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Using contour integration and a multiplier technique, we establish a sampling
theorem with nonuniform complex nodes (¢,), ., which applies to entire functions
of exponential type including band-limited L*-functions. The sequence (t,), ., must
satisfy sup, ., |R(¢,) —n| < oo and sup,., |3(¢,)] < co. The sampled function may
grow faster than any polynomial on the real line.  © 1997 Academic Press

1. INTRODUCTION AND STATEMENT OF RESULTS

In recent years several authors [2, 810, 14] have established various
sampling theorems with nonuniform real nodes by using the method of
contour integration. There are also sampling theorems with nonuniform
complex nodes [7, 17]. However, their proofs are based on Hilbert space
methods and consequently they apply to band-limited L>-functions only.

In this paper we shall extend the method of contour integration to the
case of nonuniform complex nodes. Our main result is a Lagrange-type
interpolation formula (see Theorem 1.1) that applies to a class of entire
functions of exponential type which is considerably wider than the class of
band-limited L>-functions. The admissible functions may even grow faster
than any polynomial on the real line (see Corollary 1.2). As a consequence,
we also obtain a uniqueness theorem for entire functions of exponential
type which is much more general than the classical results [ 1, Chap. 9] as
far as freedom of the nodes is concerned (see Corollary 1.3).

As usual, let N, Z, R, and C denote the sets of natural, integer, real, and
complex numbers. For a complex number z we denote its real and
imaginary part by R(z) and 3(z). Throughout this paper the nodes (z,)
are subject to the following conditions:

There exist positive integers L and N with N> L and positive real
numbers J and [ such that
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t,#0 for n#0; (1)

|R(t,) —n| <L for |n|>=N; (2)
R(t,,.1)—R(t,) >0 for all integers n; (3)
|3zl <1 for |n|>N; (4)
[t,|<|n|+L  for |n|=N. (5)

First a few comments on these properties. Conditions (1)—(3) are the
standard hypotheses in sampling with nonuniform real nodes and are of
relevance in growth theorems such as the theorem of Duffin and Schaeffer
[1, p. 191]. Condition (3) ensures that the sequence (%R(?,)), ., 18 strictly
increasing and separated. If we restrict ourselves to real nodes, then (4) is
trivially satisfied and (5) is a consequence of (2). Thus in this case, our con-
ditions reduce to the standard ones. Note that (2) and (3) imply that ¢ is
I at most.

Now we define the canonical product G corresponding to (¢,),., by

G(z): z—ton< t><1—lz>. (6)

Since

and

22 —z(t,+1t_,)
it

- |z|2 + |z| (2L +21)
(n—L)*

n

for all integers n with |n|> N, the product G converges absolutely and
uniformly on all compact subsets of C and therefore represents an entire
function.

We give two examples of a function G given by (6).

Example 1. Since the zeros (j,), ., of the function J (z)/z", where J, is
the Bessel function of order v, satisfy j,=nn+ ¢+ O(1/n) as n— oo and
j_n.=—j, for neN, the nodes (t,),., defined by ¢,:=j,/= fulfill (1)—(5).
The canonical product G corresponding to the sequence (¢,),., 1S given
by J(mz)[(v+1)2"/(nz)” (cf. [16]). Kramer [11] proved a sampling
theorem for the nodes (j,),.,. It is known that there is a connection
between Kramer’s sampling theorem and sampling expansions generated
by Lagrange interpolation (e.g., [ 18]).
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Example 2. Obviously, the sequence (¢,),., defined by ¢,=n+1¢ for
some fixed complex number ¢ and all integers n satisfies the conditions
(1)—(5). A simple calculation yields that the canonical product G corre-
sponding to (t,), ., is given by

it
=————5
sinh irt

G(z) in(n(z —1)).

If ¢ is equal to zero then G reduces to (1/z) sin zz. In general, the canonical
product G is not obtainable in closed form.

Our result is as follows.

