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We compute the complete Fadell–Husseini index of the dihedral group D8 = (Z2)
2

� Z2
acting on Sd × Sd for F2 and for Z coefficients, that is, the kernels of the maps in
equivariant cohomology

H∗
D8

(pt,F2) −→ H∗
D8

(
Sd × Sd,F2

)
and

H∗
D8

(pt,Z) −→ H∗
D8

(
Sd × Sd,Z

)
.

This establishes the complete cohomological lower bounds, with F2 and with Z coefficients,
for the two-hyperplane case of Grünbaum’s 1960 mass partition problem: For which d and
j can any j arbitrary measures be cut into four equal parts each by two suitably chosen
hyperplanes in R

d? In both cases, we find that the ideal bounds are not stronger than
previously established bounds based on one of the maximal abelian subgroups of D8.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The hyperplane mass partition problem

A mass distribution on Rd is a finite Borel measure μ(X) = ∫
X f dμ determined by an integrable density function

f : Rd → R.
Every affine hyperplane H = {x ∈ Rd | 〈x, v〉 = α} in Rd determines two open halfspaces

H− = {x ∈ Rd
∣∣ 〈x, v〉 < α

}
and H+ = {x ∈ Rd

∣∣ 〈x, v〉 > α
}
.

An orthant of an arrangement of k hyperplanes H = {H1, H2, . . . , Hk} in Rd is an intersection of halfspaces O = Hα1
1 ∩

· · · ∩ Hαk
k , for some α j ∈ Z2. Thus there are 2k orthants determined by H and they are naturally indexed by elements of the

group (Z2)
k .
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An arrangement of hyperplanes H equiparts a collection of mass distributions M in Rd if for each orthant O and each
measure μ ∈ M we have

μ(O) = 1

2k
μ
(
Rd).

A triple of integers (d, j,k) is admissible if for every collection M of j mass distributions in Rd there exists an arrange-
ment of k hyperplanes H equiparting them.

The general problem formulated by Grünbaum [13] in 1960 can be stated as follows.

Problem 1.1. Determine the function � : N2 → N given by

�( j,k) = min
{

d
∣∣ (d, j,k) is an admissible triple

}
.

The case of one hyperplane, �( j,1) = j, is the famous ham sandwich theorem, which is equivalent to the Borsuk–Ulam
theorem. The equality �(2,2) = 3, and consequently �(1,3) = 3, was proven by Hadwiger [14]. Ramos [25] gave a general
lower bound for the function �,

�( j,k) � 2k − 1

k
j. (1)

Recently, Mani-Levitska, Vrećica and Živaljević [21] applied Fadell–Husseini index theory for an elementary abelian subgroup
(Z2)

k of the Weyl group Wk = (Z2)
k � Sk to obtain a new upper bound for the function �,

�
(
2q + r,k

)
� 2k+q−1 + r. (2)

In the case of j = 2l+1 − 1 measures and k = 2 hyperplanes these bounds yield the equality

�( j,2) =
⌈

3

2
j

⌉
.

1.2. Statement of the main result (k = 2)

This paper addresses Problem 1.1 for k = 2 using two different but related Configuration Space/Test Map schemes (Sec-
tion 2, Proposition 2.2).

• The product scheme is the classical one, already considered in [27] and [21]. The problem is translated to the problem
of the existence of a Wk-equivariant map,

Yd,k := (Sd)k −→ S
(
(R2k )

j),
where Wk = (Z2)

k � Sk is the Weyl group.
• The join scheme is a new one. It connects the problem with classical Borsuk–Ulam properties in the spirit of Marzan-

towicz [22]. It asks the question whether there exists a Wk-equivariant map

Xd,k := (Sd)∗k −→ S
(
Uk × (R2k )

j).
The Wk-representations R2k and Uk are introduced in Section 2.2.

Obstruction theory methods cannot be applied to either scheme directly for k > 1, since the Wk-actions on the respective
configuration spaces (Sd)k and (Sd)∗k are not free (compare [21, Section 2.3.3], assumptions on the manifold Mn). Therefore
we analyze the associated equivariant question for k = 2 via the Fadell–Husseini ideal index theory method. We show that
the join scheme considered from the Fadell–Husseini point of view, with either F2 or Z coefficients, yields no obstruction
to the existence of the equivariant map in question (Remarks 5.3 and 6.2). In the case of the product scheme we give the
ideal bounds obtained from the use of the full group of symmetries by proving the following theorem.

Theorem 1.2. Let πd, d � 0, be polynomials in F2[y, w] given by

πd(y, w) =
∑

i

(
d − 1 − i

i

)
mod 2

wi yd−2i

and Πd, d � 0, be polynomials in Z[Y, M, W ]/〈2Y,2M,4W , M2 − W Y 〉 given by

Πd(Y, W) =
∑

i

(
d − 1 − i

i

)
mod 2

W i Y d−2i .
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(A) F2-bound: The triple (d, j,2) ∈ N3 is admissible if

y j w j /∈ 〈πd+1,πd+2〉 ⊆ F2[y, w].
(B) Z-bound: The triple (d, j,2) ∈ N3 is admissible if

〈
( j − 1)mod 2 Y

j
2 W

j
2 ,

jmod 2 Y
j+1

2 W
j−1

2 M, jmod 2 Y
j+1

2 W
j+1

2

〉
⊆
〈 (d − 1)mod 2Π d+2

2
, (d − 1)mod 2Π d+4

2
,

(d − 1)mod 2 MΠ d
2
,

dmod 2Π d+1
2

, dmod 2Π d+3
2

〉

in the ring Z[Y, M, W ]/〈2Y,2M,4W , M2 − W Y 〉.

Remark 1.3. Let Π̂d , d � 0, be the sequence of polynomials in Z[Y , W ] defined by Π̂0 = 0, Π̂1 = Y and Π̂d+1 =
Y Π̂d + W Π̂d−1 for d � 2. Then the sequences of polynomials Πd and πd are reductions of the polynomials Π̂d . The polyno-
mials Π̂d can be also described by the generating function (formal power series)∑

d�0

Π̂d = Y

1 − Y − W

where Π̂d is homogeneous of degree 2d if we set deg(Y ) = 2 and deg(W ) = 4.

Theorem 1.2 is a consequence of a topological result, the complete and explicit computation of the relevant Fadell–
Husseini indexes of the D8-space Sd × Sd and the D8-sphere S(R⊕ j

4 ).

Theorem 1.4.

(A) Index3 j
D8,F2

S(R⊕ j
4 ) = IndexD8,F2 S(R⊕ j

4 ) = 〈y j w j〉.

(B) Indexd+2
D8,F2

(Sd × Sd) = 〈πd+1,πd+2〉.

(C) Index3 j+1
D8,Z

S(R⊕ j
4 ) =

{
〈Y

j
2 W

j
2 〉, for j even,

〈Y
j+1

2 W
j−1

2 M, Y
j+1

2 W
j+1

2 〉, for j odd.

(D) Indexd+2
D8,Z

Sd × Sd =
{ 〈Π d+2

2
,Π d+4

2
, MΠ d

2
〉, for d even,

〈Π d+1
2

,Π d+3
2

〉, for d odd.

The sequence of Fadell–Husseini indexes will be introduced in Section 3. The actions of the dihedral group D8 and the
definition of the representation space R⊕ j

4 are given in Section 2. Even though it does not seem to have any relevance to
our study of Problem 1.1, the complete index IndexD8,F2 (Sd × Sd) will also be computed in the case of F2 coefficients,

IndexD8,F2

(
Sd × Sd)= 〈πd+1,πd+2, wd+1〉. (3)

Final remark 1.5. The preprint versions of this paper, posted on the arXiv in April 2007 and July 2008, arXiv0704.1943v1–v2,
have been referenced in diverse applications: see Gonzalez and Landweber [12], Adem and Reichstein [2], as well as [5].

1.3. Proof overview

Problem 1.1 about mass partitions by hyperplanes can be connected with the problem of the existence of equivariant
maps as discussed in Section 2, Proposition 2.2. The topological problems we face, about the existence of Wk = (Z2)

k � Sk-
equivariant maps, for the product/join schemes,(

Sd)k −→ S
(

R⊕ j
2k

)
,

(
Sd)∗k −→ S

(
Uk × R⊕ j

2k

)
,

have to be treated with care because the actions of the Weyl groups Wk are not free. Note that there is no naive Borsuk–
Ulam theorem for fixed point free actions. Indeed, in the case k = 2 when W2 = D8 there exists a W2-equivariant map [4,
Theorem 3.22, p. 49]

S
(
(V+− ⊕ V−+)10)−→ S

(
(U2 ⊕ V−−)8)

even though dim(V+− ⊕ V−+)10 > dim(U2 ⊕ V−−)8. The W2 = D8-representations V+− ⊕ V−+ , V−− and U2 are introduced
in Section 2.2.
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In this paper we focus on the case of k = 2 hyperplanes. Theorem 1.2 gives the best possible answer to the question
about the existence of W2 = D8-equivariant maps

Sd × Sd −→ S
(

R⊕ j
4

)
from the point of view of Fadell–Husseini index theory (Section 3). We explicitly compute the relevant Fadell–Husseini
indexes with F2 and Z coefficients (Theorem 1.4, Sections 5, 6, 7 and 8). Then Theorem 1.2 is a consequence of the basic
index property, Proposition 3.2.

The index of the sphere S(R⊕ j
4 ), with F2 coefficients, is computed in Section 5 by

• decomposition of the D8-representation R⊕ j
4 into a sum of irreducible ones, and

• computation of indexes of spheres of all irreducible D8-representations.

The main technical tool is the restriction diagram derived in Section 4.2.2, which connects the indexes of the subgroups
of D8.

The index with Z coefficients is computed in Section 6 using

• (for j even) the results for F2 coefficients and comparison of Serre spectral sequences, and
• (for j odd) the Bockstein spectral sequence combined with known results for F2 coefficients and comparison of Serre

spectral sequences.

The index of the product Sd × Sd is computed in Sections 7 and 8 by an explicit study of the Serre spectral sequence
associated with the fibration

Sd × Sd → ED8 ×D8

(
Sd × Sd)→ BD8.

The major difficulty comes from non-triviality of the local coefficients in the Serre spectral sequence. The computation
of the spectral sequence with non-trivial local coefficients is done by an independent study of H∗(D8,F2)-module and
H∗(D8,Z)-module structures of relevant rows in the Serre spectral sequence (Sections 7.1 and 8.1).

1.4. Evaluation of the index bounds

1.4.1. F2-evaluation
It was pointed out to us by Siniša Vrećica that, with F2-coefficients, the D8 index bound gives the same bounds as the

H1 = (Z2)
2 index bound. This observation follows from the implication

a jb j(a + b) j ∈ 〈ad+1, (a + b)d+1〉 ⇒ a jb j(a + b) j ∈ 〈ad+1 + (a + b)d+1,ad+2 + (a + b)d+2〉.
By introducing a new variable c := a + b, it is enough to prove the implication

a jc j(a + c) j ∈ 〈ad+1, cd+1〉 ⇒ a jc j(a + c) j ∈ 〈ad+1 + cd+1,ad+2 + cd+2〉. (4)

Let us assume that a jc j(a + c) j ∈ 〈ad+1, cd+1〉. The monomials in the expansion of a jc j(a + c) j always come in pairs

ad+kc3 j−d−k + cd+ka3 j−d−k.

