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Abstract

This paper presents simple proofs for the global convergence of evolution strategies in spherical
problems. We investigate convergence properties for both adaptive and self-adaptive strategies.
Regarding adaptive strategies, the convergence rates are computed explicitly and compared with
the results obtained in the so-called “rate-of-progress” theory. Regarding self-adaptive strategies,
the computation is conditional to the knowledge of a speci;c induced Markov chain. An explicit
example of chaotic behavior illustrates the complexity in dealing with such chains. In addition
to these proofs, this work outlines a number of di%culties in dealing with evolution strategies.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

For almost three decades, the theory of evolution strategies (ES) has focussed on con-
vergence toward optima of simple objective functions [1,2]. Of these solvable models,
the sphere problem is among the most frequently studied [13,5]. Despite the simplicity
of this model, the analytical treatment of convergence issues however proves to be
especially di%cult.
In lieu of convergence assessments, the performances of evolution strategies are usu-

ally measured through a quantity called the rate-of-progress that evaluates the average
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improvement after a single step of the algorithm. While interesting observations can
be made from this measure, the question of whether the strategies converge or not
remains open. For instance, practitioners often refer to [13, Fig. 5.9] for choosing good
parameter settings in (1; �)-ES for which a single parent is replaced by one of its �
oGspring. The ;gure actually describes a relationship between the rate of progress and
the universal step length (standard deviation). Although the ;gure suggests that the
strategies should diverge from the optimum for large step lengths nothing establishes
the result formally.
Several ways of tackling the convergence issue have been proposed in the literature.

Rudolph used a mathematical tool called martingale theory that ensures the conver-
gence of (1+�)-ES [10,11]. Yin et al. have identi;ed (1; �)-ES as being relevant to the
theory of stochastic approximation [14,15] . However, this theory has the drawback
of relying on heavy stability hypotheses (e.g., Theorem 4.1 [15]), that can hardly be
checked in practice, and few concrete results can be established following this approach.
So far, the most complete convergence theory has been achieved by Beyer [3–5]

whose work concerns one-step measures as well as global convergence results. Nonethe-
less, Beyer’s approach makes use of several approximations that are non-rigorous from
the mathematical viewpoint. A ;rst approximation called the :rst order approximation
amounts to considering averaged instead of random behaviors. In a second kind of
approximation, Muctuations are modeled as Gaussian noises which can be a crude ap-
proximation of the actual behavior. While partly con;rmed by numerical experiments of
the standard evolution strategies (i.e., Gaussian mutations, log-normal self-adaptation),
these techniques can hardly be applied to other contexts.
In the next section (except for Section 3), we consider the problem of minimizing

the sphere function

f(x) = ‖x‖2; x ∈ Rd; d¿ 1;

where ‖:‖ denotes the d-dimensional Euclidean norm

‖x‖2 =
d∑

i=1
x2i :

Following Eiben et al. [6], (1; �)-ES can be classi;ed according to the existing ap-
proaches for step length control: adaptive or self-adaptive. The purpose of this note
is twofold. First, it presents simple global convergence proofs for adaptive and self-
adaptive evolution strategies on the spherical problem (Sections 2 and 4). Second, it
points out some intrinsic di%culties that seem to be associated with global conver-
gence issues, and that make ES algorithms highly complex systems. Some of these
di%culties are of geometrical nature (Sections 2–4), some other are strongly related to
nonlinearities inside the dynamics (Section 5). For instance, a common pitfall in the
evolutionary computation community consists of believing that having downhill ori-
ented progress vectors is a su%cient condition for global convergence (see the remark
after Theorem 3.1 in [15]). Section 2 shows that this can be false, and an additional
di%culty comes in convex problems where progress vectors may not be oriented in
the correct direction (Section 3). In Section 5, we provide an example of chaotic be-
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havior underlying self-adaptive ES, and we compute the rate of convergence exactly.
In this example, the ratio between the distance from the optimum and the current step
length wanders as a sequence of uniform random variables, which is again a surprising
observation which respect to the existing literature [4,5].