THEOREM 1.1. Let (t,), ., be a sequence of nodes satisfying (1)—(5). Let
fand @ be entire functions of exponential types o and ¢ such that

o+e<n (7)
and
If(x) @(x =< Ci(O(Ix[+1)"*  for xeR, (eC, (8)

where C\(-) is positive and bounded on compact subsets of C.
Then

& D(t,—z) G
0= 3 fin) A ZE

9)

for all ze C. Moreover, the convergence of the series is uniform on every
compact subset of C.

To get a sampling theorem for a large class of entire functions, it is
obviously desirable to choose a function @ whose modulus on the real line
tends to zero rapidly.

A suitable example for the function @ is given by

sin(sz/k)>k

D(z): =D, ,(z):= < ek

(10)

where ¢ is a positive real number and k a positive integer. A simple con-

sideration shows that @, , is of exponential type ¢ and satisfies
|®1:,k(x)|:0(|x|7k) as X — iOO

Therefore, choosing @ as in (10) with 0 <e<=n and ke N, we can apply
Theorem 1.1 to all entire functions f of exponential type 7 — ¢ satisfying

|/(x)]=0(x[*~*) as x— £oo.
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Let us mention that the multiplier @ given by (10) has been used by
various authors for the same purpose (see, e.g., [9, p. 81; 14; 15]).

There are also other possibilities of a suitable choice of @. Given a> 1,
¢>0, an entire function Y(a, ¢, -) of exponential type ¢ has been con-
structed in [4], a function which is nearly the best possible choice. More
precisely, its growth on the real line is given by

"”(“’S’X)'”(e"p(‘aoﬁ'xw)) S

Note that if ¢ is a non-trivial entire function of exponential type satisfying
lp(x)| = O(exp(—w(|x[)))  as x— oo,

where w(-) is positive, then necessarily (cf. [4])

fm wix) dx < o0.
1 X

2

We may assume that (a, ¢, 0) = 1. Otherwise, we can consider the function

Y given by

~ k! (o, g, z)
l//(Z) T lp(k)({x, g, 0) Zk ’

where k is the order of y(a, ¢, -) at zero. The function V is also entire and
of exponential type & has the same asymptotic behavior as ¥(a, ¢, -), and
satisfies /(0) = 1.

Although the authors [4] gave a construction of the function y(a, ¢, ),
it is not easily available for numerical purposes. However, in the following
application it is enough to know the existence of y(a, ¢, -).

With  taking the role of @ in Theorem 1.1, we obtain the following result
which extends a theorem of Rahman and Schmeisser [ 12, Theorem 3] from
equidistant to nonuniform complex nodes.

COROLLARY 1.2. Let (t,),., be a sequence of nodes satisfying (1)—(5).
Let f be an entire function of exponential type o <r satisfying

|f(x)|:0<exp<(k);c|LCW>> as x— t+oo, (11)

where 1. > 1.
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Then, choosing ¢€(0,n—ac], ae(l, ), and ® :=y((1+a)/2, ¢, -), the
following equality holds,

¢(tn _Z) G(Z)
Z_Zn G,(tn)

=Y S (12)

for all ze C, where the series converges uniformly on all compact subsets
of C.

Note that in the corollary the conditions for f are independent of the
numbers L and I which control the deviation of 7, from n (ne Z).
As an immediate consequence of Corollary 1.2, we obtain the following

COROLLARY 1.3. Let f be an entire function of exponential type o <mn
satisfying

fn=o(ew (o)) a vo 2o

where A > 1. If f vanishes on a sequence (t,), ., of points subject to the condi-
tions (1)—(5), then f is identically zero.