This is also true when j is even since
( j

j/2

)=mod 2 0 implies there are no middle terms. The sequence of equations

ad+1c3 j−d−1 + cd+1a3 j−d−1 = (ad+1 + cd+1)(c3 j−d−1 + a3 j−d−1)+ a3 j + c3 j

ad+2c3 j−d−2 + cd+2a3 j−d−2 = (ad+1 + cd+1)(ac3 j−d−2 + a3 j−d−2c
)+ a3 j−1c + ac3 j−1

. . .

a3 j + c3 j = (ad+2 + cd+2)(a3 j−d−2 + c3 j−d−2)+ ad+2c3 j−d−2 + cd+2a3 j−d−2

shows that all the binomials

ad+1c3 j−d−1 + cd+1a3 j−d−1, ad+2c3 j−d−2 + cd+2a3 j−d−2, . . . , a3 j + c3 j

belong to the ideal 〈ad+1 + cd+1,ad+2 + cd+2〉 or none of them do.
Since for 3 j − d − 1 even

ad+1+ 3 j−d−1
2 c

3 j−d−1
2 + cd+1+ 3 j−d−1

2 a
3 j−d−1

2 = (ad+1 + cd+1)a 3 j−d−1
2 c

3 j−d−1
2 ∈ 〈ad+1 + cd+1,ad+2 + cd+2〉,

and for 3 j − d − 1 odd

ad+2+ 3 j−d−2
2 c

3 j−d−2
2 + cd+2+ 3 j−d−2

2 a
3 j−d−2

2 = (ad+2 + cd+2)a 3 j−d−2
2 c

3 j−d−2
2 ∈ 〈ad+1 + cd+1,ad+2 + cd+2〉,

the implication (4) is proved.
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1.4.2. Z-evaluation
More is true, even the complete D8 index bound, now with Z-coefficients, implies the same bounds as does the subgroup

H1 = (Z2)
2 for the k = 2 hyperplanes mass partition problem.

Lemma 1.6. Let a =∑k
i=1 ai2i and b =∑k

i=1 bi2i be the dyadic expansions. Then(
b

a

)
mod 2

=
k∏

i=1

(
bi

ai

)
mod ,2

.

This classical fact [20] about binomial coefficients mod 2 yields the following property for the sequence of polynomi-
als Πd , d � 0.

Lemma 1.7. Let q > 0 and i be integers. Then

(A)
(2q−1−i

i

)= {0, i �= 0,

1, i = 0,

(B) Π2q = Y 2q
.

Proof. The statement (B) is a direct consequence of the fact (A) and the definition of polynomials Πd . For i /∈ {1, . . . ,2q−1}
the statement (A) is true from boundary conditions on binomial coefficients. Let i ∈ {1, . . . ,2q−1} and i =∑k∈I⊆{0,...,q−1} 2k .
Then

2q − 1 − i = 20 + 21 + 22 + · · · + 2q−1 −
∑

k∈I⊆{0,...,q−1}
2k =

∑
k∈Ic⊆{0,...,q−1}

2k

where Ic is the complementary index set in {0, . . . ,q − 1}. The statement (A) follows from Lemma 1.6 �
Let j be an integer such that j = 2q + r where 0 � r < 2q and d = 2q+1 + r − 1. Let us introduce the following ideals

A j =
{

〈Y
j
2 W

j
2 〉, for j even,

〈Y
j+1

2 W
j−1

2 M, Y
j+1

2 W
j+1

2 〉, for j odd,
and Bd =

{ 〈Π d+2
2

,Π d+4
2

, MΠ d
2
〉, for d even,

〈Π d+1
2

,Π d+3
2

〉, for d odd.

The fact that the D8 index bound with Z-coefficients does not improve the mass partition bounds obtained by using the
subgroup H1 = (Z2)

2 is a consequence of the following facts:

• r = 0 ⇒ A j ⊆ Bd,

• (r �= 2q − 1 and A j ⊆ Bd) ⇒ A j+1 ⊆ Bd+1,

that are proved in Lemma 1.8 and Lemma 1.9, respectively.

Lemma 1.8. 〈Y 2q−1 W 2q−1 〉 = A2q ⊆ B2q+1−1 = 〈Π2q ,Π2q+1〉.

Proof. Since Y 2q−1 = Π2q−1 by Lemma 1.7,

Y 2q−1 W = Π2q−1 W = Π2q−1+2 + YΠ2q−1+1 ∈ 〈Π2q−1+1,Π2q−1+2〉.
By induction on the power i of W in Y 2q−1 W 2i ,

Y 2q−1 W i ∈ 〈Π2q−1+i,Π2q−1+i+1〉,
and consequently

Y 2q−1 W 2q−1 ∈ 〈Π2q ,Π2q+1〉. �
Lemma 1.9. If r �= 2q − 1 and A j ⊆ Bd then A j+1 ⊆ Bd+1 .

Proof. We distinguish two cases depending on the parity of j.

(A) Let j be even and Y
j
2 W

j
2 ∈ 〈Π d+1

2
,Π d+3

2
〉. There are polynomials α and β such that

Y
j
2 W

j
2 = αΠ d+1 + βΠ d+3 .
2 2
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Then

Y
( j+1)+1

2 W
( j+1)−1

2 M = Y
j+2

2 W
j
2 M = Y M(αΠ d+1

2
+ βΠ d+3

2
)

∈ 〈Π(d+1)+2
2

, MΠ d+1
2

〉 ⊆ 〈Π d+3
2

,Π d+5
2

, MΠ d+1
2

〉 = Bd+1,

and

Y
( j+1)+1

2 W
( j+1)+1

2 = Y W
(

Y
j
2 W

j
2
)= Y W(αΠ d+1

2
+ βΠ d+3

2
) = αM2Π d+1

2
+ βY WΠ d+3

2

∈ 〈MΠ d+1
2

,Π d+3
2

〉 ⊆ 〈Π d+3
2

,Π d+5
2

, MΠ d+1
2

〉 = Bd+1.

Thus A j+1 ⊆ Bd+1.
(B) Let j be odd and〈

Y
j+1

2 W
j−1

2 M, Y
j+1

2 W
j+1

2
〉= A j ⊆ Bd = 〈Π d+2

2
,Π d+4

2
, MΠ d

2
〉.

There are polynomials α, β and γ such that

Y
j+1

2 W
j+1

2 = αΠ d+2
2

+ βΠ d+4
2

+ γ MΠ d
2

and no occurrence of the defining relation Π d+4
2

= YΠ d+2
2

+ W Π d
2

, Remark 1.3, can be subtracted from the presentation.

Then γ MΠ d
2

∈ 〈Π d+2
2

,Π d+4
2

〉, and since M is of odd degree γ = Mγ ′ . In the first case the inclusion A j+1 ⊆ Bd+1

follows directly. Consider γ = Mγ ′ . Since (Y + X )W Πi = Y W Πi for every i > 0, we have that

Y
j+1

2 W
j+1

2 = αΠ d+2
2

+ βΠ d+4
2

+ γ ′M2Π d
2

= αΠ d+2
2

+ βΠ d+4
2

+ γ ′Y WΠ d
2

= αΠ d+2
2

+ βΠ d+4
2

+ γ ′Y(YΠ d
2 +1 + Π d

2 +2) ∈ 〈Π d+2
2

,Π d+4
2

〉 = Bd+1.

Thus A j+1 ⊆ Bd+1. �
2. Configuration Space/Test Map scheme

The Configuration Space/Test Map (CS/TM) paradigm (formalized by Živaljević in [26], and also beautifully exposited
by Matoušek in [23]) has been very powerful in the systematic derivation of topological lower bounds for problems of
Combinatorics and of Discrete Geometry.

In many instances, the problem suggests natural configuration spaces X , Y , a finite symmetry group G , and a test set
Y0 ⊂ Y , where one would try to show that every G-equivariant map f : X → Y must hit Y0. The canonical tool is then Dold’s
theorem, which says that if the group actions are free, then the map f must hit the test set Y0 ⊂ Y if the connectivity of X
is higher than the dimension of Y \ Y0.

For the success of this “canonical approach” one crucially needs that a result such as Dold’s theorem is applicable. Thus
the group action must be free, so one often reduces the group action to a prime order cyclic subgroup of the full symmetry
group, and results may follow only in “the prime case”, or with more effort and deeper tools in the prime power case. The
main example for this is the Topological Tverberg Problem, which is still not resolved for (d,q) if d > 1 and q is not a prime
power [23, Section 6.4, p. 165]. So in general one has to work much harder when the “canonical” approach fails.

In the following, we present configuration spaces and test maps for the mass partition problem.

2.1. Configuration space

The space of all oriented affine hyperplanes in Rd can be naturally identified with the subspace of the sphere Sd ob-
tained by removing two points, namely the “oriented hyperplanes at infinity”. Indeed, let Rd be embedded in Rd+1 by
(x1, . . . , xd) �−→ (x1, . . . , xd,1). Then every oriented affine hyperplane H in Rd determines a unique oriented hyperplane H̃
through the origin in Rd+1 such that H̃ ∩ Rd = H , and conversely if the hyperplane at infinity is included. The oriented
hyperplane uniquely determined by the unit vector v ∈ Sd is denoted by H v and the assumed orientation is determined by
the half-space H±

v . Then H−−v = H+
v . The obvious and classically used candidate for the configuration space associated with

the problem of testing admissibility of (d, j,k) is

Yd,k = (Sd)k.
The relevant group acting on this space is the Weyl group Wk = (Z2)

k � Sk . Each Z2 = ({+1,−1}, ·) acts antipodally on the
appropriate copy of Sd (changing the orientation of hyperplanes), while Sk acts by permuting copies. The second configura-
tion space that we can use is

Xd,k = Sd ∗ · · · ∗ Sd︸ ︷︷ ︸∼= Sdk+k−1.
k copies
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The elements of Xd,k are denoted by t1 v1 + · · · + tk vk , with ti � 0,
∑

t1 = 1, vi ∈ Sd . The Weyl group Wk acts on Xd,k by

εi · (t1 v1 + · · · + ti vi + · · · + tk vk) = t1 v1 + · · · + ti(−vi) + · · · + tk vk,

π · (t1 v1 + · · · + ti vi + · · · + tk vk) = tπ−1(1)vπ−1(1) + · · · + tπ−1(i)vπ−1(i) + · · · + tπ−1(k)vπ−1(k),

where εi is the generator of the i-th copy of Z2 and π ∈ Sk is an arbitrary permutation.

2.2. Test map

Let M = {μ1, . . . ,μ j} be a collection of mass distributions in Rd . Let the coordinates of R2k
be indexed by the elements

of the group (Z2)
k . The Weyl group Wk acts on R2k

by acting on its coordinate index set (Z2)
k in the following way:(

(β1, . . . , βk) � π
) · (α1, . . . ,αk) = (β1απ−1(1), . . . , βkαπ−1(k)).

