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In this paper we study set valued random processes in discrete time and with 
values in a separable Banach space. We start with set valued martingales and prove 
various convergence and regularity results. Then we turn our attention to larger 
classes of set valued processes. So we introduce and study set valued amarts and set 
valued martingales in the limit. Finally we prove a useful property of the set valued 
conditional expectation. 0 1990 Academw Press, Inc 

1. INTRODUCTION 

In this paper we expand the work initiated in [25-271, where we studied 
the properties of the set valued conditional expectation and proved various 
convergence theorems for set valued martingales and martingale-like 
processes, with values in a separable Banach space. 

Set valued random variables (random sets) have been studied recently by 
many authors. We refer to the interesting works of AloodeKorvin-Roberts 
[l], Bagchi [5], Cost6 [lo], Hiai-Umegaki [14], Hiai [15], and Luu 
[19], for details. Furthermore it was illustrated by the recent works of 
deKorvin-Kleyle [17] and the author [28], that the theory of set valued 
martingale-like processes is the natural tool in the study of certain 
problems in the theory of information systems (see [17]) and in mathe- 
matical economics (see [28]). Further applications can be found in the 
works Artstein-Hart [2] and Gin&Hahn-Zinn [ 133. 

In this paper, starting from the notion of a set valued martingale, we 
then proceed and define broader classes of set valued random processes (set 
valued quasimartingales, set valued amarts, and set valued martingales-in 
the limit), for which we prove various convergence results. Briefly the struc- 
ture of this paper is as follows. In the next section we establish our notation 
and recall some basic definitions and facts from the theory of measurable 
multifunctions (random sets) and set valued measures (multimeasures). In 
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Section 3, we concentrate on set valued martingales and prove various 
convergence and regularity results for them. In Section 4, we study various 
real valued processes related to a set valued martingale. Sections 5 and 6 
are devoted to extensions of the notion of a set valued martingale. So in 
Section 5, we introduce and study set valued amarts, while in Section 6, we 
study set valued martingales-in the limit. Finally in Section 7 we prove an 
interesting property of the set valued conditional expectation. 

2. PRELIMINARIES 

Throughout this work (52, Z, p) will be a complete probability space 
and X a separable Banach space. Additional hypotheses will be introduced 
as needed. We will be using the following notations: 

P&Y) = {A E X: nonempty, closed, (convex)} 

and 

P,,,,(,,(X) = (A Z X: nonempty. (w- )compact, (convex)}. 

Also if A~2~\{fa}, by (Al we will denote the “norm” of A, i.e., 
IAJ =sup{ ((XII : XE A), by a(., A) the “support function” of A, i.e., 
a(x*,A)=sup{( x*, x) : x EA}, x* EX*, and by d( ., A) the “distance func- 
tion” from A, i.e., d(z, A) = inf{ /Iz - XII : x E A}. 

A multifunction F: 52 + P,-(X) is said to be measurable, if one of the 
following equivalent conditions holds: 

(a) for every z E X, o + d(z, F(w)) is measurable, 

(b) there exist f, : Sz --f X measurable functions s.t. 

Fw=wzwL,l~ CDEQ. 

(c) GrF= ((o,x)~QxX: XEF(~))EZXB(X), B(X) being the 
Bore1 o-field of X (graph measurability). 

More details on the measurability of multifunctions can be found in the 
survey paper of Wagner [34]. 

By Sk we will denote the set of integrable selectors of F( .). So we have 

Sk= (f( .) E L’(X) :f(o) e F(o)p-a.e. ). 

Having Sk we can define a set valued integral for F( . ), by setting 
ja F= {jPf:f~Sb). Note that Sb (and so Jn F too), may be empty. It is 
easy to show that Sk is nonempty if and only if inf{ /Ix11 : x E F(o)} EL\. 
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We will say that a multifunction F( .) is integrably bounded if and only if 
o --) IF(o)1 is an L!+-function. In this case then Sk# @. 

Let Co c C be a sub-a-field of G and let F: iR + P,-(X) be a measurable 
multifunction s.t. Sk# 0. Following Hiai-Umegaki [ 141, we define the set 
valued conditional expectation of F( f ) with respect to Co, to be the 
Z,-measurable multifunction EzaOF: s2 -+ Pf(X), for which we have 
S&,~=cl{EZof:f~ Sk> (the closure in the L’(X)-norm). If F( .) is 
integrably bounded (resp. convex valued), then so is EzoF(. ). Note that in 
Hiai-Umegaki [ 141, the definition was given for integrably bounded F( .). 
However, it is clear that it can be extended to the more general class of 
multifunctions F( . ), used here. 