2. LEMMAS

Our assumptions on the nodes imply that R(z,) >0 and R(z_,) <0 for
n>=N. Let :=40/4, which is 1/4 at most since J <1 (see above). Then, as
a consequence of (3), we are able to construct two sequences of positive
real numbers (R}),,~ y and (R, ),,> y With the following properties:

E}’{(tm)—i'_’7<]elj; <m(tm+l)7’7

- forall m>=N, (13)
mUmV—ﬂ>'—Rm3>9“f(m+n)+ﬂ}

IR, —n|>n

m

" } forall m>=N and neN.
IR, —nl>n

(14)

By a simple calculation we obtain the following

LeMMA 2.1.  Under the hypotheses (1)—(5) and (13) and (14) there exists
an integer S= N so that for alm=S, pe[ —n/2, /2], and n = N we have

|R:7—ei(/)_tn| n
ey 77 (15)
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Proof. We shall prove only the first inequality. The proof of the second
inequality is very similar.

The conditions (3) and (4) reveal that for N<n<m the point ¢, lies
inside the circle of radius [R(z,,) + il| centered at the origin, whereas for
N<m<n it lies outside the concentric circle of radius R(¢,,.;). An
elementary calculation shows that

R;—|91(tm)+il|>g

12
R, "

Clearly, this condition is satisfied for sufficiently large m. Hence there exists
an integer S> N such that

IRy € =, | >min{ Ry —|R(1,,) +ill, Rt,,. )~ RS} >

m

foralln=Nand m=S. |
In the following we shall always represent the nodes as
t,=:r,e%  with r,eR and 0,e[—n/2, 7/2] (16)

(neZ). Note that by this convention r, is not restricted in sign. More
precisely, r,, and n are of the same sign provided that |n| > N.

LEMMA 2.2. Let KeN and je Z with K+ j>= N. Then the infinite product

2 |n+ R e 0-wen)

P(m, @) := []

+ ip
g n+R)e

converges absolutely for all m>= N and ¢ € [ —n/2, n/2]. Furthermore, there
exist a positive real number C, and an integer S = N such that

P(m, )= C, (17)
forallm=S and pe| —n/2, n/2].

Proof.  Without loss of generality we may assume that ¢ e[0, 7/2].
Otherwise, we can argue with the sequence (7,,) which also satisfies the
hypotheses (1)—(5). Defining

nez>

n+ Rt e =0

m

+ Lip
n+Re

F(n,m, ¢):=

>
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we obtain by a straightforward calculation that
21R ) (c0s(¢ — 0,1 ) — €05 @)
|n + R+ ei(/) |2

m

14 4nR,} sin L sin 20-0_,. )
U n4REe”|? 2 2 '

(F(n,m, ))*=1+

As a consequence of (2) and (4), we find for the modulus of
g(n,m, @) :=(F(n,m, ¢))*—1
that

4nR;* I __ 4GRy
n+R*Ye?|>n4j—L  |n+R}e”|”

m

lg(n, m, @) <

where C;:=sup{nl/(n+j—L):n>K} < 0.

Since |n+ R} e |>>n? the infinite product ] . (F(n, m, ¢))* con-
verges absolutely. Using the inequality |\/;— 1| < |x — 1], which holds for
positive x, we deduce that P(m, ¢) also converges absolutely.

Let us choose S> N so that for all m>=S, n>K, and ¢ €[0, 7/2] we
have

4C.R; 1
In+REe®|> 2

Now applying the inequality e~ <1+ x, which holds for xe [ —3, ),
we find for all m > S that

= Z 4C,RY
(P(ma (ﬂ)) > 1_[ exp(_z |g(}’l, m, @)U?exp =2 Z |n+R+e[q;|2 .

n=K n=K
Hence
P(m (p)>exp<—4C R* i 1>
’ S+ (R,)?
o dx
=>e —4C,R} —_—
Xp< 38 m V[le2+(RnJ;)2>

K—1
=exp <—4C3 <Z— arctan R+>>

m

= eXp( —2n C3)’

which shows that (17) holds, too. ||
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A useful result is the following

LEMMA 2.3. Let J be a non-negative real number. Then

Isin(z(z — iJ))] = Smh(”J ==l T |1

n=1

z
—n+iJ

+1J

holds for all complex numbers z.