The test map φ : Yd,k → (R2k
) j used with the configuration space Yd,k is a Wk-equivariant map given by

φ(v1, . . . , vk) =
((

μi
(

Hα1
v1 ∩ · · · ∩ Hαk

vk

)− 1

2k
μi
(
Rd))

(α1,...,αk)∈(Z2)k

)
i∈{1,..., j}

.

Denote the i-th component of φ by φi , i = 1, . . . , j.
To define a test map associated with the configuration space Xd,k , we discuss the (Z2)

k- and Wk-module structures

on R2k
.

All irreducible representations of the group (Z2)
k are 1-dimensional. They are in bijection with the homomorphisms

(characters) χ : (Z2)
k → Z2. These homomorphisms are completely determined by the values on generators ε1, . . . , εk

of (Z2)
k , i.e. by the vector (χ(ε1), . . . ,χ(εk)). For (α1, . . . ,αk) ∈ (Z2)

k let Vα1...αk = span{vα1...αk } ⊂ R2k
denote the 1-

dimensional representation given by

εi · vα1...αk = αi vα1...αk .

The vector vα1...αk ∈ {+1,−1}2k
is uniquely determined up to a scalar multiplication by −1. Note that

〈vα1...αk , vβ1...βk 〉 = 0

for α1 . . . αk �= β1 . . . βk . For k = 2, with the abbreviation + for +1, − for −1, the coordinate index set for R4 is
{++,+−,−+,−−}. Then

v++ = (1,1,1,1), v+− = (1,−1,1,−1),

v−+ = (1,1,−1,−1), v−− = (1,−1,−1,1).

The following decomposition of (Z2)
k-modules holds, with the index identification (Z2)

k = {+,−}k ,

R2k ∼= V+···+ ⊕
∑

α1...αk∈(Z2)k\{+···+}
Vα1...αk

where V+···+ is the trivial (Z2)
k-representation. Let R2k denote the orthogonal complement of V+···+ and π : R2k → R2k the

associated (equivariant) projection. Explicitly

R2k =
{
(x1, . . . , x2k ) ∈ R2k

∣∣∣∑ xi = 0
}

=
∑

α1...αk∈(Z2)k\{+···+)}
Vα1...αk , (5)

and

x = (x1, . . . , x2k )
π�−→ 1

2k−1

(〈x, vα1...αk)〉
)
α1...αk∈(Z2)k\{+···+},

where 〈·,·〉 denotes the standard inner product of R2k
. Observe that

im φ = φ(Yd,k) ⊆ (R2k )
j .

Let α1 . . . αk ∈ (Z2)
k and let η(α1 . . . αk) = 1

2 (k −∑αi). The following decomposition of Wk-modules holds

R2k ∼= V+···+ ⊕
k∑

n=1

∑
n=η(α1,...,αk)

Vα1...αk
∼= V+···+ ⊕ R2k . (6)
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The test map τ : Xd,k → Uk × (R2k ) j is defined by

τ (t1 v1 + · · · + tk vk) =
(

t1 − 1

k
, . . . , tk − 1

k

)

× ((t 1−α1
2

1 · · · t
1−αk

2
k 〈φi(v1, . . . , vk), vα1...αk 〉

)
α1...αk∈(Z2)k\{+···+}

) j
i=1.

Here Uk = {(ξ1, . . . , ξk) ∈ Rk |∑ ξi = 0} is a Wk-module with an action given by(
(β1, . . . , βk) � π

) · (ξ1, . . . , ξk) := (ξπ−1(1), . . . , ξπ−1(k)).

The subgroup (Z2)
k acts trivially on Uk . The action on Uk × (R2k ) j is assumed to be the diagonal action. The test map τ is

well defined, continuous and Wk-equivariant.

Example 2.1. The test map τ : Xd,k → Uk × (R2k ) j is in the case of k = 2 hyperplanes and j = 1 measure given by τ : Xd,2 →
U2 × R4 = U2 × ((V+− ⊕ V−+) ⊕ V−−) and

τ (t1 v1 + t2 v2) =
(

t1 − 1

2
, t2 − 1

2
, t1
〈
φ(v1, v2), v−+

〉
, t2
〈
φ(v1, v2), v+−

〉
, t1t2

〈
φ(v1, v2), v−−

〉)
where

φ(v1, v2) =
(
μi
(

Hα1
v1 ∩ Hα2

v2

)− 1

4
μ
(
Rd))

α1α2∈(Z2)2
∈ R4.

2.3. The test space

The test spaces for the maps φ and τ are the origins of (R2k ) j and Uk × (R2k ) j , respectively. The constructions that we
perform in this section satisfy the usual hypotheses for the CS/TM scheme.

Proposition 2.2.

(i) For a collection of mass distributions M = {μ1, . . . ,μ j} let φ : Yd,k → (R2k ) j and τ : Xd,k → Uk × (R2k ) j be the corresponding
test maps. If

(0, . . . ,0) ∈ φ(Yd,k) or (0, . . . ,0) ∈ τ (Xd,k)

then there exists an arrangement of k hyperplanes H in Rd equiparting the collection M.
(ii) If there is no Wk-equivariant map with respect to the actions defined above,

Yd,k → (R2k )
j∖{(0, . . . ,0)

}
, or Yd,k → S

(
(R2k )

j)≈ S j(2k−1)−1, or

Xd,k → Uk × (R2k )
j∖{(0, . . . ,0)

}
, or Xd,k → S

(
Uk × (R2k )

j)≈ S j(2k−1)+k−2,

then the triple (d, j,k) is admissible.
(iii) Specifically, for k = 2, if there is no D8 ∼= W2 equivariant map, with the already defined actions,

Yd,2 → (R4)
j∖{(0, . . . ,0)

}
, or Yd,2 → S

(
(R4)

j)≈ S3 j−1, or

Xd,2 → U2 × (R4)
j∖{(0, . . . ,0)

}
, or S2d+1 ≈ Xd,2 → S

(
U2 × (R4)

j)≈ S3 j,

then the triple (d, j,2) is admissible.

Remark 2.3. The action of Wk on the sphere S(U2 × (R4)
j) is fixed point free, but not free. For k = 2, the action of the unique

Z4 subgroup of W2 = D8 on the sphere S(U2 × (R4)
j) is fixed point free.

The necessary condition for the non-existence of an equivariant Wk-map

Xd,k → S
(
Uk × (R2k )

j)
implied by the equivariant Kuratowski–Dugundji theorem [3, Theorem 1.3, p. 25] is

dk + k − 1 > j
(
2k − 1

)+ k − 2 ⇐⇒ d � 2k − 1

k
j. (7)

For k = 2 the condition (7) becomes

d �
⌈

3

2
j

⌉
. (8)
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3. The Fadell–Husseini index theory

3.1. Equivariant cohomology

Let X be a G-space and X → EG ×G X
πX→ BG the associated universal bundle, with X as a typical fibre. EG is a contractible

cellular space on which G acts freely, and BG := EG/G . The space EG ×G X = (EG × X)/G is called the Borel construction
of X with respect to the action of G . The equivariant cohomology of X is the ordinary cohomology of the Borel construction
EG ×G X ,

H∗
G(X) := H∗(EG ×G X).

The equivariant cohomology is a module over the ring H∗
G(pt) = H∗(BG). When X is a free G-space the homotopy equiva-

lence EG ×G X � X/G induces a natural isomorphism

H∗
G(X) ∼= H∗(X/G).

The universal bundle X → EG ×G X
πX→ BG , for coefficients in the ring R , induces a Serre spectral sequence converging to the

graded group Gr(H∗
G(X, R)) associated with H∗

G(X, R) appropriately filtered. In this paper “ring” means commutative ring
with a unit element. The E2-term is given by

E p,q
2

∼= H p(BG, Hq(X, R)
)
, (9)

where Hq(X, R) is a system of local coefficients. For a discrete group G , the E2-term of the spectral sequence can be
interpreted as the cohomology of the group G with coefficients in the G-module H∗(X, R),

E p,q
2

∼= H p(G, Hq(X, R)
)
. (10)

3.2. IndexG,R and Indexk
G,R

Let X be a G-space, R a ring and π∗
X the ring homomorphism in cohomology

π∗
X : H∗(BG, R) → H∗(EG ×G X, R)

induced by the projection EG ×G X → EG ×G pt ≈ BG .
The Fadell–Husseini (ideal-valued) index of a G-space X is the kernel ideal of π∗

X ,

IndexG,R X := kerπ∗
X ⊆ H∗(BG, R).

The Serre spectral sequence (9) yields a representation of the homomorphism π∗
X as the composition

H∗(BG, R) → E∗,0
2 → E∗,0

3 → E∗,0
4 → ·· · → E∗,0∞ ⊆ H∗(EG ×G X, R).

The k-th Fadell–Husseini index is defined by

Indexk
G,R X = ker

(
H∗(BG, R) → E∗,0

k

)
, k � 2,

Index1
G,R X = {0}.

From the definitions the following properties of indexes can be derived.

Proposition 3.1. Let X , Y be G-spaces.

(1) Indexk
G,R X ⊆ H∗(BG, R) is an ideal, for every k ∈ N;

(2) Index1
G,R X ⊆ Index2

G,R X ⊆ Index3
G,R X ⊆ · · · ⊆ IndexG,R X ;

(3)
⋃

k∈N
Indexk

G,R X = IndexG,R X.

Proposition 3.2. Let X and Y be G-spaces and f : X → Y a G-map. Then

IndexG,R(X) ⊇ IndexG,R(Y )

and for every k ∈ N

Indexk
G,R(X) ⊇ Indexk

G,R(Y ).
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Proof. Functoriality of all constructions implies that the following diagrams commute:

X
f

Y

pt

EG ×G X
πX

f̂
EG ×G Y

πY

BG

and consequently applying cohomology functor

H∗(EG ×G X, R) H∗(EG ×G Y , R)
f ∗

H∗(BG, R)

π∗
X π∗

Y

πX = πY ◦ f̂ and π∗
X = f ∗ ◦ π∗

Y . Thus kerπ∗
X ⊇ kerπ∗

Y . �
Example 3.3. Sn is a Z2-space with the antipodal action. The action is free and therefore

EZ2 ×Z2 Sn � Sn/Z2 ≈ RPn ⇒ H∗
Z2

(
Sn, R

)∼= H∗(RPn, R
)
.

1. R = F2: The cohomology ring H∗(BZ2,F2) = H∗(RP∞,F2) is the polynomial ring F2[t] where deg(t) = 1. The Z2-index
of Sn is the principal ideal generated by tn+1:

IndexZ2,F2 Sn = Indexn+2
Z2,F2

Sn = 〈tn+1〉⊆ F2[t].
2. R = Z: The cohomology ring H∗(BZ2,Z) = H∗(RP∞,Z) is the quotient polynomial ring Z[τ ]/〈2τ 〉 where deg(τ ) = 2.

The Z2-index of Sn is the principal ideal

IndexZ2,Z Sn = Indexn+2
Z2,Z

Sn =
{

〈τ n+1
2 〉, for n odd,

〈τ n+2
2 〉, for n even.