2. The (1; �)-evolution strategy

Let � be a ;xed integer. The (1; �)-ES strategy de;nes a Markovian dynamics for
which a basic step is usually described as follows [13,5]. Let x∈Rd (d¿1) be any
initial arbitrary solution, and � a positive constant called the step length. Let 	1; : : : ; 	�

be � random centered variables sampled from a symmetrical distribution of ;nite mean.
Here, symmetry means that the distribution is invariant by any d-dimensional orthog-
onal transformation. A typical choice is the multivariate Gaussian distribution of co-
variance matrix identity Id. The 	‘’s are assumed to be independent of each other and
from the past. The update rule consists of computing a new solution y as follows:

y = argmin{f(x + �	1); : : : ; f(x + �	�)}; �¿0:

The distribution of the 	‘’s is usually called the o;spring distribution, and the integer
� corresponds to the number of oGspring. The (1; �)-ES dynamics in d dimensions is
associated with a Markov transition kernel on Rd that we denote by p�(y|x).
Historically, the ;rst attempt to build a convergence theory of ES was directed

toward the analysis of a single step of the algorithm, i.e., the solutions produced from
the transition kernel p�(y|x) [13]. This static approach is known as the rate-of-progress
theory. It is based on a speci;c normalization rule in which the step length is divided
by the Euclidean norm of the current solution

�∗ =
�
r
;

where

r = ‖x‖ =
√

x21 + · · ·+ x2n:

In the rate-of-progress theory, �∗ is kept constant, and is called the universal step
length. The goal of this theory is seeking which parameter settings maximize a static
quantity de;ned as the progress rate (see [13])

�(x) =
∫ ‖y‖ − ‖x‖

‖x‖ p�(y|x) dy:

In this section, we shall consider the adaptive dynamics de;ned as follows. Let
X0 = x be the initial solution, we take

Xn+1 = argmin{f(Xn + �n	1); : : : ; f(Xn + �n	�)}; n¿ 0; (1)

where

�n = �∗rn (2)
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and

rn = ‖Xn‖:
Although the above algorithm is seldom used by practitioners in solving real-world
problems, it has the properties required in order to compare global convergence results
with those obtained from the static approach. The de;nition of this adaptive strategy
translates the hypothesis that �n=rn should be constant. In contrast with previous works,
we shall seek optimal universal step lengths on the basis of the convergence of the
dynamics.
Let us start with a set of elementary remarks and further de;nitions. The transition

kernel of the adaptive (1; �)-ES is equal to

p̂(y|x) = p�∗‖x‖(y|x);

where �= �∗‖x‖. Denote by Y (�)
x (resp. Ŷx) and call progress vector associated to

a step length � (resp. universal step length �∗), a random variable of probability
distribution density p�(x + ·|x) (resp. p̂(x + ·|x)). The average progress vectors are
quantities de;ned as

��(x) = E[Y �
x ] =

∫
yp�(x + y|x) dy; (3)

and

�̂(x) = E[Ŷ x] =
∫

yp̂(x + y|x) dy: (4)

Note that the progress vectors possess an interesting rescaling property. Consider any
�¿0. Then we have

�Ŷ x = �Y �∗‖x‖
x = Y ��∗‖x‖

�x = Ŷ �x; (5)

where the identities hold in distribution, i.e., the progress vector starting from �x has
the same distribution as � times the progress vector starting from x. As a consequence,
the adaptive dynamics can be rescaled so that they restart from x= e1 (or x=−e1) at
each generation, where e1 = (1; 0; : : : ; 0) is the unit vector in d dimensions.
First, we consider the case of one dimension (d=1). Because, the distribution of

Ŷ1 will play a crucial role in computing a global convergence rate for (Xn), we give
here its explicit description.

Lemma 2.1. Let d=1 and Ŷ1 be the progress vector obtained by starting from x=1
(with step length �∗). Let g�;�∗ denote the probability density function of Ŷ1. Then
we have

g�;�∗(t) =
�
�∗ p	

( t
�∗

)[
F	

(−|t + 1| − 1
�∗

)
+ 1− F	

( |t + 1| − 1
�∗

)]�−1

;

t ∈ R;
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where p	 and F	 are respectively the density and the cumulative distribution function
of the o;spring distribution.

Proof. Let q�;�; x be the density of Y (�)
x . Because Y (�)

x equals t when one of the �
oGspring equals x + t and f(x + t) is lower than all other oGspring values, we have

q�;�;x(t) =
�
�
p	(t=�)Pr[f(x + �	) ¿ f(x + t)]�−1; (6)

where 	 is sampled from the oGspring distribution p	. Rewriting this equation in the
particular case x=1 and �= �∗ leads to the result.

In one dimension, the adaptive (1; �)-ES converges or diverges at a linear rate that
can be computed as follows.

Theorem 2.1. Let d=1 and (Xn) be the Markov chain associated to the adaptive
(1; �)-ES de:ned by Eqs. (1), (2) with universal step length �∗, and rn = |Xn|. Assume
that �̂(1) is :nite. Then,

1
n
ln rn → �(�∗; �) as n → ∞;

where

�(�∗; �) =
∫ +∞

−∞
ln(|1 + y|) g�;�∗(y) dy:

Proof. Assume that r0¿0. According to Eq. (5), the dynamics of (rn) can be rescaled
in the following way:

rn+1 = |Xn + Ŷ Xn | = rn|1 + sign(Xn)Ŷ 1|:

Using the symmetry of the oGspring distribution, we obtain that

ln rn+1 = ln r0 +
n∑

k=1
ln |1 + Yk |;

where the Yk ’s are i.i.d. random variables sampled from the probability density function
g�;�∗ . The result follows from the strong law of large numbers.