Proof. Using the representations of sin and sinh by infinite products
[6, p. 44, Sect. 1.431], we obtain that

—iJ
) . —iJ| ]_[ ‘1—
|s1n(7z(z—zJ))|_ 2o —n
inh(7J iJ iJ
stob(z/) 7 11 1+= ‘1+l
n=1 -
lz=id] 5 z z
T El “aril | T T |

Now we are able to find an estimate for the growth of the canonical
product defined in (6).

LemmA 2.4. Let (t,),., be a sequence of nodes satisfying (1)—(5). Let G
be the canonical product corresponding to (t,),., and let the sequences
(RF)m=n and (R,),,~ y be subject to (13) and (14).

m = m

Then there exists an integer S = N so that for all m = S we have

|G(R,; e™)| = CuR,,)*  H(R ™) if ¢e(—n/2,m/2), (I8)

m

|G(R,, ¢”)| = Cs(R,,) > H(R,, e¥) if ¢@e(n/2,3n2), (19)
where H is defined by

R i |sin @| <(41+2L)/R

H(Re™) := .
(Re”) {e”“”"””'” |sin @]~ if |sin @| > (4I+2L)/R

for all positive real numbers R. The positive real numbers C, and Cs are

independent of m and ¢.

Proof. We may restrict ourselves to a proof of (18) for ¢ €[0, 7/2) as
can be seen from the following. Along with (¢,),., the sequences (7,),. >
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(—=t_,)nez» and (—7_,), ., also satisfy the hypotheses (1)—-(5). Hence, if
we apply inequality (18) for ¢ € [0, 7/2) to the canonical products

we arrive at (18) for ¢ e (—n/2,0] and (19) for p € [ 7, 37/2) and ¢ € (7/2, 7].

For ¢ €[0, #/2) and m > N we introduce

Zp =X 0V, =R e

Clearly, x,,, y,,, and z,, depend on ¢. For convenience we do not express
this fact in our notation but keep it in mind in the following consideration.

In the following C; (j=6, .., 15) and S; (j=1, .., 4) denote appropriate
positive numbers Wthh do not depend on m or ¢. We do not need them
explicitly but in cases where their value is easily accessible we indicate their
construction.

Let us choose a positve integer S, satisfying

Sy >max{|n+ill, |1, : |n|<N—1} + L+ 1.
Then the function

w1 (-2)0-2)

h(z):= — 1= .
(z=il) 1:[ < n+zl><l_—n+il>

is defined for all ze D:={£eC: || >S,— L}. Furthermore, there exists a
positive real number C, such that

|h(2)] = Cs

for all ze D. We define

o 120
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Since z,,e D for all m > S,, we have

|P(z,,)]  (20)

|G( m)' C6 |Zm ll' l_[

n=1

Z
n—HI

n—HI

for all m>S,. We shall find a lower bound for |P(z,,)| mainly by

geometric arguments.
Using (16) and noting that r_, <0 for n> N, we can easily see that

ilo_,|

Z€

2l =[] |[1-=7
n=N

n

r

For ¢ +|0_, | <m/2 it follows from (5) that for all n> N

l_zme""’fﬂ‘
r

m

n+L 1)

: e'""

>|1+

—n

A geometrical reflection shows that in the case of ¢ +1|0_,| >n/2 the
inequality (21) is also valid if

+

R’77
COS(W—((P+|9—n|))<m- (22)

But (22) is satisfied as soon as R} > I(N+ L)/(N — L). Indeed, under that
restriction

1 1 R}
<

m

<
t_,| n—L n+L

cos(m— (@ +10_,]) <sin |0, [ <

for n= N. Thus, in conjunction with Lemma 2.2, we find that

(o)

|P(z,)| = Cs []

n=N

1+ ’ (23)

L
t,

n~|—L

for m>S,:=max{S,S,,[(N+L)(N—L)+L}, where S is chosen
according to Lemma 2.2. For a lower bound of |1 —z,,/¢,| we distinguish
two cases which correspond to those in the definition of the function H of

our lemma.