Example 3.4. Let G be a finite group and H a subgroup of index 2. Then H � G and G/H ∼= Z2. Let V be the 1-dimensional
real representation of G defined for v ∈ V by

g · v =
{

v, for g ∈ H,

−v, for g /∈ H .

There is a G-homeomorphism S(V ) ≈ Z2. Therefore by [17, last equation on p. 34]:

EG ×G S(V ) ≈ EG ×G (G/H) ≈ (EG ×G G)/H ≈ EG/H ≈ BH

and

IndexG,R S(V ) = ker
(
resG

H : H∗(G, R) → H∗(H, R)
)
. (11)

3.3. The restriction map and the index

Let X be a G-space and K ⊆ G a subgroup. Then there is a commutative diagram of fibrations [9, pp. 179–180]:

EG ×G X EG ×K X
f

BG = EG/G EG/K = BKBi

(12)

induced by inclusion i : K ⊂ G . Here EG in the lower right corner is understood as a K -space and consequently a model
for EK . The map Bi is a map between classifying spaces induced by inclusion i. Now with coefficients in the ring R we
define

resG
K := H∗( f ) : H∗(EG ×G X, R) → H∗(EG ×K X, R).

If G is a finite group, then the induced map on the cohomology of the classifying spaces

resG
K = (Bi)∗ : H∗(BG, R) → H∗(BK , R)

coincides with the restriction homomorphism between group cohomologies

resG
K : H∗(G, R) → H∗(K , R).
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Fig. 1. Illustration of Proposition 3.5 (D) and (E).

Proposition 3.5. Let X be a G-space, and K and L subgroups of G.

(A) The morphism of fibrations (12) provides the following commutative diagram in cohomology:

H∗(EG ×G X, R)
resG

K H∗(EG ×K X, R)

H∗(BG, R)

π∗
X

resG
K H∗(BK , R)

π∗
X

(13)

(B) For every x ∈ H∗(BG, R) and y ∈ H∗(EG ×G X, R),

resG
K (x · y) = resG

K (x) · resG
K (y).

(C) L ⊂ K ⊂ G ⇒ resG
L = resK

L ◦ resG
K .

(D) The map of fibrations (12) induces a morphism of Serre spectral sequences (see Fig. 1)

Γ
∗,∗

i : E∗,∗
i (EG ×G X, R) → E∗,∗

i (EK ×K X, R)

such that
(1) Γ

∗,∗∞ = resG
K : H∗+∗(EG ×G X, R) → H∗+∗(EG ×K X, R),

(2) Γ
∗,0

2 = resG
K : H∗(BG, R) → H∗(BK , R).

(E) Let R and S be commutative rings and φ : R → S a ring homomorphism. There are morphisms:
(1) in equivariant cohomology Φ∗ : H∗(EG ×G X, R) → H∗(EG ×G X, S),
(2) in group cohomology Φ∗ : H∗(G, R) → H∗(G, S), and
(3) between Serre spectral sequences Φ

∗,∗
i : E∗,∗

i (EG ×G X, R) → E∗,∗
i (EG ×G X, S),

induced by φ such that the following diagram commutes:

H∗(EG ×G X, R) � H∗(EG ×K X, R)

H∗(EG ×G X, S) �
Φ �

�

H∗(EG ×K X, S)

Φ �

H∗(BG, R)

�

� H∗(BK , R)

H∗(BG, S)

�

�
Φ �

H∗(BK , S)

�

Φ �

(14)

Remark 3.6. By a morphism of spectral sequences in properties (D) and (E) we mean that

Γ
∗,∗

i ◦ ∂i = ∂i ◦ Γ
∗,∗

i and Φ
∗,∗
i ◦ ∂i = ∂i ◦ Φ

∗,∗
i .

These relations are applied in the situations where the right-hand side is �= 0 for a particular element x, to imply that the
left-hand side Γ

∗,∗
i ◦ ∂i(x) or Φ

∗,∗
i ◦ ∂i(x) is also �= 0. In particular, then ∂i(x) �= 0.

Proposition 3.7. Let X be a G-space and K a subgroup of G. Let R and S be rings and φ : R → S a ring homomorphism. Then

(1) resG
K (IndexG,R X) ⊆ IndexK ,R X,

(2) resG
K (Indexr

G,R X) ⊆ Indexr
K ,R X for every r ∈ N,

(3) Φ∗(IndexG,R X) ⊆ IndexG,S X,

(4) Φ∗(Indexr
G,R X) ⊆ Indexr

G,S X .
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Proof. The assertions about the IndexG,R follow from diagrams (13) and (14). The commutative diagrams

E∗,0
r (EG ×G X, R)

Γ
∗,0

r
E∗,0

r (EK ×K X, R)

H∗(BG, R)
resG

K H∗(BK , R)

and

E∗,0
r (EG ×G X, R)

Φ
∗,0
r

E∗,0
r (EG ×G X, S)

H∗(BG, R)
Φ∗

H∗(BG, S)

imply the partial index assertions. �
3.4. Basic calculations of the index

3.4.1. The index of a product
Let X be a G-space and Y an H-space. Then X × Y has the natural structure of a G × H-space. What is the relation

between the three indexes IndexG×H (X × Y ), IndexG(X), and IndexH (Y )? Using the Künneth formula one can prove the
following proposition [11, Corollary 3.2], [27, Proposition 2.7] when the coefficient ring is a field.

Proposition 3.8. Let X be a G-space and Y an H-space and

H∗(BG,k) ∼= k[x1, . . . , xn], H∗(BH,k) ∼= k[y1, . . . , ym]
the cohomology rings of the associated classifying spaces with coefficients in the field k. If

IndexG,k X = 〈 f1, . . . , f i〉 and IndexH,k(Y ) = 〈g1, . . . , g j〉,
then

IndexG×H,k X = 〈 f1, . . . , f i, g1, . . . , g j〉 ⊆ k[x1, . . . , xn, y1, . . . , ym].

The (Z2)
k-index of a product of spheres can be computed using this proposition and Example 3.3.

Corollary 3.9. Let Sn1 × · · · × Snk be a (Z2)
k-space with the product action. Then

Index(Z2)k,F2
Sn1 × · · · × Snk = 〈tn1+1

1 , . . . , tnk+1
k

〉⊆ F2[t1, . . . , tk].

Unfortunately when the coefficient ring is not a field the claim of Proposition 3.8 does not hold.

Example 3.10. Let Sn × Sn be a (Z2)
2-space with the product action. From the previous corollary

Index(Z2)2,F2
Sn × Sn = 〈tn+1

1 , tn+1
2

〉⊆ F2[t1, t2] = H∗((Z2)
2,F2

)
. (15)

The cohomology ring H∗((Z2)
2,Z), as in [19, Proposition 4.1, p. 508] or [16, Example 3E.5, pp. 306–307], can be described

as the quotient:

H∗((Z2)
2,Z

)∼= (Z[τ1, τ2] ⊗ Z [μ])/I (16)

where degτ1 = degτ2 = 2, degμ = 3 and I is the ideal generated by the relations:

2τ1 = 2τ2 = 2μ = 0 and μ2 = τ1τ2(τ1 + τ2).

The ring morphism c : Z → F2 induces a morphism c∗ : H∗((Z2)
2,Z) → H∗((Z2)

2,F2) given by:

τ1 �−→ t2
1, τ2 �−→ t2

2, μ �−→ t1t2(t1 + t2). (17)

The (Z2)
2-action on Sn × Sn , as a product of antipodal actions, is free and therefore

E(Z2)
2 ×(Z2)2

(
Sn × Sn)� (Sn × Sn)/(Z2)

2 ≈ RPn × RPn.

Using equality (15), Proposition 3.5.E.3 on the coefficient morphism c : Z → F2, the isomorphism

H∗
2

(
Sn × Sn,Z

)∼= H∗(RPn × RPn,Z
)

(Z2)
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and the existence of the (Z2)
2-inclusions

Sn−1 × Sn−1 ⊂ Sn × Sn ⊂ Sn+1 × Sn+1,

it can be concluded that

Index(Z2)2,Z Sn × Sn =
⎧⎨
⎩ 〈τ

n+1
2

1 , τ
n+1

2
2 〉, for n odd

〈τ
n+2

2
1 , τ

n+2
2

2 , τ
n
2

1 μ,τ
n
2

2 μ〉, for n even
⊆ H∗((Z2)

2,Z
)
. (18)

3.4.2. The index of a sphere
We need to know how to compute the index of a sphere admitting an action of a finite group different from the antipodal

Z2-action. The following three propositions will be of some help [11, Proposition 3.13], [27, Proposition 2.9].

Proposition 3.11. Let G be a finite group and V an n-dimensional complex representation of G. Then

IndexG,Z S(V ) = 〈cn(V G)
〉⊂ H∗(G,Z)

where cn(V G) is the n-th Chern class of the bundle V → EG ×G V → BG.

Proof. The fact that the index is generated by the Euler class e(V G) of the orientable vector bundle V G ,

V → EG ×G V → BG,

follows from the Gysin exact sequence, [24, Theorem 12.2, p. 143]. In the particular case of the complex representation V
the Euler class e(V G) coincides with the top Chern class cn(V G), [18, Exercise 3, p. 261]. �
Proposition 3.12. Let U , V be two G-representations and let S(U ), S(V ) be the associated G-spheres. Let R be a ring and assume that
H∗(S(U ), R), H∗(S(V ), R) are trivial G-modules. If IndexG,R(S(U )) = 〈 f 〉 ⊆ H∗(BG, R) and IndexG,R(S(V )) = 〈g〉 ⊆ H∗(BG, R),
then

IndexG,R S(U ⊕ V ) = 〈 f · g〉 ⊆ H∗(BG, R).

Proposition 3.13.

(A) Let V be the 1-dimensional (Z2)
k -representation with the associated ±1 vector (α1, . . . ,αk) ∈ (Z2)

k (as defined in Section 2).
Then

Index(Z2)k,F2
S(V ) = 〈ᾱ1t1 + · · · + ᾱktk〉 ⊆ F2[t1, . . . , tk],

where ᾱi = 0 if αi = 1, and ᾱi = 1 if αi = −1.
(B) Let U be an n-dimensional (Z2)

k -representation with a decomposition U ∼= V 1 ⊕ · · · ⊕ Vn into 1-dimensional (Z2)
k-

representations V 1, . . . , Vn . If (α1i, . . . ,αki) ∈ (Z2)
k is the associated ±1 vector of V i , then

Index(Z2)k,F2
S(U ) =

〈
n∏

i=1

(ᾱ1it1 + · · · + ᾱkitk)

〉
⊆ F2[t1, . . . , tk].

Example 3.14. Let V−+ , V+− and V−− be 1-dimensional real (Z2)
2-representations introduced in Section 2.2. Then by

Proposition 3.13

Index(Z2)2,F2
S(V−+) = 〈t1〉, Index(Z2)2,F2

S(V+−) = 〈t2〉, Index(Z2)2,F2
S(V−−) = 〈t1 + t2〉.