Let &L, 1 be an increasing sequence of sub-a-fields of C s.t. 
CJ((J~~~L~)=Z~. Let F,:O --) Pr(X), n 2 1, be measurable multifunctions 
adapted to (Z,},, i. We say that {F,,, C,,jnZl is a set valued martingale 
(resp. supermartingale, submartingale), if for every n 4 1, we have 

EznF,,+ 1(w) = F,(o)p-a.e. 

(resp. Ez”F,,+ 1(w) c I;,(o)p-a.e., Ez”Fn+ 1(w) 2 F,,(w)p-a.e.). 
On P,(X) we can define a (generalized) metric, known as the Hausdorff 

metric, by setting 

h(A, B) = max{sup(d(a, B) : a E A), sup(d(b, A) : b E: II)}. 

Recall that (P,(X), h) is a complete metric space. Similarly on the space 
of all P,(X)-valued, integrably bounded multifunctions, we can define a 
metric d( ., .) by setting 

WC G) = J h(~to), G(w)) &co). f2 

As usual we identify F,( .) and Fi( .), if F,(o) = F,(o) p-a.e. Again the 
space of Pf(X)-valued, integrably bounded multifunctions together with 
d( ., .) is a complete metric space. 

Next, let us recall a few basic definitions and facts from the theory of 
set valued measures. A set valued measure (multimeasure) is a map 
M:JZ’+Z*\{@> s.t. M(0)= (0) and for {A,,},a1 CC pairwise disjoint 
we have WUnPI An)=Cn21 M(A,). Depending on the way we interpret 
this last sum, we get different notions of multimeasures. However, when 
M( .) is P,,,(X)-valued, then all of them are equivalent. This result is the 
set valued version of the Orlicz-Pettis theorem. Since we will be dealing 
only with P&X)-valued multimeasures, we can say that M(-) is a set 
valued measure, if for all x* E X*A + a(x*, M(A)) is a signed measure. 
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We will close this section, by recalling the notions of convergence of sets 
that we will be using in the sequel. So if (A,2,A),1~,~2Y\(@), we set 

and 

We say that the A.‘s converge to A in the Kuratowski-Mosco sense, 
denoted by A, -+ K--M A, if w-i& A,,= A =s-lim A,. When X is finite 
dimensional, the weak and strong topologies coincide and then the 
Kuratowski-Mosco convergence of sets is the well known Kuratowski con- 
vergence denoted by A,, -+ KA (see Kuratowski [18] and Mosco [21]). 
We say that A, +h A, if h(A,, A) -+ 0. Finally A, -+” A, if for all x* E X*, 
a(~*, A,,) -+ a(,~*, A). 

3. SET VALUED MARTINGALES 

We start with a regularity result for set valued martingales. Our result 
generalizes Theorem 6.5 of Hiai-Umegaki [14], since we drop the 
separability hypothesis on X*. 

In the sequel (Z,},,, will be an increasing sequence of complete sub- 
a-fields of C s.t. C = o(Uns r Zn). Recall that X is always a separable 
Banach space. 

A sequence {fn}na, EL’(X) s.t. {fn, C,,},,>, is a martingale and for 
each n> 1, fn( .) is a selector of F,( ‘), where {E’,J .)},,,, is a sequence of 
P,..(X)-valued, integrably bounded multifunctions, is said to be a mar- 
tingale selector of { F,( . ) } n a , , and is denoted by (f,,) E MS(F,). 

THEOREM 3.1. If X has the R.N.P. and F,z : Q -+ P,,(X) are 
C,-measurable multifunctions s.t. 

(1) {F,,, Cn)n>, is a set valued martingale, 

(2) {IFAh is uniformly integrable, 

then there exists F: l2 -+ Pr,(X) integrably bounded s.t. EznF(o) = 
F,(o)p-a.e. n 2 1. 

Proof: Let M_cL’(X) be defined by M= (feL'(X): EZy~Skn, n> 1). 
As in the proof of Theorem 6.5 of Hiai-Umegaki [14], we can show that 
M is a closed, convex, bounded, and decomposable subset of L’(X) (to get 
these properties no separability of X* is needed). Then combining 
Theorems 3.1, 3.2, and Corollary 1.6 of Hiai-Umegaki [14], we get 
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F: 52 -+ Pf,( X) integrably bounded s.t. A4 = Sb. Our claim is that this is the 
desired I;(. ). 

