σ0
Q 2

s (x̂)r2
4

Fig. 5. Leading neutron xL spectrum for three photon–proton energies compared 
with recent H1 data.

� σ0 Q 2
0 x0

λ

[
(1 − xL)W 2 + Q 2

Q 2 + m2
f

]λ

. (21)

Consequently, in this regime we see that the leading neutron xL
spectrum will depend on W . In a complementary way, in the non-
linear limit, when the dipole radius is very large (or equivalently 
Q 2 is very small) or the saturation scale is very large (and hence 
the energy is very high), we obtain

σdπ (r, x̂) ∝ σ0 N (r, x̂) � σ0 (22)

which is energy independent. One could argue that the mere in-
spection of Eq. (1) would suggest that at some asymptotically high 
energy the photon–pion cross section would reach some “black 
disk” limit and the energy dependence would disappear. We would 
like to emphasize that the information contained in (21) and (22)
is much richer and indicates the route through which the asymp-
totic limit is reached and the role played by nonlinear effects. 
These expectations can be compared with those obtained using the 
IIMS and DGLAP models for the dipole–pion cross section. In Fig. 6
(a) we show the spectra obtained in a purely linear approach. As 
expected we see a noticeable energy dependence. In contrast, the 
nonlinear predictions presented in Fig. 6 (b) show a remarkable 
suppression of the energy dependence at low values of Q 2, consis-
tent with the expectations. These results indicate that the Feynman 
scaling (and how it is violated) can be directly related to the QCD 
dynamics at small-x.

We close this section, emphasizing that, in order to study Feyn-
man scaling it is desirable to have data at high energies, in the 
very forward neutron rapidity region (large xL) and at a fixed value 
of Q 2. The onset of saturation effects happens when Q 2 < Q 2

s , 
where Q s is the saturation scale given by Eq. (17). It is difficult to 
be very precise, but from the curves shown in Fig. 6 (b) and from 
the accumulated experience with high energy processes, it is rea-
sonable to say that saturation (and hence Feynman scaling) would 
be visible at Q 2 � 1 − 2 GeV2.

4. Summary

In this work we have studied leading neutron production in 
e + p → e + n + X collisions at high energies and have calcu-
lated the Feynman xL distribution of these neutrons. The differ-
ential cross section was written in terms of the pion flux and 
the photon–pion total cross section. We have proposed to describe 
this process using the color dipole formalism and, assuming the 
validity of the additive quark model, we have related the dipole–
pion with the well determined dipole–proton cross section. In this 
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Fig. 6. (a) Leading neutron spectra for different energies considering (a) the linear DGLAP model and (b) the nonlinear IIMS model for the dipole–pion cross section.
formalism we have been able to estimate the dependence of the 
predictions on the description of the QCD dynamics at high ener-
gies as well as the contribution of gluon saturation effects to lead-
ing neutron production. With the parameters constrained by other 
phenomenological information, we were able to reproduce the ba-
sic features of the recently released H1 leading neutron spectra. 
Presenting an ultimate fit of these data is a difficult and still open 
problem, which we do not try to solve in this paper. We just 
wanted to include a new ingredient in the theoretical framework: 
saturation physics, implemented via color dipole models. After in-
troducing the idea, the calculation just aimed at showing that the 
description of leading neutron spectra using (among other ingre-
dients) saturation models is compatible with data, not in conflict 
with them. After illustrating this compatibility, the next step would 
have been to produce the most complete fit of data, possibly ex-
cluding flux factors and/or dipole cross sections. Unfortunately, this 
is not yet possible, because so far there are too many uncertain-
ties in the calculation. The sources of these uncertainties in the 
computation of leading neutron spectra are: i) the strength of the 
absorptive corrections represented by the factor K ; ii) the strength 
of the sub-leading contributions, such ρ and a2 emission; iii) the 
validity of the additive quark model for the photon–pion cross sec-
tion represented by the factor Rq; iv) the precise knowledge of Q 2

to be used in the calculations; v) the strength of the contribution 
from direct fragmentation of the proton into neutrons (estimated 
in the Monte Carlo simulations in the Ref. [1]); vi) the precise form 
of the pion flux; vii) the precise form of the dipole cross section.

It may be possible to constrain the unknown numbers and as-
sumptions with the help of more experimental data on exclusive 
processes with tagged leading neutrons, such as those on D∗ pro-
duction [2] and those on ρ production, released very recently by 
the H1 Collaboration [43]. Work along this line is in progress. Fi-
nally, one of our most interesting conclusions is that leading neu-
tron spectra can be used to probe the low x content of the pion 
target and hence it is a new observable where we can look for 
gluon saturation effects. At higher energies this statement will be-
come more valid. Moreover saturation physics provides a precise 
route to Feynman scaling, which will eventually happen at higher 
energies.
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