The function �(�∗; �) that appears in Theorem 2.1 can hardly be computed explicitly
even for small values of �. Fig. 2 displays the values of �(�∗; 3) obtained numerically
in the case of Gaussian mutations. With �=3 the optimal step length �∗

opt is around
0:94 and the rate of convergence is greater than 1.1. Besides, the dynamics diverge for
�∗¿�∗

c =4:73. The shape of the curve is quite similar to Schwefel’s curves (Fig. 5.9.
[13]) that display the relationships between the rates of progress and the universal step
length.
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Fig. 1. The geometrical de;nition of �(r; t). A(r; t) is the relative surface area of the sphere of radius
r which does not intersect the sphere of radius t.

Let us now give a generalization of this result in d dimensions. The extension of
Theorem 2.1 to d¿2 involves the computation of a new constant �(d; �; �). This
constant will be de;ned as a double integral whatever the dimension. Denote by Ŷ1
the progress vector after starting from e1 with step length �∗. We set

r̂1 = ‖e1 + Ŷ 1‖:

When all oGspring norms are greater than t, we have r̂1¿t. This implies that

Pr[r̂1 ¿ t] = Pr[‖e1 + �∗	‖ ¿ t]�: (7)

Because spherical problems are invariant by orthogonal transformations, we have

P[‖e1 + �∗	‖ ¿ t] =
∫ +∞

0
A(r; t)p	(r=�∗) d(r=�∗); (8)

where A(r; t) is the relative surface area of the sphere of radius r centered at e1 which
does not intersect the sphere of radius t centered at O (see Fig. 1), and p	 is the
probability density function of 	.
If r¡1− t or r¿1+ t, then we take A(r; t)= 1. Otherwise, A(r; t) is mathematically

de;ned as

A(r; t) =
2

d
√
%

&(d=2 + 1)
&(d=2− 1

2 )

∫ �(r;t)

0
sind−2 u du:
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Fig. 2. The values of �(�; 3) obtained from three oGspring with optimal step length �∗opt ≈ 0:94 in one
dimension. The dynamics diverge for �∗¿�∗c ≈ 4:73.

After calculation, we have

A(r; t)

=




1
%

[
�(r; t)− cos �(r; t)

(d−4)=2∑
j=0

22j(j!)2

(2j + 1)!
sin2j+1 �(r; t)

]
for n = 2k;

1
2

[
1− cos �(r; t)

(d−3)=2∑
j=0

(2j)!
22j(j!)2

sin2j �(r; t)

]
for n = 2k + 1;

where �(r; t)∈ [0; %] is the half-angle de;ned as

cos �(r; t) =
r2 + 1− t2

2r
:

Putting Eqs. (7) and (8) together, we ;nd the probability density function fR of r̂1

fR(t) =
�

�∗�

∫ +∞

0

@A(r; t)
@t

p	

( r
�∗

)
dr

(∫ +∞

0
A(r; t)p	

( r
�∗

)
dr
)�−1

: (9)

Finally, a proof similar to Theorem 2.1 leads to the following result.

Theorem 2.2. Let (Xn) be the Markov chain de:ned by the adaptive (1; �)-ES in Eqs.
(1), (2), and rn = ‖Xn‖. Assume that �̂(e1) is :nite. Then, we have

1
n
ln rn → �(d; �∗; �) as n → ∞;
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Fig. 3. The critical normalized step length d�∗c (d) (up) and the optimal normalized step length d�∗opt(d)
(down) as functions of the dimension d for (1; 2)-adaptive ES. The dotted lines correspond to the (con-
stant) values obtained with respect to Schwefel’s rate-of-progress theory. Schwefel’s constant is 0:5. Beyer’s
constant is c1; � =0:5642.

where

�(d; �∗; �) =
∫ +∞

0
ln tfR(t) dt

and fR(t) is given in Eq. (9).