From Luu C193, we know that Sbk(Z,) =cl{f, : (f,,) EMS(F,)}, ka 1. 
Let f~ Sk. Then <Ezzf) E MS(F,) aEz”SZ.= S$,+ s Sk”. On the other 
hand, given (f, ) E MS(F,), since X has the R.N.P., there exists fe L’(X) 
s.t. Ernf = f,, *f E M * S;” E Sk,,,. 
3 F,(w) = I+F(w)p-a.e. 

Therefore we conclude that Sin = SL,,, 
Q.E.D. 

We can relax the R.N.P. assumption on X, by imposing additional 
hypotheses on the random sets F,( .), n > 1. 

THEOREM 3.2. If F,,: Q + P,,(X) are C,-measurable multifunctions s.t. 

(1) {Fro ~nlnal is a set valued martingale, 

(2) F,,(o) L G(w)u-a.e. with G: 52 -+ PwkC(X) integrably bounded, 

then there exists F: $2 + Pf,.(X) measurable multifunction s.t. F(w) E 
G(o)p-a.e. and EznF(o) = F,(o)u-a.e. n 3 1. 

Proof Let ME L’(X) be as in the proof of Theorem 3.1. We saw that 
M = St, with F: Sz -+ Pf,(X) integrably bounded. Also for all f E Sk, from 
the definition of M, we have Eznf(w)rz FJo)s G(o)u-a.e. From 
Proposition V-2-6 of Neveu [23], we know that Eznf (co) +‘f(o)u-a.e. + 
f(o) E G(o)p-a.e. *F(w) c G(w)p-a.e. 

As in the proof of Theorem 3.1, through Luu’s representation result 
[19], we get that S&,,,,E Si,. On the other hand, given {g,},,> I E MS(F,), 
from Proposition 4.4 of Chatterji [9], we know that g,(w) +‘g(o)p-a.e., 
g E L’(X). Note that g, = Ezng (see Metivier [20, p. 621). So since 
S~k(2Y,)=cl{fk: (f,)EMS(F,)} (see Luu [19]), we have S&GS&“~=> 
s;” = S&“, *F,,(w) = EznF(o)u-a.e. Q.E.D. 

Having those regularity results, we can now prove a convergence 
theorem for set valued martingales. 

THEOREM 3.3. Zf X has the R.N.P., X* is separable and Ffl: !I2 + PfC(X) 
are C,-measurable multifunctions s.t. 

(1) {Fro znjnal is a set valued martingale, 

(2) IFA~)l G #(u)w.e. 4t.J E L:, 

then F,Jo) +K--M F(w)p-a.e. 

Proof From Theorem 3.1, we know that there exists F: 52 + P,=(X) 
C-measurable and integrably bounded by q5( .) s.t. EznF(o) = F,(o) p-a.e. 
Then for f~ Sk, we have Eznf E Sin, n > 1. From Proposition V-2-6 of 
Neveu [23], we have that Eznf(o) -“f(o)p-a.e. Hence we get that 

F(o) c s-h F,(o)p-a.e. (1) 
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On the other hand, from Proposition 1.4 of Luu [ 191, we know that 
there exists (~:>EMS(F,,), k> 1, s.t. for all n3 1, F,Jw)=cljf:(o)),,,. 
Then given x* E X*, we have that 

0(x*, F,(o)) = sup (x*.f:(o,,. 
k2l 

But note that ((.x*,St( .)), Zn}na, is an R-valued martingale and 
SUPn>1 SC2 sup,, 1(x *, E(O))+ d@(o) < I/-Y*]/ .sup,,>, Ja IF,1 < CCI. Also from 
Corollary 11.8 of Metivier [20], we know that there exist f" EL'(X) s.t. 
Exnfk = f t =c-fk E Si. Apply Lemma V-2-9 of Neveu [23], to get that 

sup (x*,St(w)) + sup (x*, f”(o))w E i2\N(.u*), p(N(x*)) = 0 as n + co 
k2l k>l 

=+ lim 0(x:*, F,(w)) d 0(x*, F(u))w E o\N(x*), p(N(X*)) = 0. 

Given that X* is separable and IF,(w)l <$(o)p-a.e. for all n$ 1, a 
simple density argument gives us that 

lim 0(x*, F,(o)) 6 a(~*, F(w))p-a.e. 

From Proposition 4.1 of [30], we deduce that 

w-G F,(w) C F(w)p-a.e. (21 

Combining (1) and (2) above, we conclude that 

Fn;n(u) 5 F(o),u-a.e. Q.E.D. 