On the other hand, Example 3.4 and the restriction diagram (23) imply that

Index(Z2)2,Z S(V−+) = 〈τ1,μ〉, Index(Z2)2,Z S(V+−) = 〈τ2,μ〉, Index(Z2)2,Z S(V−−) = 〈τ1 + τ2,μ〉.

4. The cohomology of D8 and the restriction diagram

The dihedral group W2 = D8 = (Z2)
2 � Z2 = (〈ε1〉 × 〈ε2〉) � 〈σ 〉 can be presented by

D8 = 〈ε1,σ
∣∣ ε2

1 = σ 2 = (ε1σ)4 = 1
〉
.

Then 〈ε1σ 〉 ∼= Z4 and ε2 = σε1σ .
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4.1. The poset of subgroups of D8

The poset Sub(G) denotes the collection of all nontrivial subgroups of a given group G ordered by inclusion. The poset
Sub(G) can be interpreted as a small category G in the usual way:

• Ob(G) = Sub(G),
• for every two objects H and K , subgroups of G , there is a unique morphism f H,K : H → K if H ⊇ K , and no morphism

if H � K , i.e.

Mor(H, K ) =
{ { f H,K }, H ⊇ K ,

∅, H � K .

The Hasse diagram of the poset Sub(D8) is presented in the following diagram.

D8

H1
〈ε1, ε2〉
Z2 × Z2

�

H2
〈ε1σ 〉

Z4

�
H3

〈ε1ε2,σ 〉
Z2 × Z2

�

K1
〈ε1〉
Z2

�

K2
〈ε2〉
Z2

�
K3

〈ε1ε2〉
Z2

� �

�

K4
〈σ 〉
Z2

�
K5

〈ε1ε2σ 〉
Z2

�

4.2. The cohomology diagram of subgroups with coefficients in F2

Let G be a finite group and R an arbitrary ring. Then the diagram Res(R) : G → Ring (covariant functor) defined by

Ob(G) � H �−→ H∗(H, R),

(H ⊇ K ) �−→ (
resH

K : H∗(H, R) → H∗(K , R)
)

is the cohomology diagram of subgroups of G with coefficients in the ring R . In this section we assume that R = F2.

4.2.1. The Z2 × Z2-diagram
The cohomology of any elementary abelian 2-group Z2 × Z2 is a polynomial ring F2[x, y], deg(x) = deg(y) = 1. The

restrictions to the three subgroups of order 2 are given by all possible projections F2[x, y] → F2[t], deg(t) = 1:

(x �→ t, y �→ 0) or (x �→ 0, y �→ t) or (x �→ t, y �→ t).

Thus the cohomology diagram of the subgroups of Z2 × Z2 is

Z2 × Z2
F2 [x, y]

Z2
F2[t1]

�

x�→
0

y �→
t 1

Z2
F2[t2]

x�→t2 y �→0
�

Z2
F2[t3]

x�→
t3y �→

t3 � (19)

4.2.2. The D8-diagram
The cohomology of D8 can be presented, as in [1, p. 119] and [7,8], by

H∗(D8,F2) = F2[x, y, w]/〈xy〉
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where deg(x) = deg(y) = 1 and deg(w) = 2. Following [7,8] the two top levels of the diagram can be presented by:

D8
F2[x, y; w]/〈xy〉

deg : 1,1,2

H1
F2[a,b]

deg : 1,1

�

x�→
0,

y �→
b

w
�→a(

a+b)

H2

F2[e, u]/〈e2〉
deg : 1,2

x,y �→e w �→u

�
H3

F2[c,d]
deg : 1,1

x�→
d,y �→

0

w �→
c(c+d) � (20)

Let H∗(Ki,F2) = F2[ti], deg(ti) = 1. From [1, Corollary II.5.7, p. 69] the restriction

resH2
K3

: (H∗(H2,F2) = F2[e, u]〈e2〉)−→ (
H∗(K3,F2) = F2[t3]

)
is given by e �→ 0, u �→ t2

3. Thus, the restriction resD8
K3

is given by x �→ 0, y �→ 0, w �→ t2
3. Using diagrams (19), (20) with the

property (C) from Proposition 3.5 we almost completely reveal the cohomology diagram of subgroups of D8. The equalities

resD8
K3

= resH2
K3

◦ resD8
H2

= resH1
K3

◦ resD8
H1

= resH3
K3

◦ resD8
H3

imply that

• resH1
K3

: (H∗(H1,F2) = F2[a,b]) −→ (H∗(K3,F2) = F2[t3]) is given by a �→ t3, b �→ 0,

• resH3
K3

: (H∗(H3,F2) = F2[c,d]) −→ (H∗(K3,F2) = F2[t3]) is given by c �→ t3, d �→ 0.

H1
F2[a,b]

deg : 1,1

H2

F2[e, u]/〈e2〉
deg : 1,2

H3
F2[c,d]

deg : 1,1
b �→

0a �→
t3 � K3

F2[t3]
deg : 1

u �→t2
3 e �→0�

�

d �→
0

c �→
t 3

(21)

The cohomology diagram (19) of subgroups of Z2 × Z2 and the part (21) of the D8 diagram imply that

• resH1
K1

: F2[a,b] −→ F2[t1] and resH1
K2

: F2[a,b] −→ F2[t2] are given by

(a �→ t1,b �→ t1 and a �→ 0,b �→ t2) or (a �→ 0,b �→ t1 and a �→ t2,b �→ t2),

• resH3
K4

: F2[c,d] −→ F2[t4] and resH3
K5

: F2[a,b] −→ F2[t5] are given by

(c �→ t4,d �→ t4 and c �→ 0,d �→ t5) or (c �→ 0,d �→ t4 and c �→ t5,d �→ t5).

Proposition 4.1. For all i �= 3, resD8
Ki

(w) = 0, while resD8
K3

(w) �= 0.

Proof. The result follows from the diagram (20) in the following way:

(a) For i ∈ {1,2}:

resD8
Ki

(w) = resH1
Ki

◦ resD8
H1

(w) = resH1
Ki

(
a(a + b)

)= 0

since either a �→ ti , b �→ ti or a �→ 0, b �→ ti .
(b) For i ∈ {4,5}:

resD8
Ki

(w) = resH3
Ki

◦ resD8
H3

(w) = resH3
Ki

(
c(c + d)

)= 0

since either c �→ ti , d �→ ti or c �→ 0, d �→ ti . �
Corollary 4.2. The cohomology of the dihedral group D8 is

H∗(D8,F2) = F2[x, y, w]/〈xy〉
where
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(a) x ∈ H1(D8,F2) and resD8
H1

(x) = 0,

(b) y ∈ H1(D8,F2) and resD8
H3

(y) = 0,

(c) w ∈ H1(D8,F2) and resD8
K1

(w) = resD8
K2

(w) = resD8
K4

(w) = resD8
K5

(w) = 0 and resD8
K3

(w) �= 0.

Assumption. Without lose of generality we can assume that

resH1
K1

(a) = t1, resH1
K1

(b) = t1, resH1
K2

(a) = 0, resH1
K2

(b) = t2. (22)

4.3. The D8-diagram with coefficients in Z

Let G be a finite group and R and S rings. A ring homomorphism φ : R → S induces a morphism of diagrams (natural
transformation of covariant functors) Φ : Res(R) → Res(S) . The morphism Φ on each object H ∈ Ob(G) is defined by the co-
efficient reduction Φ(H) : H∗(H, R) → H∗(H, S) induced by φ. Particularly in this section, as a tool for the reconstruction of
the diagram Res(Z) , we use the diagram morphism C : Res(Z) → Res(F2) induced by the coefficient reduction homomorphism
c : Z → F2.

4.3.1. The Z2 × Z2-diagram
The cohomology restriction diagram Res(F2) of the elementary abelian 2-group Z2 × Z2 is given in the diagram (19).

Using the presentation of cohomology H∗(Z2 × Z2,Z) and the homomorphism H∗(Z2 × Z2,Z) → H∗(Z2 × Z2,F2) given in
Example 3.10 we can reconstruct the restriction diagram Res(Z):

Z2 × Z2 Z[τ�, τ�] ⊗ Z[μ]
degτ1 = degτ2 = 2, degμ = 3
2τ1 = 2τ2 = 2μ = 0,

μ2 = τ1τ2(τ1 + τ2)

�
τ 1

�→ 0,
τ 2

�→ θ 1,

μ
�→ 0

τ
1 �→

θ3 , τ
2 �→

θ3 ,

μ �→
0

�

Z2 Z[θ1]
deg θ1 = 2
2θ1 = 0

Z2 Z[θ2]
deg θ2 = 2
2θ2 = 0

τ1 �→ θ2,

τ2 �→ 0,

μ �→ 0

�
Z2 Z[θ3]
deg θ3 = 2
2θ3 = 0

(23)

4.3.2. The D8-diagram
The cohomology ring H∗(D8,Z) can be presented by

H∗(D8,Z) = Z[X , Y, M, W]/I (24)

where deg X = deg Y = 2, deg M = 3, deg W = 4, and the ideal I is generated by the relations

2X = 2Y = 2M = 4W = 0, X Y = 0, M2 = W(X + Y). (25)

The map c∗ : H∗(D8,Z) −→ H∗(D8,F2), induced by the reduction of coefficients Z → F2, is given by

X �→ x2, Y �→ y2, M �→ w(x + y), W �→ w2. (26)

For the details consult [15, Theorem 5.2, p. 27].
Now using:

• the D8 restriction diagram (20) and (21) with F2 coefficients,
• the Z2 × Z2 restriction diagrams (23) with Z coefficients,
• the presentation of H∗(D8,Z) given in (24),
• the homomorphism c∗ : H∗(D8,Z) → H∗(D8,F2) described in (26),

we can reconstruct the restriction diagram of D8 with Z coefficients.
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D8 Z[X , Y, M, W]
deg : 2,2,3,4
2X = 2Y = 2M = 4W = 0,

X Y = 0, M2 = W(X + Y)

�
X �→ 0,

Y �→ β,
M

�→μ

W
�→ α(α

+ β)

X �→
δ, Y �→

0, M �→
η

W �→
γ (γ +

δ)�

H1 Z[α,α + β,μ]
deg : 2,2,3,

2α = 2β = 2μ = 0,

μ2 = αβ(α + β)

H2 Z[U ]
deg : 2
4U = 0,

Y �→ 2U
W �→ U 2

X �→ 2U
M �→ 0

�
H3 Z[γ ,γ + δ,η]
deg : 2,2,3,

2γ = 2δ = 2η = 0,

η2 = γ δ(γ + δ)
α �→

θ3 , β �→
0

μ �→
0

�
K3 Z[θ3] deg θ3 = 2

U �→ θ3

�
�

γ
�→ θ3,

δ �→ 0

η �→ 0

(27)

Now the determination of the diagram morphism C :Res(Z) →Res(F2) induced by the coefficient reduction homomorphism c : Z → F2
is just a routine exercise.