The improper integral �(d; �∗; �) cannot be expressed into a closed formula. When
	 is distributed according to the standard multivariate Gaussian distribution, the prob-
ability distribution of

1
�∗ ‖e1 + �∗	‖ =

∣∣∣∣∣∣ e1
�∗ + 	

∣∣∣∣∣∣
is the shifted chi-square distribution with d degrees of freedom and location parameter
+=1=2(�∗)2. Its probability density function can be formulated as

f(t) = e−+ ∑
n¿0

+n

n!
f,2(d+2n)(t); t ¿ 0:

In this situation, we obtain a simpler formula

fR(t) =
�

�∗� f
( t
�∗

)(∫ +∞

t
f
( u
�∗

)
du

)�−1

; t ¿ 0:

Based on numerical resolution, Figs. 3–5 allow us to make precise comparisons with
the curves obtained from the rate-of-progress theory in the Gaussian framework. In
Fig. 3, the number of oGspring was taken equal to �=2, whereas it was equal to
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Fig. 4. The critical normalized step length d�∗c (d) (up) and the optimal normalized step length d�∗opt(d)
(down) as functions of the dimension d for (1; 5)-adaptive ES. The dotted lines correspond to the (constant)
values obtained with respect to Schwefel’s rate-of-progress theory. Schwefel’s constant is 1:05. Beyer’s
constant is c1; � =1:1630.
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Fig. 5. The critical normalized step length d�∗c (d) (up) and the optimal normalized step length d�∗opt(d)
(down) as functions of the dimension d for (1; 10)-adaptive ES. The dotted lines correspond to the (constant)
values obtained with respect to Schwefel’s rate-of-progress theory. Schwefel’s constant is 1:37. Beyer’s
constant is c1; � =1:5388.

�=5; 10 in Figs. 4 and 5. Two curves are displayed in each ;gure. The upper curves
describe the relationship between critical values �∗

c for which �(d; �∗
c ; �)= 0 and the

problem dimension d. The lower curves concern optimal values �∗
opt. The dotted lines

recall the values obtained from [13] and the straight lines recall those of [5]. The
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Fig. 6. Relative speed loss when using the optimal �∗’s from Schwefel’s rate-of-progress theory as a function
of the dimension, for �=2; 5; 10 (from top to bottom).

second constant corresponds to c1; �, i.e. the values computed when d goes to in;nity
[5]. They are equal to c1;2 = 0:5642, c1;5 = 1:1630, and c1;10 = 1:5388. These values
provide a good ;t to the limit of d�∗

opt, and this leads us to conjecture that

�∗
opt ∼

c1;�
d

; as d → ∞:

Another remarkable fact is that Schwefel’s critical and optimal values always under-
estimate the true critical and optimal step length, signi;cantly for small dimensions.
Because of this property, selecting optimal parameters from the rate-of-progress ap-
proach always warrant that global convergence holds. Nevertheless, our work shows
that such choices can be improved. Relative losses in performances using Schwefel’s
constants can be found in Fig. 6. For large dimensions, the relative losses are however
lower than 2–3% and Schwefel’s approximations can be considered accurate.

3. Remarks on convex problems

Because the function f(x)= x2 is symmetric, the average progress vector �̂(x) is
always oriented in the downhill direction (see Lemma 3.1). Believing that this ensures
convergence is a common pitfall in evolutionary computation. For instance, Yin et al.
[15] used this argument to justify the global convergence of more general adaptive
strategies. Theorem 2.1 shows that the algorithm may be divergent even when average
progress vector is oriented properly (because � can take positive values).
This section details another remark about convex problems which have been consid-

ered as natural extensions to spherical problems in [10]. The convergence properties
of adaptive (1; �)-ES obtained in Theorem 2.1 are more a consequence of symmetry
than a consequence of convexity. For convex problems, the progress vector is not
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always oriented in the downhill direction, as will be shown by Theorem 3.1, which
also provides a counterexample to Proposition 3.1 in [15].
In this section, the adaptive algorithm using the step length �= �∗|x| will be replaced,

as in [15], by

� = H (fx(x)); (10)

where fx denotes the gradient of f, and H :R→R+ is a real-valued function for which
H (x)= 0 implies x=0. This choice generalizes �= �∗|x| to non-spherical problems.
In this section, notations p̂, �̂ and Ŷ will refer to the adaptation scheme de;ned by
(10) instead of (2). Let us start with a simple lemma.

Lemma 3.1. Let x be :xed. If f is such that, for all t¿0, f(x + t)¿f(x − t), then
�̂(x)¡0.

If f is symmetric (f(x)=f(−x)), then �̂(x) is always downhill oriented.