We can have the same convergence result, but with the hypotheses of 
Theorem 3.2. 

THEOREM 3.4. If the hypotheses of Theorem 3.2 hold then there exists 
F. D + Pfc(X) integrably bounded s.t. 

F(o) c G(o)p-a.e. and F,(w) - K--M F(o)p-a.e. 

ProoJ The proof is the same as that of Theorem 3.3, using this time 
Theorem 3.2. Also instead of Corollary 11.8 of Metivier [20] (which 
requires X to have the R.N.P.), we use Proposition 4.4 of Chatterji [9] 
and Corollary 2, p. 126, of Diestel-Uhl [12]. Finally note that there exists 
tx*> ,,, ma1 z X* which is dense in X* for the Mackey topology m(X*, X) 
and recall that the support function of a weakly compact, convex set, is 
m(X*, X)-continuous. Q.E.D. 
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Remark. Under stronger hypotheses, Daures [ 111 and Neveu [24] 
proved convergence in the metric A( ., . ). 

If X is finite dimensional, then we have the following convergence result. 

COROLLARY I. If the hypotheses of Theorem 3.3 hold, then there exists 
F: Q + PJX) integrably bounded s.t. 

F,(o) S F(w)p-a.e. 

Proof. Follows from Theorem 3.3 above and Corollary 3A of Salinetti- 
Wets [32]. Q.E.D. 

Remark. A more general finite dimensional convergence result can be 
found in Van Cutsem [33]. The result of Van Cutsem was extended to set 
valued quasi-martingales by the author in [27] (Theorem 2.3). 

Another consequence of the convergence theorems is the following result. 

COROLLARY II. Zf the hypotheses of Theorem 3.2 hold, then there exists 
F: Sz --, PJX) measurable s.t. 

F(o) E C(o)u-a.e. and Sk”= Sk. 

Proof. Follows from Theorem 3.4 above and Theorem 4.4 of [30]. 
Q.E.D. 

4. RELATED [W-VALUED PROCESSES 

In this section we examine certain R-valued processes associated with a 
set valued martingale. 

THEOREM 4.1. if F,, : G -+ Pf,(X) are C,-measurable multifunctions s.t. 

(1) (Fm -L&m is a set valued martingale, 

(2) sup,, 1 II IFA II 1-c co> 

then there exists & .) E L\ s.t. IF,(o)l + d(o)p-a.e. 

Proof. From Proposition 1.4 of Luu [19], we know that there exists 
<f%> EMS(F,) k> 1 s.t. F,(o)=cl{f~(w)),.,~-a.e. Then we have 
IFn(o)l = sup, 2 1 )( f i(w)\\ p-a.e. Note that for all k 2 1, E”’ I( ft+ I(o)ll 3 
IIEzzf~+,(o)ll = Ilf:(o)ll p-a.e. So we see that for every ka 1, 
wl(~~lr~ LJn>l is a submartingale and sup,, , jn sup,, , 1) f ,k(o)lj dp(o) 
=SUPHrl In IF,,(o)1 d/~(o) < co. So we can apply Lemma V-2-9 of Neveu 
[23] and get that there exists 4(.)~: L\ s.t. supka r llfi(w)lj = IF,(w)l -+ 
&w)P-a.e. Q.E.D. 
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Another R-valued, martingale-like process asociated to / F,,( ) ) n ~ , is 
that of the distance functions. Namely we have: 

THEOREM 4.2. Jf F, : Q -+ P,(X) are Z‘,-measurable multifunctions s.t. 

(1) jGLJna, is a set valued martingale, 

(2) sup,,. 1 II IFnI II 1 < m3, 

then given an,v z E A’, (d(z, F,,( . )), Z,,),,>, , is a submartingale which 
converges a.e. to a function II/(. ) 55 L\ . 

Proof Let gE SL. Note that EZn-’ [Iz -g(w)// 2 1)~ - E”nm’g(w)l/ h-a.e. 
From the definition of the set valued conditional expectation, we have that 
E=n-‘gE S&,,. So we can write that 

EZn-’ j[z--g(w)(l B d(z, ErnmlF,,(w))p-ax. 

Hence for all A E C,, _, , we have 

s I+-’ llz - .du)l/ d/do) 
A 

2 1, d(z, EZn-‘F,(w)) d,u(o) (see Hiai-Umegaki [ 141) 

-E&l d(z, F,(o)) 3 d(z, F,,- ,(o)),u-a.e. 