Case 1. Let 3(z,,)=y,,>41+2L.
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Since ¢ €[ 0, n/2), we have R(z,,) = x,,> 0. Defining p,, := R(z,), we find
that

2>(pn_xm)2+(ym_1)2
- P+ '

1 _m

n

z

A discussion of the function

(t—x,)°+(y,—1)
2+ 12

f(1):=

by standard methods of calculus shows that f has an absolute minimum at

1
Tm ::T ((R/:: 2_2yn71+\/((R/ﬁ)z_zyml)2+4xfn12)
X

m

and is strictly decreasing for 7 € [ 0, 7,,] and strictly increasing for t € [ 7,,, 00).
As a consequence, we obtain that

1= 1——22 i op<r,—L
t, n+L+il
and
z z .
1-=2>1-—— if n=t,+L.
t, n—L+il

For all m > S, we find the following estimate for 7,,:

R*—2I
cos @

Therefore, for all m >S5 :=max{S,, 2/+2L+ N+ 1} we have
LT, I=N+L,

where | x_| denotes the integer part of x. Since

n—il

Z}?T n + Zm

n+z,—il

n

e
n
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it follows from (23) for all m > S, that

Lt,l—L
P =C [] [1——2 ——n
e n+L+il —(n+L)+il
L, I+L B B
X l—ﬂ _ m -
n:\_r,,,ljlfLJrl . —(n+L)+il
X [R— [e—
n:LTl:[JrLH n—L+iI‘ —(n+L)+il
LTV71J+L =z
m -z
- z
C n=|7, |-L+1 . m )
2N+1_L[_1 z, z, E[N n+ll —n+il
N n+il —n+il

The denominator is the modulus of a polynomial in z,, of degree 2L. Thus,
there exists a positive real number C, such that

Lz, J+L

|P(Zm)| = C7(R}:1—)_2L n

n=|t, |—L+1

m

*T

Z"’l
—n—+il
(25)

n+ll

for all m > S;.
Let n>|r1, |—L+1. Then

I I I I
< < < ,
R(1,) n—L Lt, |—2L+1 RS —2I-2L

sin |6, | <

1
<7

17,
where we used (24) in the last step. On the other hand,

4I+2L
R+

sin ¢ >

and so

§1n(p 241—i—2L 1 I+L >4I+2L 12 I+ L >:
sin |0, | 1 R} I 471 +2L

This implies that

10, | <min{e, 7/6}.
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Along with a geometrical reflection, we arrive at

]1—2;’ > sin(g — [0,])

n

. sin |6,,|
=sin ¢ | cos |6,,| —cos p ———
sin ¢
. 1
>sin ¢ cos|0,,|—§cosq)

1 .
25 sin ¢ cos |0,,|

W

>T sin ¢. (26)

Combining (20), (25), and (26) and applying Lemma 2.3, we obtain that
|G(z2,,)| = Cs(R,;) " Isin o|*" [sin(n(z,, — iI))] (27)

for all m > Sy and Cy := Cs C5(1/3/4)*" I/sinh(xl).
Since

elyl _eflyl e\yl

[sin(x +iy)| = 5 _T(I_e*ﬂﬂ)?cme\y\ (28)

for all |y| > Cy>0, where C,,:=(1—exp(—2Cy))/2, the inequality (18)
follows from (27) in the case sin ¢ > (41 +2L)/R.