Proof. This is a simple consequence of (6). Indeed, for t¿0, we have

Pr[f(x + �Z)¿f(x + t)] ¡ Pr[f(x + �Z) ¿ f(x − t)]:

Next, set H (x)= |x|, and consider the function f de;ned by

f(x) =
{

hx2 if x¡ 0;
hax2 otherwise;

(11)

where a¿0 and h¿0. With this particular function, the rescaling property (5) can
be rewritten in the following way (the additional superscripts h and a are used to
emphasize the dependence on the new parameters): For �¿0 and h′¿0, let

Y (�;h;a)
x = Y (�;h′ ;a)

x ; (12)

Y (�;h;a)
x = �Y (�=�;�2h;a)

x=� : (13)

In distribution, we have

Ŷ�x = �Ŷx: (14)

Theorem 3.1. Let �̂(x) be the average progress vector for adaptive (1; �)-ES, as in
Eq. (4). For all a¿0, there exists a value h1(a) such that, for all h¿h1(a), the sign
of �̂(x) is given by Table 1:

Table 1
x¡0 x¿0

a¡1 + +
a = 1 + −
a¿1 − −
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Proof. The cases a=1, a¡1; x¡0 and a¿1; x¿0 follow from Lemma 3.1. We inspect
the case a¿1; x¡0. The remaining case can be treated similarly.
Thanks to Eq. (14), �̂(x) has the sign of �̂(−1). Using (12) and (13), we have

�̂(−1) = E[Y (2h;h;a)
−1 ]

= E[Y (2;h3 ;a)
−1=h ] = E[Y (2;1;a)

−1=h ]:

Hence, �̂(−1) goes to E[Y (2;1; a)
0 ] as h goes to in;nity. So we need to prove that

E[Y (2;1; a)
0 ] is negative to complete the proof. Thanks to Eq. (6), we can write E[Y (2;1; a)

0 ]
= I+ + I−, where

I+ = �
∫ +∞

0
t(1− F	(t=�) + F	(−t

√
a=�))�−1p	(t=�)=� dt;

and

I− = �
∫ 0

−∞
t(F	(t=�) + 1− F	(−t=�

√
a))�−1p	(t=�)=� dt

=−�
∫ +∞

0
t(1− F	(t=�) + F	(−t=�

√
a))�−1p	(t=�)=� dt:

But, for t¿0 and a¿1, −t=�
√
a¿ − t

√
a=�, so that E[Y (2;1; a)

0 ] = I+ + I−¡0 for all
�¿0.

From the table of Theorem 3.1, we can conclude that the average progress vector is
not always downhill oriented in the adaptive (1; �)-ES. To see why Theorem 3.1 pro-
vides a counterexample to Proposition 3.1 of [15], f can be transformed into a twice
diGerentiable function with bounded derivatives by modi;cation in a small neighbor-
hood of zero. The modi;ed function matches with the hypothesis of [15], but their
conclusions are erroneous.
Regarding the particular landscape f, the behavior of the adaptive (1; �)-ES can be

studied again.

Theorem 3.2. Consider the Markov chain (Xn) corresponding to the adaptive (1; �)-
ES algorithm and the objective function f given in Eq. (11). Let rn = |Xn|. We have

1
n
ln rn → Kh;a as n → ∞;

where the constant Kh;a can be computed in terms of the o;spring distribution in the
following way:

Kh;a =
∑

1∈{±1}

p−1;1

p1;−1 + p−1;1
E[ln |1 + 1Ŷ 1|];

and

p1;1′ = Pr[11′(1 + 1Ŷ 1) ¿ 0]:
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Fig. 7. The values of Kh; a for the adaptive (1; 3)-ES and the non-symmetric objective function de;ned by
(11), as a function of h, for a=1; 5; 20.

Proof. From Eq. (14), one step of the adaptive (1; �)-ES is given by

x �→ x + |x|Ŷ sign(x) = x[1 + sign(x)Ŷ sign(x)]:

Let Sn =sign(Xn). The process (Sn)n is a Markov chain with transition probabilities
p1; 1′ , with stationary distribution % given by

%(1) =
p−1;1

p−1;1 + p1;−1
:

In addition, the process (Sn; |Xn+1=Xn|)n is a process de;ned on the Markov chain
(Sn), so that the process (ln |Xn+1=Xn|)n satis;es the law of large numbers (see e.g.
[7]).

The value of Kh;a can be obtained numerically. When Kh;a is negative (resp. posi-
tive), the algorithm converges (resp. diverges) linearly. Fig. 7 gives the value of Kh;a

as a function of h, for several values of a, and for a standard Gaussian oGspring dis-
tribution. Remark that the asymmetry of f is parameterized by a. The constant Kh;a

increases as a increases: Symmetry is a factor that improves convergence speed.