* { d(z, F,( . )), C, 1 n >, is a submartingale. 

Finally, since sup”> r jo d(,-, F,(o)) Mu) G 11~11 + sup,2 1 jn IF,,(o)1 
< co, Doob’s convergence theorem tells us that there exists IJ( .) E L: s.t. 
d(z, F,,(u)) --t $(u)cl-a.e. Q.E.D. 

We have an analogous result for the Hausdorff metric. 

THEOREM 4.3. If X and X* are both separable Banach spaces and F,,, 
G, : l2 -+ P/,(X) are Z,,-measurable mult@iinctions s.t. 

( 1) (F, , C, } ,, z , and { G, , Z, > n Z , are set valued martingales, 

(2) SUP,,> 1 II IF,,;,1 II 1-c 0~ and Supna 1 II lG,l II, < 00, 
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then WX), Wh G,L is a submartingale that converges a.e. to a 
function v]( .) E L: . 

Proof. From Hiirmander’s formula [16], we know that 

(h(Fn(o), G,(o))) = sup 10(x*, F,,(o)) - a(~*, G,(w))l. 
lI.Y*ll 6 1 

Let B* be the closed unit ball in X*. Using Theorem 2.2 of 
Hiai-Umegaki [ 141, for every A E Z, _, , we have that 

jA EZn-‘hV’tb), G,(u) 44~) = jA W,,(u), G,(w)) 440) 

CC= I sup I+*, F,Ao)) - 0(x*, G,(w))1 &(a) 
A 1l.m G 1 

= sup 
l’( )tS;*(zn--l) I lo(u(o), F,(o)) - o(u(w), G,(u))l 44~0) 

A 

>, sup s )E=n-‘a(v(o), I;,(o)) - EZn-‘a(v(o), G,(w))( d/~(w) 
l’( )E.&&-I) A 

= 
s sup JJ!+ ‘cJ(x*, F,(o)) - E=‘“-‘a(~*, G,(o))] d/~(o). 
A l/.-c*/l < I 

From the lemma in [27], we get that 

EL-b(x,*, F,(o)) = 0(x*, E’n-‘F,(w)) 

and 

E=n-‘a(x*, G,(o)) = a(~*, EZn-‘G,(o)) 

for all x* E X* and all WE Q\N, p(N) = 0. Hence finally we can write that 

s E=‘-‘W,(o), G,(w)) 440) 
A 

2 I 
sup \a(~*, E=“-‘F,(w)) - a(~*, E’“-‘G,(o))\ 440) 

A IIW i 1 

= 
s 

h(E=+‘F,(w), Ezn-‘G,(w)) d/~(w) 
A 

* Ezqn-‘h(F,(u), G,(o)) >, h(F,- ,(o), G,_ I(W))p-a.e. 

* {h(F,,(.), G,(.)), Cn}nZ, is a submartingale. 
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Since SUP,,~~ is;, h(F,(w), G,(w)) 44~) d SUP,,~~ jn lF,,(w)l + 
SUP,> I jn IG,,(o)/ < ~1, from Doob’s theorem we get that there exists 
rl(. 1 EL: s.t. W’,,(o), G,,(u)) -+ rl(u)wa.e. Q.E.D. 

Remark. Note that if for all ~13 1 and all own, G,(w) = (O), then 
h(F,(w), G,(w)) = IF,,(w)1 and so Theorem 4.3 produces Theorem 4.1 as a 
special case, with the additional hypothesis that X* is separable. 

5. SET VALUED AMARTS 

In this section, we turn our attention to a larger class of set valued 
processes, namely we examine set valued amarts. 

Following Bagchi [5] and in the single valued case Bellow [6], we say 
that a sequence of multifunctions Fn: 52 + P,(X) adapted to (A’,}, >, , is a 
“set valued amart,” if there exists KE PfC(X) s.t. lim,, T h(ss2 F,, K) = 0, 
where T is the set of bounded stopping times. Note that T with the usual 
pointwise ordering d is a directed set filtering to the right. Clearly a set 
valued martingale is a set valued amart. 

We start with a convergence theorem that partially extends Theorem 2.2 
of Bagchi [S]. In that theorem, Bagchi considered a broader class of a set 
values processes, which he called w*-amarts, which however take values in 
a separable, dual Banach space. Here we restrict ourselves to the smaller 
class of set values amarts, but we drop the requirement that they take their 
values in a dual Banach space. 