Case 2. Let 0<3(z,) <41+ 2L.
Defining again p, :=R(z,), we have

X, +il

| m >]1 .
p,til

for all > N. Analogous considerations show that

74
T P T L ST A (29)
t, n+L+il
and
x, +il .
1—Zz|1l-——— f n> L. 30
‘ ; ‘ n— Lt if nzx,+ (30)
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Note that

z

m| |1+ X,
‘l—i— =

n—il

: (31)

n —n+il

xm+il

For all m > S5 we have | x,, |> N + L. Therefore, after combining (23) and
(29)-(31) we obtain that

I

X, +il X, +il
|P(Zm)|>c2 - . ‘ - .
W N n+L+il —(n+L)+il
Lx,, |+ L .
" 4
S T P P 7% L
n=_x,]—L+]1 n _(n+L)+lI
- 7 %
" 1_[ _ xm—f-l. ‘ Xyt .
n=_x,]+L+1 n_L+ll —(H+L)+II
Lx,J+L
l_[ 1.0 |Z}1_Zm|
_C n=x, |—L+1 |t’7|
2N+ﬁ*1 Y
NN n+il —n+il
- 7 %
< 11 l_x,,7+.z ‘l_x,,,+z. (32)
N n+il —n+il
for all m > S;. Note that
lim |R} —x,|=0. (33)

m — oo

Therefore, using the estimates (5) and (15), we can find a positive real
number C,, such that

Lx, |+ L

m

[

n=x, |—-L+1 |tn|

|ty =zl = Cii(Ry) > (34)

Since the denominator in (32) is the modulus of a polynomial in Xx,, of
degree 2L, there exists a positive real number C,, such that

N+L—1

[

n=N

| x,,+il
n+il

< Cia(R;)™ (35)

| X, +1il
—n+il
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Using (20) and (32)—(35) and applying Lemma 2.3 again, we arrive at

N1 z z
z—il] ] |1- M.‘ __Em
Gz, = Cpy(Rz) 4wt L ML mn G )
o 11 l_xm—i-ll ‘ _x, Tt
mn:1 I’l+ll —I’l+ll (36)

for all m =S5, where C,5:=C,CyC,,I/(C,, sinh(xl)).

Combining (14) and (33), we can choose an integer S,>S; so that
|x,,—n|>n/2 for all m>S, and neN. In particular, |sin(zx,,)| has the
positive lower bound sin(z#/2). A simple discussion yields that the fraction
in (36) has a positive lower bound C,,. Thus, we finally find that

|G(Zm)| > CIS(R;:; ) _4L9

where C,5:=C,;C,, sin(zny/2). This completes the proof. |
Using the same techniques as in the proof of Lemma 2.4, we obtain
LemMaA 2.5. Let (t,),., be a sequence of nodes satisfying (1)—~(5). Let G

be the canonical product corresponding to (t,), ..
Then there exists a positive real number y,> I so that

G(iy)| = Cy p~2Fe™ >0, (37)
|G(—iy)| = Cyy y~2re™ >0 (38)

for all y=y,. The positive real numbers C,q and C,, are independent of y.

Proof. We shall indicate only the proof of (37). As above, we can find
positive real numbers y,>2I and C,g such that

et iy iy
G(iy)|=Cyg |y —1 1— 1—
6> Coe =11 1T 1= 25 1=
- iy iy
x A D
HUN t, —(n+L)+il

for all y > y,. Defining p, := R(¢,), we have

-
t

2 2 _ ]2
>pn+;y 2)
P+

n
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A discussion of the function

~ Pr(y—1I)?
f) =
S >+
yields that
T P
t, n+L+il

for all n > N and y > 21
Applying Lemma 2.3 and the estimate (28), we can establish (37) by
means of some simple calculations. ||

3. PROOFS OF THE RESULTS

Proof of the Theorem. Since

G(z) _ {1 if z=t¢,
(Z_tn) G’(tn)_ 0 lf Z:tm (m?éf’l),

it suffices to prove (9) for z#¢, (ne Z).