5. IndexD8,FFF2 S(R⊕ j
4 )

In this section we show the following equality:

IndexD8,F2 S
(

R⊕ j
4

)= Index3 j+1
D8,F2

S
(

R⊕ j
4

)= 〈w j y j 〉.
The D8-representation R⊕ j

4 can be decomposed into a sum of irreducibles in the following way

R4 = (V−+ ⊕ V+−) ⊕ V−− ⇒ R⊕ j
4 = (V−+ ⊕ V+−)⊕ j ⊕ V ⊕ j

−−
where V−+ ⊕ V+− is a 2-dimensional irreducible D8 -representation. Since in this section F2 coefficients are assumed, Proposition 3.12
implies that computing the indexes of the spheres S(V−+ ⊕ V+−) and S(V−−) suffices. The strategy employed uses Proposition 3.7 and
the following particular facts.

A. Let X = S(T ) for some D8-representation T . Then the E2-term of the Serre spectral sequence associated to ED8 ×D8 X is

E p,q
2 = H p(D8,F2) ⊗ Hq(X,F2). (28)

The local coefficients are trivial since X is a sphere and the coefficients are F2. Since only ∂dim T ,F2 may be �= 0, from the multiplica-
tive property of the spectral sequence it follows that

IndexD8,F2 X = 〈∂0,dim V −1
dim V ,F2

(1 ⊗ l)
〉

where l ∈ Hdim V −1(X,F2) is the generator. Therefore, IndexD8,F2 (X) = Indexdim V +1
D8,F2

(X).
B. For any subgroup H of D8, with some abuse of notation,

Γ
dim V ,0

dim V ◦ ∂
0,dim V −1
dim V ,F2

(1 ⊗ l) = ∂
0,dim V −1
dim V ,F2

◦ Γ
0,dim V −1

dim V (1 ⊗ l), (29)

where Γ denotes the restriction morphism of Serre spectral sequences introduced in Proposition 3.5(D). Therefore, for every subgroup
H of D8 we get

IndexD8,F2 X = 〈a〉, IndexH,F2 X = 〈aH 〉 �⇒ resG
K (a) = aH .

In particular, if aH �= 0 then a �= 0.
Our computation of IndexD8,F2 X for X = S(V−+ ⊕ V+−) and X = S(V−−) has two steps:
• compute IndexH,F2 X = 〈aH 〉 for all proper subgroups H of D8,
• search for an element a ∈ H∗(D8,F2) such that for every computed aH

resG
K (a) = aH .

5.1. IndexD8,F2 S(V−+ ⊕ V+−) = 〈w〉
Proposition 3.13 and the properties of the action of D8 on V−+ ⊕ V+− provide the following information:

IndexH1,F2 S(V−+ ⊕ V+−) =
{ 〈a(a + b)〉 or

〈b(a + b)〉 or

〈ab〉.
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Since initially we do not know which of the possible generators a, b, a + b of F2[a,b] correspond to the generators ε1, ε2, ε1ε2, we have
to take all three possibilities into account. Similarly:

IndexH3,F2 S(V−+ ⊕ V+−) =
{ 〈c(c + d)〉 or

〈d(c + d)〉 or
〈cd〉.

Furthermore,

ε1 acts trivially on V+− ⇒ IndexK1,F2 S(V−+ ⊕ V+−) = 0,
ε2 acts trivially on V−+ ⇒ IndexK2,F2 S(V−+ ⊕ V+−) = 0,
σ acts trivially on

{
(x, x) ∈ V−+ ⊕ V+−

} ⇒ IndexK4,F2 S(V−+ ⊕ V+−) = 0,
ε1ε2σ acts trivially on

{
(x,−x) ∈ V−+ ⊕ V+−

} ⇒ IndexK5,F2 S(V−+ ⊕ V+−) = 0.

The only nonzero element of H2(D8,F2) satisfying all requirements of commutativity with restrictions is w . Hence,

IndexD8,F2 S(V−+ ⊕ V+−) = 〈w〉. (30)

Remark 5.1. The side information coming from this computation is that generators ε1 and ε2 of the group H1 correspond to generators a
and a + b in the cohomology ring H∗(H1,F2).

5.2. IndexD8,F2 S(V−−) = 〈y〉

Again, V−− is a concrete D8-representation, and from Proposition 3.13:

IndexH1,F2 S(V−−) =
{ 〈a + b〉, or

〈a + (a + b)〉, or
〈b + (a + b)〉.

Again, we allow all three possibilities since we do not know the correspondence between generators of H1 and the chosen generators of
H∗(Hq,F2). Furthermore, since K1 and K2 act nontrivially on V−− ,

IndexK1,F2 S(V−−) = 〈t1〉, IndexK2,F2 S(V−−) = 〈t2〉.
On the other hand, H3 acts trivially on S(V−−) and so

IndexH3,F2 S(V−−) = 0.

By commutativity of the restriction diagram, or since the groups K3, K4 and K5 act trivially on V (1,1) , it follows that

IndexK3,F2 S(V−−) = IndexK4,F2 S(V−−) = IndexK5,F2 S(V−−) = 0.

The only element satisfying the commutativity requirements is y ∈ H1(D8,F2), so

IndexD8,F2 S(V−−) = 〈y〉. (31)

Remark 5.2. From the previous remark the fact that IndexH1,F2 S(V−−) = 〈b〉 = 〈a + (a + b)〉 follows directly. Alternatively, Eq. (31) is a
consequence of (11) and (20).

5.3. IndexD8,F2 S(R⊕ j
4 ) = 〈y j w j〉

From Proposition 3.12 we get that

IndexD8,F2 S
(

R⊕ j
4

)= IndexD8,F2 S
(
(V−+ ⊕ V+−)⊕ j ⊕ V ⊕ j

−−
)= 〈y j w j 〉.

Remark 5.3. In the same way we can compute that

IndexD8,F2 (U2) = 〈x〉. (32)

Therefore IndexD8,F2 (U2 ⊕ R⊕ j
4 ) = 0. This means that on the join CS/TM scheme the Fadell–Husseini index theory with F2 coefficients

yields no obstruction to the existence of the equivariant map in question.

6. IndexD8,ZZZ S(R⊕ j
4 )

In this section we show that

IndexD8,Z S
(

R⊕ j
4

)= Index3 j+1
D8,Z S

(
R⊕ j

4

)=
{

〈Y
j
2 W

j
2 〉, for j even,

〈Y
j+1

2 W
j−1

2 M, Y
j+1

2 W
j+1

2 〉, for j odd.
(33)
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6.1. The case when j is even

In the case when j is even the group D8 acts trivially on the cohomology H∗(S(R⊕ j
4 ),Z). Then the E2 -term of the Serre spectral

sequence associated to ED8 ×D8 S(R⊕ j
4 ) is a tensor product

E p,q
2 = H p(D8,Z) ⊗ Hq(S(R⊕ j

4

)
,Z
)
.

Since only ∂3 j,Z may be �= 0, the multiplicative property of the spectral sequence implies that

IndexD8,Z S
(

R⊕ j
4

)= Indexdim V +1
D8,Z S

(
R⊕ j

4

)= 〈∂0,3 j−1
3 j,Z (1 ⊗ l)

〉
where l ∈ H3 j−1(S(R⊕ j

4 ),Z) is a generator. The coefficient reduction morphism c : Z → F2 induces a morphism of Serre spectral sequences

(Proposition 3.5(E)(3)) associated with the Borel construction of the sphere S(R⊕ j
4 ). Thus,

c∗
(
∂

0,3 j−1
3 j,Z (1 ⊗ l)

)= ∂
0,3 j−1
3 j,F2

(
c∗(1 ⊗ l)

) ∈ H3 j(D8,F2)

and according to the result of the previous section

c∗
(
∂

0,3 j−1
3 j,Z (1 ⊗ l)

)= y j w j .

Now, from the description of the map c∗ : H∗(D8,Z) −→ H∗(D8,F2) in (26) follows the statement for j even.

6.2. The case when j is odd

The group D8 acts nontrivially on the cohomology H∗(S(R⊕ j
4 ),Z). Precisely, the D8-module Z = H3 j−1(S(R⊕ j

4 ),Z) is a nontrivial
D8-module and for z ∈ Z :

ε1 · z = z, ε2 · z = z, σ · z = −z.

Then the E2-term of the Serre spectral sequence associated to ED8 ×D8 S(R⊕ j
4 ) is not a tensor product and

E p,q
2 = H p(D8, Hq(S(R⊕ j

4

)
,Z
))=

⎧⎨
⎩

H p(D8,Z), q = 0,

H p(D8, Z), q = 3 j − 1,

0, q �= 0,3 j − 1.

(34)

To compute the index in this case we have to study the H∗(D8,Z)-module structure of H∗(D8, Z). This module structure is completely
described in [15, Theorem 5.11(a)]. The necessary information relevant for the computation of the index is summarized in the following
proposition.

Proposition 6.1.

(A) 2 · H∗(D8, Z) = 0,
(B) H∗(D8, Z) is generated as a H∗(D8,Z)-module by three elements ρ1 , ρ2 , ρ3 of degree 1, 2, 3 such that

ρ1 · Y = 0, ρ2 · X = 0, ρ3 · X = 0

and

c∗(ρ1) = x, c∗(ρ2) = y2, c∗(ρ3) = yw

where c∗ is the map induced by the D8-modulo map Z → Z/2Z ∼= F2 .

Thus, the index is given by

IndexD8,Z S
(

R⊕ j
4

)= 〈∂1,3 j−1
3 j, Z

(ρ1), ∂
2,3 j−1
3 j,Z (ρ2), ∂

3,3 j−1
3 j, Z

(ρ3)
〉
.

The morphism C from spectral sequence (34) to spectral sequence (28) induced by the reduction homomorphism Z → F2 implies that:

C
(
∂

1,3 j−1
3 j,Z (ρ1)

)= ∂
1,3 j−1
3 j,F2

(
c∗(ρ1)

)= ∂
1,3 j−1
3 j,F2

(x) = 0,

C
(
∂

2,3 j−1
3 j,Z (ρ2)

)= ∂
2,3 j−1
3 j,F2

(
c∗(ρ2)

)= ∂
2,3 j−1
3 j,F2

(
y2)= y j+2 w j = y j+1 w j−1(y + x)w,

C
(
∂

3,3 j−1
3 j,Z (ρ3)

)= ∂
3,3 j−1
3 j,F2

(
c∗(ρ3)

)= ∂
3,3 j−1
3 j,F2

(yw) = y j+1 w j+1. (35)

The sequence of D8 inclusion maps

S
(

R⊕( j−1)
4

)⊂ S
(

R⊕ j
4

)⊂ S
(

R⊕( j+1)
4

)
provides (Proposition 3.2) a sequence of inclusions:〈

Y
j−1

2 W
j−1

2
〉= IndexD8,Z S

(
R⊕( j−1)

4

)⊇ IndexD8,Z S
(

R⊕ j
4

)⊇ IndexD8,Z S
(

R⊕( j+1)
4

)= 〈Y
j+1

2 W
j+1

2
〉
. (36)

The relations (35), (36) and (26), along with Proposition 6.1 imply that for j odd:

IndexD8,Z S
(

R⊕ j
4

)= 〈Y
j+1

2 W
j−1

2 M, Y
j+1

2 W
j+1

2
〉
.