THEOREM 5.1. If both X and X* are separable, X has the R.N.P., and 
F,, : 52 + Pnkr( X) are .Z:,-measurable multifunctions s. t. 

(1) lL -LA>1 is a set valued amart with A-limit K E P,.,JX), 

(2) SUP,,~~~ IF,1 < 03 (i.e., (Fn, En}nal is of class B), 

then there exists F: Q + P,(X) integrable bounded s.t. F,,(o) +” F(o) for all 
WEQ\N, p(N)=O. 

Proof: We claim that for fixed k > 1 and all A EC,, we have that 
h-lim 1 F, exists in PJX). So let E > 0 be given. Then there exists rsT A 

co E T, o0 > k s.t. if 0, T E T(a,) = (a’ E T : co < o’}, then h(jn FO, Jn F,) -CC. 
Let 6, z E T(o,) and define 8, C as follows: Let n, > max(a, t) and set d = 6, 
? = z on A, while B = 2^ = n, on A‘. It is easy to see that d, ?g T and 
h(j.,, F,, jA F,) = h(Jn Fe, ss2 F?) <E. So lim,, r JA F, exists in (Pf,(X), h) 
and the convergence is uniform in A E Z,. Since k 2 1 was arbitrary, we 
deduce that the above /z-limit exists for all A E lJk>, i C,. Recall that 
C = CJ(U~, , 2,). i.e., C is generated by lJka, 2,. So given A EC, there 
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exists A’ E Uk >, Ck s.t. p(A AA’) <E. Then h(JA F,, SAP F,) <E jn u, where 
as in Chacon-Sucheston [S, p. 573, we may assume, without any loss of 
generality, that supn a I IF,(o)\ d u(w)p-a.e. u( .) E L’+. Then, using the 
triangle inequality, it is easy to check that h-lim,. TsA F, exists for all 
A E Z. Set M,(A) = jA F, E P,&X) (see [25]) and M(A) = h-lim,, =sA F,. 
Then 0(x*, M,(A)) + CT(X*, M(A)) uniformly on B* = unit ball in X*. But 
x* + a(~*, M,(A)) is a signed measure. So by Nikodym’s theorem 
A +cr(x*, M(A)) is a signed measure too. Also by hupothesis (2), 
M(Q)EP,,,,(X), while we saw that M(A)eP,(X) for all A ~2. Since 
M(Q)=M(A) + M(Q\A), we deduce that M(A)EP,,,,(X) for all A EC. 
Hence M( .) is a set valued measure with values in P,,&X). Apply 
Theorem 2 of Caste [lo], to get F: 52 -+ Pr,(X) integrably bounded s.t. 
M(A) = jA F for all A EC. Now note that for fixed x* E X*, the process 
{4x*, Fn(.)), Cnln>~ is an L’-bounded, real amart. From Theorem 2 of 
Austin-Edgar-Tulcea [4] and since a(~*, M,(A)) +0(x*, M(A)) = 
jA cr(.~*, F(o)) &(o), we see that 0(x*, F,(w)) + a(x*, F(o)) for all 
o~S2\N(x*), p(N(x*))=O. Let {x:},~, be dense in X* and set 
N=U,a, N(xz), for which clearly we have p(N) = 0. Given x* E X*, we 
can find {xk*lk, 1 G {x2),, 1 s.t. xz 4’ x*. Then for all w  E 52 \ N, we have 

h,*, F,(o)) + 4x,*, F(o)) as n+co. 

Also from the continuity of a( ., F(w)), we have 

4x,*, F(o)) --) 0(x*, F(o)) as k+co. 

Through a diagonalization lemma, we get 

4$nj, F,(o)) + 4x*, F(o)) as n+co. 

Then for w  E Q\ N and for any x* E X*, we have 

I+*, F,(o)) -4x*, F(w))1 

< I+*, F,,(o)) - 4x&), f’,(o))1 + l44,p F,(w)) 

-4x&,, F(o))1 + bM&, f-(o)) - 4x*> F(QJ))I. 

Note that the second and third terms of the sum on the right hand side 
of the inequality above tend to zero. Also 

14x*, F,(w)) - ~b&,p F,z(o))l G IFJoN . IIx* -x&n,ll -+ 0 as n-roe. 

Thus finally we have that 

4x*, F,(w)) + a(~*, F(w)) as n-a2 
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for all w  ESZ’\ N, p(N) = 0 and all s* E X*. Therefore we conclude that 
F,(o) -+“‘F(w)~-a.e. Q.E.D. 