Now we consider the positively oriented Jordan curves S, , defined by

m,n

Spai={R}e”: pe(—n/2,7/2)} U[IR} iR, ]

m

U{R, e’ 9pe(n/2,3r/2)} [ —iR,, —iR}} ]

m

for m, n> N and the contour integral /,, ,(z) defined by

L e
=g | T d

! 560

m,

for m,n>S and ze C\S,, , (SeN chosen according to Lemma 2.1). Let m
and n in the following be large enough for z to lie in the interior of the
Jordan curves S, ,. Then using the residue theorem, we find that

J(2) 200) i f(2) (1, —z)

Lyu(2)= G(z) (t;—z2) G'(1;)

i=—n

and so

f(z)®(0)=1, .(z) G(z)+ | i £(t,) @(Z’%_ZZ) G(z) ‘

i=—n i
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Therefore, to prove (9) we must only show that

lim lim 7, ,(z)=0

m-— o0 n-— oo

for all complex numbers z which are different from ¢, (k € Z) with uniform
convergence if z lies in a compact subset of C.

Using the assumptions (7) and (8), we may apply a well-known estimate
for entire functions of exponential type [ 3, Lemma 2; 5, Lemmas 1 and 2]
to obtain that

|/(Re") B(Re'® —2)] < C,(z) R~ e binel

for all positive real numbers R, ¢ € [0, 2z] and ze C.

Let |z| < M for a positive real number M. Without loss of generality we
may assume that RS <R .

Then, applying Lemmas 2.4 and 2.5, we find for all m, n > max{ M + 41+
3L+1,S,y,+ L} (S and y, chosen according to Lemmas 2.4 and 2.5) that

277’- |Im, }I(Z)|
F(RS ) (R} e” —z) Ry | fliv) Dliy —2)
<L/2 (R:e”—2) G(RLe?) (’”f,; (iy—2) G(iy)
72| f(R, ¢) DR, ¢ —2) o 51 fliy) dliy — =)
+L/z (R, ¢” —2) G(R. ") d‘”f (iy—2) Gliy)

+
<2CI(Z) Rm Jarcsm((41+ 2L)/Rm )

ZR T sin @
e™tm d(p
C, RI—M/

2Cy(z) R} 2 e R sin @
+ ——m : —
Cs R, — M Jacsinqar+2yr;) (R (sin ¢)*F e™Rmsine =)

do

2C R - arcsin((47+2L)/R,) .
+ 1( ) - j enR” sin @ d(ﬂ
C, R —M
2000 Ry [ ki sn )
Cs R, —M Jacsinqar+20yry) (R,,_)zL (sin ¢)*- ™Ry sing—1) ¢

1 1 1 R, e™
T26(= )maX{Cm C17} MJR yzLenU_[) a.
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Using the inequalities

—x<sinx<x for 0<x<
n

and
. T
y<arcsmy<§y for 0<y<l1

to simplify the integrals, we obtain that

(7/2)((4I +2L)/R ")

m

2 11,,2) < Coo | emRi dx

nl /2 2 —2L
+C19e7 I < X> dx
(

(R Jiaranyrt

(7/2)((41+2L)/R,) _
+Cpo J e™Rn ¥ dx

0

en[ /2 2 —2L
T . <x> dx
(R, )™ Jiar+2nyr; ) \ 1

enl

R* MJR:;

m

x 2L dx,
where

1 1 )YM+4I+2L+1
Cro =2 sup{ C(0): €] < M) max{ }H*

C, Csf 4I+2L+1

and
Cyo:=2sup{ C,({): |{| < M} max{ P }<oo.
C16 C17
After some simple calculations we finally find that

1 1
I <C . —_—
| m, n(Z)| 21 max {R;; Rn}
for a positive real number C,, which is independent of z. This completes
the proof. ||

Proof of Corollary 1.2. We choose @ =y/((1+a)/2, &, ) in the theorem.
Therefore, we must only prove that (8) is valid with sup{ C,({): |{| < T} <
for all positive real numbers 7.
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For all y,>0 we have

|d5(x+iy)|=0<exp<—(lm;x||x|)a>> as x— + o

uniformly for | y| <y, [13, Lemma 1].

fo

Since
1 1
li 4L — — =0
SR ( } <(1og ) (log x)“z))
r all 1 <o, <a,, the corollary is established. |
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