P.V.M. Blagojević, G.M. Ziegler / Topology and its Applications 158 (2011) 1326–1351 1345
Remark 6.2. The index IndexD8,Z S(Uk × R⊕ j
4 ) appearing in the join test map scheme can now be computed. From Example 3.4 and the

restriction diagram (27) it follows that

IndexD8,Z S(Uk) = IndexD8,Z D8/H1 = ker
(
resD8

H1
: H∗(D8,Z) → H∗(H1,Z)

)= 〈X 〉.
The inclusions

IndexD8,Z S
(
Uk × R⊕ j

4

)⊆ IndexD8,Z S
(

R⊕ j
4

)
and IndexD8,Z S

(
Uk × R⊕ j

4

)⊆ IndexD8,Z S(Uk)

imply that

IndexD8,Z S
(
Uk × R⊕ j

4

)⊆ IndexD8,Z S
(

R⊕ j
4

)∩ IndexD8,Z S(Uk) = {0}.
Thus, as in the case of F2 coefficients, the Fadell–Husseini index theory with Z coefficients on the join CS/TM scheme does not lead to
any obstruction to the existence of the equivariant map in question.

7. IndexD8,FFF2 Sd × Sd

This section is devoted to the proof of the equality

IndexD8,F2 Sd × Sd = 〈πd+1,πd+2, wd+1〉. (37)

The index will be determined by the explicit computation of the Serre spectral sequence associated with the Borel construction

Sd × Sd → ED8 ×D8

(
Sd × Sd)→ BD8.

The group D8 acts nontrivially on the cohomology of the fibre, and therefore the spectral sequence has nontrivial local coefficients. The
E2-term is given by

E p,q
2 = H p(BD8, Hq(Sd × Sd,F2

))= H p(D8, Hq(Sd × Sd,F2
))=

⎧⎨
⎩

H p(D8,F2), q = 0,2d,

H p(D8,F2[D8/H1]), q = d,

0, q �= 0,d,2d.

(38)

The nontriviality of local coefficients appears in the d-th row of the spectral sequence.

7.1. The d-th row as an H∗(D8,F2)-module

Since the spectral sequence is an H∗(D8,F2)-module and the differentials are module maps we need to understand the H∗(D8,F2)-
module structure of the E2-term.

Proposition 7.1. H∗(D8,F2[D8/H1]) ∼=ring H∗(H1,F2).

Proof. Here H1 = 〈ε1, ε2〉 ∼= Z2 × Z2 is a maximal (normal) subgroup of index 2 in D8. The statement follows from Shapiro’s lemma [6,
Proposition 6.2, p. 73] and the fact that when [G : H] < ∞, then there is an isomorphism of G-modules CoindG

H M ∼= IndG
H M . �

The first information about the H∗(D8,F2)-module structure on H∗(D8,F2[D8/H1]), as well as the method for revealing the complete
structure, comes from the following proposition.

Proposition 7.2. We have x · H∗(D8,F2[D8/H1]) = 0 for the nonzero element x ∈ H1(D8,F2) that is characterized by resD8
H1

(x) = 0.

Proof. The isomorphism H∗(D8,F2[D8/H1]) ∼=ring H∗(H1,F2) induced by Shapiro’s lemma [6, Proposition 6.2, p. 73] carries the

H∗(D8,F2)-module structure to H∗(H1,F2) via the restriction homomorphism resD8
H1

: H∗(D8,F2) → H∗(H1,F2). In this way the complete

H∗(D8,F2)-module structure is given on H∗(D8,F2[D8/H1]). In particular, since resD8
H1

(x) = 0, the proposition is proved. �
Corollary 7.3. Indexd+2

D8,F2
Sd × Sd = im(∂d+1 : E∗,d

d+1 → E∗+d+1,0
d+1 ) ⊆ y · H∗(D8,F2).

Proof. Let α ∈ E∗,d
d+1 and ∂d+1(α) /∈ y · H∗(D8,F2). Then x · ∂d+1(α) �= 0. Since ∂d+1 is a H∗(D8,F2)-module map and x acts trivially on

H∗(D8,F2[D8/H1]), as indicated by Proposition 7.2, there is a contradiction

0 = ∂d+1(x · α) = x · ∂d+1(α) �= 0. �
Proposition 7.4. H∗(D8,F2[D8/H1]) is generated as an H∗(D8,F2)-module by

H0(D8,F2[D8/H1]
)

and H1(D8,F2[D8/H1]
)
.

Proof. We already observed that Shapiro’s lemma H∗(D8,F2[D8/H1]) ∼=ring H∗(H1,F2) carries the H∗(D8,F2)-module structure to

H∗(H1,F2) via the restriction homomorphism resD8
H1

: H∗(D8,F2) → H∗(H1,F2). Thus H∗(H1,F2) as an H∗(D8,F2)-module is generated

by 1 ∈ H0(H1,F2) together with a ∈ H1(H1,F2). �



1346 P.V.M. Blagojević, G.M. Ziegler / Topology and its Applications 158 (2011) 1326–1351
Fig. 2. The morphism of spectral sequences.

7.2. Indexd+2
D8,F2

Sd × Sd = 〈πd+1,πd+2〉

The index by definition is

Indexd+2
D8,F2

Sd × Sd = im
(
∂d+1 : E∗,d

d+1 → E∗+d+1,0
d+1

)= im
(
∂d+1 : H∗(D8,F2[D8/H1]

)→ H∗+d+1(D8,F2)
)
.

From Proposition 7.4 this image is generated as a module by the ∂d+1-images of H0(D8,F2[D8/H1]) and of H1(D8,F2[D8/H1]). The
∂d+1 image is computed by applying restriction properties given in Proposition 3.5 to the subgroup H1. With the identification of
H∗(D8,F2[D8/H1]) given by Shapiro’s lemma the morphism of spectral sequences of Borel constructions induced by restriction is speci-
fied in Fig. 2. Also,

Indexd+2
D8,F2

Sd × Sd = 〈∂ D8
d+1(1), ∂

D8
d+1(a), ∂

D8
d+1(b), ∂

D8
d+1(a + b)

〉
.

To simplify notation let ρd := ad + (a + b)d+1. Then from

1
res

D8
H1�−→ 11 ⊕ 12

∂
H1
d+1�−→ ρd+1

{a,a + b,b}
res

D8
H1�−→
⎧⎨
⎩

a ⊕ (a + b)

(a + b) ⊕ a
b ⊕ b

⎫⎬
⎭ ∂

H1
d+1�−→ {

ρd+2,a(a + b)ρd,bρd+1
}

it follows that

resD8
H1

({
∂

D8
d+1(1), ∂

D8
d+1(a), ∂

D8
d+1(b), ∂

D8
d+1(a + b)

})= {ρd+2,a(a + b)ρd,bρd+1
}
.

The formula

ρd+2 = ad+2 + (a + b)d+2 = (a + a + b)

(
ρd+1 + a(a + b)

d−1∑
i=0

ai(a + b)d−1−i

)

= bρd+1 + a(a + b)(a + a + b)

d−1∑
i=0

ai(a + b)d−1−i = bρd+1 + a(a + b)ρd

together with Remark 1.3 and the knowledge of the restriction resD8
H1

implies that

resD8 (πd) = ρd.
H1
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Therefore, there exist xα, xβ, xγ , xδ ∈ ker(resD8
H1

) such that

∂
D8
d+1(1) = πd+1 + xα

and {
∂

D8
d+1(a), ∂

D8
d+1(b), ∂

D8
d+1(a + b)

}= {πd+2 + xβ, yπd+1 + xγ , wπd + xδ}.
Since y divides πd , Proposition 7.2 implies that α = β = γ = δ = 0, and

Indexd+2
D8,F2

Sd × Sd = 〈∂ D8
d+1(1), ∂

D8
d+1(a), ∂

D8
d+1(b), ∂

D8
d+1(a + b)

〉
= 〈πd+1,πd+2, yπd+1, wπd〉
= 〈πd+1,πd+2〉.

Remark 7.5. The property that the concretely described homomorphism

resD8
H1

: H∗(D8,F2[D8/H1]
)→ H∗(H1,F2[D8/H1]

)
is injective holds more generally [10, Lemma on p. 187].

7.3. IndexD8,F2 Sd × Sd = 〈πd+1,πd+2, wd+1〉

In the previous section we described the differential ∂
D8
d+1 of the Serre spectral sequence associated with the Borel construction

Sd × Sd → ED8 ×D8

(
Sd × Sd)→ BD8.

The only remaining, possibly non-trivial, differential is ∂
D8
2d+1.

The following proposition describing E∗,2d
2d+1 can be obtained from Fig. 2.

Proposition 7.6. E∗,2d
2d+1 = ker(∂ D8

d+1 : E∗,2d
d+1 → E∗+d+1,d

d+1 ) = x · H∗(D8,F2).

Proof. The restriction property from Proposition 3.5(D), applied to the element 1 ∈ E0,2d
d+1 = H∗(D8,F2) implies that ∂

D8
d+1(1) �= 0. Propo-

sition 7.2, together with the fact that multiplication by y and by w in H∗(D8,F2[D8/H1]) is injective, implies that ker(∂ D8
d+1 : E∗,2d

d+1 →
E∗+d+1,d

d+1 ) = xH∗(D8,F2). �
The description of the differential ∂

D8
2d+1 : E∗,2d

2d+1 → E∗+2d+1,0
2d+1 comes in an indirect way. There is a D8-equivariant map

Sd × Sd → Sd ∗ Sd ≈ S
(
(V+− ⊕ V−+)⊕(d+1)

)
given by Sd × Sd � (t1, t2) �→ 1

2 t1 + 1
2 t2 ∈ Sd ∗ Sd . The result of Section 5.1 and the basic property of the index (Proposition 3.2) imply that

IndexD8,F2 Sd × Sd ⊇ IndexD8,F2 S
(
(V+− ⊕ V−+)⊕(d+1)

)= 〈wd+1〉.
Thus wd+1 ∈ IndexD8,F2 Sd × Sd . Since by Corollary 7.3 wd+1 /∈ Indexd+1

D8,F2
Sd × Sd it follows that

wd+1 ∈ im
(
∂

D8
2d+1 : E1,2d

2d+1 → E2d+2,0
2d+1

)
.

But the only nonzero element in E1,2d
2d+1 is x, therefore

∂
D8
2d+1(x) = wd+1.

This concludes the proof of Eq. (37).

8. IndexD8,ZZZ Sd × Sd

Let Π0 = 0, Π1 = Y and Πn+2 = Y Πn+1 + W Πn , for n � 0, be a sequence of polynomials in H∗(D8,Z). This section is devoted to the
proof of the equality

Indexd+2
D8,Z

Sd × Sd =
{ 〈Π d+2

2
,Π d+4

2
, MΠ d

2
〉, for d even,

〈Π d+1
2

,Π d+3
2

〉, for d odd.
(39)

The index is determined by the explicit computation of the Ed+2-term of the Serre spectral sequence associated with the Borel construc-
tion

Sd × Sd → ED8 ×D8

(
Sd × Sd)→ BD8.
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As in the previous section, the group D8 acts nontrivially on the cohomology of the fibre and thus the coefficients in the spectral sequence
are local. The E2-term is given by

E p,q
2 = H p(BD8, Hq(Sd × Sd,Z

))= H p(D8, Hq(Sd × Sd,Z)
)

=
⎧⎨
⎩

H p(D8,Z), q = 0,2d,

H p(D8, Hd(Sd × Sd,Z)), q = d,

0, q �= 0,d,2d.