As before, in the finite dimensional case, we can say more. 

COROLLARY. Zf dim X < cci and the hypotheses of Theorem 5.1 hold, then 
there exists F: 52 + P,JX) integrabty bounded s.t. F,,(w) +h F(o)u-a.e. 

Proof From Theorem 5.1, we know that there exists F: $2 -+ Pk,(X) 
integrably bounded, s.t. for all x* E X* and all o E a\ N, p(N) = 0, we have 
a(~*, F,(o)) + a(.~*, F(o)). Then Corollary 2C of Salinetti-Wets [31] and 
Theorem 3.1 of Mosco [21]. tell us that F,(U) bK F(o)p-a.e. But since F 
is compact and convex valued, we conclude that F,(o) -+h F(o)u-a.e. 

Q.E.D. 

6. SET VALUED MARTINGALES-IN THE LIMIT 

In this section, we examine another large class of set valued stochastic 
processes that includes set valued martingales and is analogous to the 
family of single valued processes studied by Blake [7] and Mucci [22]. 
The results in this section, generalize those of Daures [ 111, Hiai-Umegaki 
[14], Hiai [IS], Neveu [24], and Van Cutstem [33]. 

Let F,,: Sz -+ P,(X) be measurable multifunctions adapted to {Zn},, , . 
We will say (F,, L’n}n2, is a set valued martingale-in the limit 
(abbreviated as sv-mil), if for every E > 0, we have 

~{(wEQ: h(E”F,Jo), F,(o))>v} -+O as nbm+cc. 

Clearly every set valued martingale, or more generally every set valued 
quasi-martingale (see [27]) is a sv-mil. 

We start with a “Riesz decomposition” type theorem for such set valued 
processes. 

THEOREM 6.1. Zf F,, : IR -+ P/,(X) are 2:,-measurable multifunctions s.t. 

(1) (F,, .2Yn}nbl is a sv-mil, 

(2) W',Il.~. is untformly integrable, 

then there exists a unique set valued martingale {G,, .L’, jnz, with values in 
P,(X) s.t. d(F,, G,) + 0. 

Proof Note that for n 2 m, we have 

h(EzmF,,, F,,,) = h(EcmF,, E=“F,). 
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But from the proof of Theorem 4.3, we know that 

h( EzmFn, ErmF,,,) < Ezmh( F,, , F,) ya.e. 

and 

j” 
R 

EZmWn, FJ = j Wm Fm) G i, (IFA + IF,,,1 1. 
a 

Therefore from hypothesis (2), we deduce that {h(ErmF,,, F,)},,, is 
uniformly integrable. Also, since by hypothesis ( 1 ), h(EZmF,, F,) +p 0 as 
n>m-,oo, from the dominated convergence theorem (see Ash [3, 
p.295]), weget thatd(EzmF,,,F,,,)+OasnZm-+co. 

Now fix m >/ 1 and consider the sequence ( EZmF,, },, a m. From the 
triangle inequality for the metric d( ., .), we have for n, k 2 m 

A(EZmF,,, EZmFk) ,< A(EzmF,,, F,,,) + A(F,,,, ErmFk) 

* W-‘n)nzm is a Cauchy sequence for the metric A( ., .). 
Thus, Theorem 3.3 of Hiai-Umegaki [14] tells us that there exists 

G,: s2 -+ PJX) integrably bounded multifunctions s.t. EzmFn --+‘I G, as 
n+ co. We claim that (G,, Cm}mZ1 is a set valued martingale. So let 
nbm. We have 

A(EZmG,, G,)< A(EZmG,, EZmEZnF,,& 

+ A(ErmEmFn+k, G,) d A(G,, EZ”F,,+,J 

+ A(EzmF,+k, G,) -0 as k-+cc 

=t- EZmG,(w) = G,(o)p-a.e. 

* {Gw LJm>t is a set valued martingale. 

Finally note that for n 2 m, we have 

A(F,, G,) d A(F,, E’“F,) + A(EZmF,, G,) -+ 0 as n>,m+as. 

Now for the uniqueness of {G,, Z,, 1 n > 1, suppose that there was another 
such set valued martingale { Gk, C, }, a 1, for which we had A(F,, , Gk) -+ 0 
as n -+ co. Then from Hiai-Umegaki [ 141, we have 

A(G,, G:)= A(E=nG,,k, E=‘GI,+,) 

<4Gn+,, G:+,c) 

fA(Gn+,, Fn+,)+A(Fn+,, Gk+,)+O as k-co, 

j A(G,, GL) =0 and so G,(o) = GL(w)p-a.e. Q.E.D. 