4. The self-adaptive (1; �)-evolution strategy

In self-adaptive (1; �)-ES, the process of evolution is exploited to determine which
changes are the most advantageous with respect to the ;tness of individuals. A major
diGerence with adaptive evolution strategies is that the step length is then evolved by
the evolutionary algorithm rather than exogenously de;ned.
The self-adaptive ES can be de;ned as follows. Let X0 ∈Rd (d¿1) be any initial

arbitrary solution. Let Xn be the solution obtained after n steps and �n be the associated
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step length. The solution at time n+1 is computed from a sample 	1; : : : ; 	� of � inde-
pendent random centered variables taken from a symmetrical d-dimensional probability
distribution, and a sample 31; : : : ; 3� of � independent nonnegative one-dimensional ran-
dom variables. More speci;cally, we have

Xn+1 = argmin{f(Xn + �n31	1); : : : ; f(Xn + �n3�	�)}: (15)

In addition, the step lengths �n are updated according to the multiplication by the
variable 3? that leads to the best increment at each iteration. The symbol ? indicates
which label corresponds to the selected oGspring

�n+1 = �n3?;

Xn+1 = Xn + �n3?	?: (16)

In typical choices, the 	‘’s are multivariate Gaussian random variables with diagonal
covariance matrices, and the 3‘’s are usually sampled according to standard lognormal
distributions.
Denote by X 1

z , 31?z , 	1?z the variables obtained after a single step of the dynamics
described by Eq. (16). The subscript z indicates that we start from Xn = ze1 where e1
is the unit vector e1 = (1; 0; : : : ; 0), and z is a nonnegative number. The superscript 1
means that we take �n =1. Hence, we have

X 1
z = ze1 + 31?z 	1?z :

In addition, we consider the Euclidean norm of X 1
z obtained as follows:

r1z = ‖X 1
z ‖:

The following lemma establishes a useful result: The Euclidean norm rn = ‖Xn‖ can
be rescaled so that the normalized variables Zn = rn=�n possess their own autonomous
Markovian dynamics.

Lemma 4.1. Let (Xn) be de:ned as in Eq. (15) and

Zn = rn=�n

with rn = ‖Xn‖. Then (Zn) is an homogeneous Markov chain. Starting from Z0 = z, a
single step of this chain yields a random variable whose distribution is the same as

Z1 =
r1z
31?z

:

Proof. In order to emphasize the rescaling, Eqs. (15) and (16) can be rewritten as
follows:

Zn+1 =
‖Xn+1‖
�n+1

=
‖Xn=�n + 3?	?‖

3? ; (17)
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where

? = argmin
16‘6�

∥∥∥∥Xn

�n
+ 3‘	‘

∥∥∥∥ : (18)

According to the symmetry of the oGspring distribution, this is equivalent to

Zn+1 =
‖Zn + 3?	?‖

3? ; (19)

and

? = argmin
16‘6�

∥∥Zn + 3‘	‘
∥∥ : (20)

We see from Eq. (19) that Zn+1 depends on the past through Zn only, and this property
is shared by 3? and 	? as well. This proves that (Zn) is an homogeneous Markov
chain. Starting from Z0 = z, we see that

Z1 =
‖ze1 + 31?z 	1?z ‖

31?
=

r1?z
31?

: (21)

Comments. Lemma 4.1 actually states that the Z evolution can be decoupled from the
r evolution. Hence it provides a general proof of Beyer’s result that the � evolution can
be decoupled from the r evolution [4]. In addition, we have shown that this property is
a natural consequence of the symmetry in the model, and is independent of the nature
of mutations (	 and 3 are arbitrary variables). It has also been shown within the
framework of progress rate theory, that the evolution of normalized mutation strength
can be described by a Chapman–Kolmogorov equation. For all measurable set B, the
Chapman–Kolmogorov equations can be written as

PZn+1(B) =
∫

B

∫ ∞

0
PZn(dz)K(z; dt);

where the transition kernel can be computed as

K(z; dt) = P(r1z =3
1?
z ∈ dt):

When studying the rn evolution, the Zn’s play the role of hidden variables. The
dynamics of Zn are independent of rn but in return the Zn’s act as latent variables in the
rn evolution. The model is therefore relevant to the theory of Hidden Markov chains
(e.g., [9]). When the dynamics of (Zn) are su%ciently mixing, a unique stationary
probability distribution exists, and can be found as the solution to the following integral
equation:

+(dt) = +K(dt) =
∫ ∞

0
+(dz)K(z; dt): (22)

From an algorithmic point of view, the Markov chain (Zn) must enjoy good stability
properties. Irreducibility ensures that every set A will be visited by the chain but
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this property is too weak to guarantee that Zn will enter A often enough. Here, we
assume that (Zn) is Harris-recurrent [8]. Harris-recurrence is a stronger concept than
irreducibility. Let us recall this concept. Let NA be the number of passages in A. The
set A is Harris-recurrent if

Pz(NA = ∞) = 1; z ∈ A:

The chain (Zn) is Harris-recurrent if there exists a measure  such that (Zn) is
 -irreducible and for every set A with  (A)¿0, A is Harris-recurrent. We have the
following result.