This leads us to the following regularity result for sv-mils. 

409/150/1-IO 
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THEOREM 6.2. If X has the R.N.P. and the hypotheses of Theorem 6.1 
hold, then there exists F: Q --t P,, (X) integrabljl bounded multifunction s.t. 
A(F,z, EznF) ---f 0 as n -+ cc. 

ProofY Apply Theorem 6.1 to get G, : D -+ P,,( X)2,,-measurable multi- 
functions s.t. (G,, Cn}na, is a set valued martingale and A( F,, G,) -+ 0 as 
n -+ co. Note that lG,l = h(G,, 0) 6 h(G,,, F,) + h(Fn, 0) = h(G,, F,) + 
IJ’nI * flG,l)tiz~ is uniformly integrable. Use Theorem 3.1 to get 
R Sz -+ P/,(X) integrably bounded s.t. E”‘F= G,,p-a.e. Then A(F,, EznF) = 
A(F,, G,) + 0 as n -+ 00. Q.E.D. 

Again if X is finite dimensional, we can say more. 

COROLLARY. Zf dim X < co and the hypotheses of Theorem 6.1 hold, then 
there exists F: Q + P,,(X) integrably bounded s.t. A(F,, F) + 0. 

Proof Use Theorem 6.2 to get F: 52 + PkC( X) integrably bounded s.t. 
A(F,,, EznF) -+ 0. Then note that A(F#, F) d A(Fn, ErnF) + A(EznF, F) --f 0 
asn+co. Q.E.D. 

7. SET VALUED CONDITIONAL EXPECTATION 

In this section we present an interesting observation concerning set 
valued conditional expectations. Namely we show that the set valued con- 
ditional expectation of a P&X)-valued, integrably bounded multifunction 
is still a P,,,(X)-valued multifunction (i.e., we have preservation of the 
weak compactness of the values). 

THEOREM 7.1. If X and X* are separable, L’, E Z is a sub-o-field of C, 
F: D + P,,,,JX) is integrably bounded, and every vector measure m: Z, ---) X 
s.t. m(A) E M(A) = jA F(o) dp(w), has a Pettis integrable density, then 
E’“F(w) E P,,,,(X)p-a.e. 

Proof: Let M(A) =Ja F(o) dp(o) = (sA f (co) dp(w) :f~ Sk}, A EC,. 
Note that for every x* E X*, we have (see [29]) 

0(x*, M(A)) = s, 4x*, F(w)) h(w) 

3 A + a(~*, M(A)) is a signed measure on ,?I,,, for every x* E X*. 
From the corollary to Proposition 3.1 in [25], we know that for all 

A E C,, M(A) E Pwkc(X). So M( ) is a set valued measure on C,. Apply 
Theorem 3 of Coste [IO J and get G: Sz -+ P,,+,(X) integrably bounded s.t. 

M(A) = s, G(w) 44o). 
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From Theorem 5.4(i) of Hiai-Umegaki [14], we have that 

*J 
A 

u(x*, EzoF)=jA (T(x*, G) 

e- a(~*, EzoF(o)) = cr(x*, G(o)) 9 for all 0 E CI\N(x*), p(N(x*)) = 0. 

Let {xZ}~~~~X * be dense in X* and set N= urn2 1 N(xz). Then 
p(N) = 0. For every x* E X* and every o E LI\N, we have {x,$}~ ~ 1 c 
xl>m, 1 xz 2 x* and 

Iu(x*, E=OF(w)) - r~(x*, G(w))\ 

< 10(x*, E=°F(o)) - 0(x,*, EzoF(o))l 

+ 10(x,*, E=OF(o)) - 0(x,*, G(o))1 

+ b(x,*, G(w)) - 4x*, G(o))l. 

Note that since oesZ\N, 0(x,*, EzoF(o))=o(x,*, G(o)) for all k> 1. 
Also since cr( ., EroF(o)) and C( ., G(o)) are both strongly continuous, we 
have 

a(~,*, E=OF(o)) + 0(x*, EzoF(o)) 

and 

4-G, G(o)) + 4x*, G(o)) as k-+co, 

Therefore for all x* E X* and all w  E sZ\ N, we have 

u(x*, E=“F(o)) = 0(x*, G(o)) 

=E- EzoF(o) = G(o)p-a.e. 

a EzoF(o) E P,,,,JX)p-a.e. Q.E.D. 
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