Theorem 4.1. Let (Xn) be de:ned as in Eq. (15) and Zn = rn=�n with rn = ‖Xn‖. As-
sume that the Markov chain (Zn) is Harris-recurrent. Then (Xn) either converges or
diverges linearly. The rate of convergence is given by

1
n
ln rn → � =

∫ ∞

0
E[ln(r1z =z)] d+(z); as n → ∞;

where + is the solution of the integral Eq. (22).

Proof. Let

Y 1
z = 31?z 	1?z = X 1

z − ze1:

Assume that r0¿0. We have

ln rn+1 = ln r0 +
n∑

k=1
ln

∥∥∥∥∥e1 + Y 1
Zk

Zk

∥∥∥∥∥ :

By the law of large numbers holds (see [8,9]), we have

1
n
ln rn →

∫ ∞

0
E[ln ‖e1 + Y 1

z =z‖] d+(z); as n → ∞:

Theorem 4.1 actually points out that global convergence (or divergence) of the self-
adaptive (1; �)-ES can be decided from the inspection of a much simpler chain than the
original one. The theorem shows that the Harris-recurrence of (Zn) is a crucial step in
establishing global convergence of ES. Several technical hypotheses allow proving the
Harris-recurrence property [8,9]. The most popular criterion consists of showing that
the only bounded harmonic functions are constant. Nevertheless, even with the simplest
assumptions about 	 and 3, checking this criterion remains di%cult for self-adaptive
(1; �)-ES’s.
Again, convergence occurs at a linear rate. The rate of convergence can be expressed

as a two-dimensional integral as follows:∫ ∞

0
E[ln(r1z =z)] d+(z) =

∫ ∞

0

∫ ∞

−∞
ln |z′=z|p1(z′|z) dz′d+(z): (23)

Computing expression (23) remains di%cult unless the stationary distribution + is
known, and the next section will show that this distribution may take unexpected
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shapes. Nevertheless, if we assume an in;nite number of oGspring (�=∞), the single
step dynamics becomes biased toward local average improvement

E[‖ze1 + 31?z 	1?z ‖] ¡ z for all z¿0:

In this situation, we have

ln E[‖ze1 + Y 1
z ‖ ] ¡ ln z:

By Jensen’s inequality, we obtain that

E[ln ‖ze1 + Y 1
z ‖] ¡ ln E[‖ze1 + Y 1

z ‖];
and �¡0, i.e., the self-adaptive ES converges. Remark that checking the above condi-
tion does not involve any self-adaptation property because it assumes that �=1.
In view of further progress in building a rigorous theory, mathematical eGorts should

be directed toward the understanding of the recurrence and the stability of (Zn). A step
in this direction was made by Beyer [4] who proposed conditions for the recurrence
of 1=Zn = �n=rn bearing on the ;rst momentum of the self-adaptation distribution.
We ran numerical simulations of the one-dimensional dynamics in which we took

	 to be Gaussian and 3 sampled according to the Gamma distribution. Using the
shape parameter �=1 and the scale 9=0:6 in the self-adaptation distribution, we
observed that the simulations diverge. On the other hand, they converge when �=10
and 9=0:06 (we used �=10 oGspring in this experiment). Since the expectation of the
Gamma distribution is �9, a condition bearing on the ;rst momentum cannot be able to
discriminate between convergence and divergence, and more complex conditions must
be investigated.

5. Example of chaos under self-adaptive-ES

In this section, we consider a strongly simpli;ed model of self-adaptive ES and
show that its dynamics underly a chaotic behavior. Some intrinsic di%culties with these
algorithms are related to nonlinearities inside the dynamics, and make self-adaptive ES
belong to the class of highly complex systems.
In our model, both 3 and 	’s are Bernoulli random variables. More speci;cally,

	1; : : : ; 	� are created according to the following model. For ‘=1; : : : ; �,

	‘ =
{−1 with probability 1=2;
+1 with probability 1=2:

(24)

The � random variables 31; : : : ; 3� are generated as follows. For ‘=1; : : : ; �,

3‘ =
{
1=2 with probability 1=2;
2 with probability 1=2:

(25)

This model consists of an obvious discrete version of the standard self-adaptive (1; �)-
ES in which mutations are Gaussian and the self-adaptive rule uses lognormal random
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variables. Here Gaussian variables are merely replaced with symmetrical Bernoulli
random variables.
As in Section 4, we consider the normalized states

Zn =
|Xn|
�n

; n¿0:

Given Zn = z, the variable Zn+1 can take one of the four following values:

|z=2− 1|; |2z − 1|; |2z + 1|; |z=2 + 1|:
De;ne the following probabilities

p1(�) = 1− ( 34 )
�;

p2(�) = (34 )
�(1− ( 23 )

�);
p3(�) = (12 )

�(1− ( 12 )
�);

p4(�) = (12 )
�:

According to the value of z, the pi(�)’s describe the chances that Zn+1 equals |z=2−1|
or |2z − 1| or |2z + 1| or |z=2 + 1| up to a permutation of these four values. This is
routine to check that the most probable transitions can be described as follows:
If Zn = z61=2, then Zn+1 =1− 2z with probability p1(�),
If Zn = z ∈ ]1=2; 5=4], then Zn+1 =2z − 1 with probability p1(�),
If Zn = z ∈ ]5=4; 2], then Zn+1 =1− z=2 with probability p1(�),
If Zn = z¿2, then Zn+1 = z=2− 1 with probability p1(�).
Since the model is not amenable to an exact analysis, our focus is on the limiting

dynamics obtained by taking an in;nite number of oGspring, i.e., �=∞. In this limit,
the dynamics become deterministic

Zn+1 = T (Zn);

where T is obtained from the above description and is given in Fig. 8. After a ;nite
number of steps, the deterministic transformation T yields a sequence in (0; 1) that
(theoretically1) has the same behavior as a sequence of random numbers distributed
according to the uniform distribution [12]. For this model, the stationary distribution of
Zn can therefore be determined exactly. The next result gives the rate of convergence
explicitly.

Theorem 5.1. Consider the dynamics de:ned by Eqs. (24), (25) and �=∞ (i.e. p1(�)
= 1). Then, we have

1
n
ln rn → − ln 2 a:s:

Proof. Let T be the deterministic transformation on the interval [0; 1] such that

Zn+1 = T (Zn):

1 Given the ;nite representation of Moating point numbers in the computer, simulated sequences might
converge to a ;xed value.
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Fig. 8. The graph of T (boldface) and a sequence of numbers obtained from the iterations of zn+1 = T (zn).

By the ergodic theorem [12] and Theorem 4.1, ln rn=n converges to

K =
∫ 1

0
E[ln(rn+1=rn) |Zn = z] dz:

Given Zn = z in (0; 1),

rn+1

rn
=
∣∣∣∣Xn+1

�n+1

�n+1

�nz

∣∣∣∣
=
∣∣∣∣1− 2z

2z

∣∣∣∣ :
Then, we have

K =
∫ 1

0
ln
∣∣∣∣2z − 1

2z

∣∣∣∣ dz = − ln 2:

Comments. In other existing examples [5], the stationary distributions of Zn are approx-
imated as peaky distributions of shape close to the lognormal or the Gamma densities.
Because our model is a discrete version of the standard self-adaptive ES, the fact that
Zn converges to the uniform distribution on [0; 1] was rather unexpected. This points
out the issue of the robustness of the ES dynamics with respect to the hypothesis of
which distributions are used for sampling the mutations.

6. Discussion

This paper has presented elementary proofs for the global convergence of adaptive
and self-adaptive evolution strategies in simpli;ed frameworks.
Regarding adaptive strategies, our work outlines that selecting parameters according

to the optimality of the rate of progress (the traditional approach) is a circumspect
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and risk less approach. The true optimal parameters are actually underestimated in
this traditional approach and global convergence is always guaranteed. Nevertheless,
our results enable quantifying the relative loss in convergence speed when using these
parameters. Computing the exact rate of convergence of (1; �)-ES is neither more
di%cult nor more computationally intensive than computing rates of progress, and the
bene;t is obvious. In view of further works, note that global convergence can be
obtained for other strategies in a similar way. Recombinant strategies or noisy sphere
problems are indeed amenable to the same kind of analysis.
Several authors have attempted to extent convergence results to problems diGerent

from the sphere. We have underlined a number of potential pitfalls in doing so. In
convex problems for instance, the “average progress vector” �(x) is not necessarily
oriented in the downhill direction (a condition for convergence). This fact emphasizes
the di%culty in de;ning classes of problems for which the strategies work well.
Mathematical analyses of self-adaptive strategies are even more di%cult as they

involve Markov chains whose behavior can be complex. Proving linear convergence
and estimating convergence rates can nevertheless be done through the examination
of a simpler induced Markov chain. We have constructed an example for which the
behavior of this simpler Markov chain can be studied exactly. This example illustrates
the complexity in dealing with self-adaptation where chaotic behaviors may underpin
the dynamics. In the future, a challenging issue will consist of exhibiting recurrence
and stability conditions for this induced chain.
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