(40)

The local coefficients are nontrivial in the d-th row of the spectral sequence.

8.1. The d-th row as an H∗(D8,Z)-module

The D8-module M := Hd(Sd × Sd,Z), as an abelian group, is isomorphic to Z × Z. Since the action of D8 on M depends on d we
distinguish two cases.

8.1.1. The case when d is odd
The action on M is given by

ε1 · (x, y) = (x, y), ε2 · (x, y) = (x, y), σ · (x, y) = (y, x).

Thus, there is an isomorphism of D8-modules M ∼= Z[D8/H1]. The situation resembles the one in Section 7.1, and therefore the following
propositions hold.

Proposition 8.1. H∗(D8,Z[D8/H1]) ∼=ring H∗(H1,Z).

Proof. The claim follows from Shapiro’s lemma [6, Proposition 6.2, p. 73] and the fact that when [G : H] < ∞ there is an isomorphism of
G-modules CoindG

H M ∼= IndG
H M . �

Proposition 8.2. Let T ∈H∗(D8,Z) and P ∈ H∗(H1,Z) ∼= H∗(D8,Z[D8/H1]).

(A) The action of H∗(D8,Z) on H∗(D8,Z[D8/H1]) is given by

T · P := resD8
H1

(T ) · P .

Here P on the right-hand side is an element of H∗(H1,Z) and on the left-hand side is its isomorphic image under the isomorphism from the
previous proposition. In particular,

X · H∗(D8,Z[D8/H1]
)= 0.

(B) H∗(D8,Z)-module H∗(D8,Z[D8/H1]) is generated by the two elements

1,α ∈ H∗(H1,Z) ∼= H∗(D8,Z[D8/H1]
)

of degree 0 and 2.
(C) The map H∗(D8,Z[D8/H1]) → H∗(D8,F2[D8/H1]), induced by the coefficient map Z → F2 , is given by 1,α �−→ 1,a2 .

Proof. The isomorphism H∗(D8,Z[D8/H1]) ∼=ring H∗(H1,Z) induced by Shapiro’s lemma [6, Proposition 6.2, p. 73] carries the H∗(D8,Z)-

module structure to H∗(H1,Z) via resD8
H1

: H∗(D8,Z) → H∗(H1,Z). In this way the complete H∗(D8,Z)-module structure is given on
H∗(D8,Z[D8/H1]). The claim (B) follows from the restriction diagram (27). The morphism of restriction diagrams induced by the coeffi-
cient reduction homomorphism c : Z → F2 implies the last statement. �
8.1.2. The case when d is even

The action on M is given by

ε1 · (x, y) = (−x, y), ε2 · (x, y) = (x,−y), σ · (x, y) = (y, x).

In this case we are forced to analyze the Bockstein spectral sequence associated with the exact sequence of D8-modules

0 → M
×2→ M → F2[D8/H1] → 0, (41)

i.e. with the exact couple

H∗(D8, M)
×2

H∗(D8, M)

c

H∗(D8,F2[D8/H1]
)

δ (42)
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First we study the Bockstein spectral sequence

H∗(H1, M)
×2

H∗(H1, M)

c

H∗(H1,F2[D8/H1])

δ (43)

As in Section 7.2, we have that H∗(H1,F2[D8/H1]) = F2[a,a + b]⊕ F2[a,a + b]. The module M as an H1-module can be decomposed into
the sum of two H1-modules Z1 and Z2. The modules Z1 ∼=Ab Z and Z2 ∼=Ab Z are given by

ε1 · x = −x, ε2 · x = x and ε1 · y = y, ε2 · y = −y

for x ∈ Z1 and y ∈ Z2. This decomposition also induces a decomposition of H1-modules F2[D8/H1] ∼= F2 ⊕F2. Thus, the exact couple (43)
decomposes into the direct sum of two exact couples

H∗(H1, Z1)
×2

H∗(H1, Z1)

c

H∗(H1,F2)

δ

H∗(H1, Z2)
×2

H∗(H1, Z2)

c

H∗(H1,F2)

δ (44)

Since all the maps in these exact couples are H∗(H1,Z)-module maps, the following proposition completely determines both exact
couples.

Proposition 8.3. In the exact couples (44) differentials d1 = c ◦ δ are determined, respectively, by

d1(1) = a, d1(b) = b(b + a) and d1(1) = a + b, d1(a) = d1(b) = ab. (45)

Proof. In both claims we use the following diagram of exact couples induced by restrictions, where i ∈ {1,2}:

H∗(H1, Zi)
×2 � H∗(H1, Zi)

H∗(H1,F2)
�

c
� δ

� �

H∗(K1, Zi)
×2� H∗(K1, Zi)

H∗(K1,F2)
�

c
� δ

H∗(K2, Zi)
×2� H∗(K2, Zi)

H∗(K2,F2)
�

c
� δ

�
H∗(K3, Zi)

×2� H∗(K3, Zi)

H∗(K3,F2)
�

c
� δ

The first exact couple. The module Z1 is a non-trivial K1 and K3-module, but a trivial K2-module. Therefore by the long exact sequence in

the group cohomology associated to the exact sequence of Z2-modules 0 → Z1
×2→ Z1 → F2 → 0, properties of Steenrod squares and the

assumption at the end of Section 4.2.2:

(A) K1-exact couple: d1(1) = t1 and d1(t1) = 0;
(B) K2-exact couple: d1(1) = 0 and d1(t2) = t2

2;
(C) K3-exact couple: d1(1) = t3 and d1(t3) = 0.

Now

resH1
K1

(d1(1)) = t1

resH1
K2

(d1(1)) = 0

resH1
K3

(d1(1)) = t3

⎫⎪⎬
⎪⎭ ⇒ d1(1) = a

resH1
K1

(d1(b)) = 0

resH1
K2

(d1(b)) = t2
2

resH1
K3

(d1(b)) = 0

⎫⎪⎬
⎪⎭ ⇒ d1(b) = b(b + a).

The second exact couple. The module Z2 is a non-trivial K2 and K3-module, while it is a trivial K1-module. Therefore by the long exact

sequence in the group cohomology associated to the exact sequence of Z2-modules 0 → Z2
×2→ Z2 → F2 → 0, properties of Steenrod

squares and the assumption at the end of Section 4.2.2:

(A) K1-exact couple: d1(1) = 0 and d1(t1) = t2
1;

(B) K2-exact couple: d1(1) = t2 and d1(t2) = 0;
(C) K3-exact couple: d1(1) = t3 and d1(t3) = 0.

Now

resH1
K1

(d1(1)) = 0

resH1
K2

(d1(1)) = t2

resH1 (d (1)) = t

⎫⎪⎬
⎪⎭ ⇒ d1(1) = a + b

resH1
K1

(d1(b)) = t2
1

resH1
K2

(d1(b)) = 0

resH1 (d (b)) = 0

⎫⎪⎬
⎪⎭ ⇒ d1(b) = ab. �
K3 1 3 K3 1
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Remark 8.4. The result of the previous proposition can be seen as a key step in an alternative proof of Eq. (18).

Proposition 8.5. In the exact couple (42), with identification H∗(D8,F2[D8/H1]) = F2[a,a + b], the differential d1 = s ◦ δ satisfies

d1(1) = a, d1(a + b) = d1(b) = b(b + a), d1
(
a2)= a3. (46)

(This determines d1 completely since c and δ are H∗(D8,Z)-module maps.)

Proof. Recall from Remark 7.5 that the restriction map

resD8
H1

: H∗(D8,F2[D8/H1]
)→ H∗(H1,F2[D8/H1]

)
is injective. Then Eqs. (46) are obtained by filling the empty places in the following diagrams

1
d1 � a + b

d1 � a2 d1 �

1 ⊕ 1
�

d1� a ⊕ (a + b)

�
(a + b) ⊕ a

�
d1� b(b + a) ⊕ ab

�
a2 ⊕ (a + b)2

�
d1� a3 ⊕ (a + b)3

�

where all vertical maps are resD8
H1

. �
Corollary 8.6. H∗(D8, M) is generated as a H∗(D8,Z)-module by three elements ζ1 , ζ2 , ζ3 of degree 1, 2, 3 such that

c(ζ1) = a, c(ζ2) = b(a + b), c(ζ3) = a3

where c is the map H∗(D8, M) → H∗(D8,F2[D8/H1]) from the exact couple (42).

8.2. Indexd+2
D8,Z

Sd × Sd

The relation between the sequences of polynomials πd ∈ H∗(D8,F2) and Πd ∈ H∗(D8,Z) is described by the following lemma.

Lemma 8.7. Let c∗ : H∗(D8,Z) → H∗(D8,F2) be the map induced by the coefficient morphism Z → F2 (explicitly given by (26)). Then for every
d � 0,

c∗(Πd) = π2d.

Proof. Induction on d � 0. For d = 0 and d = 1 the claim is obvious. Let d � 2 and let us assume that claim holds for every d � k + 1.
Then

c∗(Πk+2) = c∗(YΠk+1 + WΠk)
hypo.= y2π2k+2 + w2π2k = y2π2k+2 + ywπ2d+1 + ywπ2d+1 + w2π2k

= y(yπ2k+2 + wπ2d+1) + w(yπ2d+1 + wπ2k) = yπ2k+3 + wπ2k+2

= π2k+4. �
There is a sequence of D8-inclusions

S1 × S1 ⊂ S2 × S2 ⊂ · · · ⊂ Sd−1 × Sd−1 ⊂ Sd × Sd ⊂ Sd+1 × Sd+1 ⊂ · · ·
implying a sequence of ideal inclusions

Index3
D8,Z S1 × S1 ⊇ Index4

D8,Z S2 × S2 ⊇ · · · ⊇ Indexd+1
D8,Z

Sd−1 × Sd−1 ⊇ Indexd+2
D8,Z

Sd × Sd ⊇ · · · (47)

8.2.1. The case when d is odd
In this section we prove that

Indexd+2
D8,Z

Sd × Sd = 〈Π d+1
2

,Π d+3
2

〉. (48)

The proof can be conducted as in the case of F2 coefficients (Section 7.2). The results of Section 7.2 can also be used to simplify the
proof of Eq. (48). The morphism c∗ : H∗(D8,Z) → H∗(D8,F2) induced by the coefficient morphism Z → F2 is a part of the morphism C
of Serre spectral sequences (40) and (38). Thus, for 1 ∈ E0,d

d+1 = H0(D8, Hd(Sd × Sd,Z)), 1̂ ∈ E0,d
d+1 = H0(D8, Hd(Sd × Sd,F2)), α ∈ E2,d

d+1 =
H2(D8, Hd(Sd × Sd,Z)) and a ∈ E1,d

d+1 = H1(D8, Hd(Sd × Sd,Z)),

C
(
∂d+1(1)

)= ∂d+1
(
C(1)

)= ∂d+1(1̂) = πd+1 = C(Π d+1
2

),

C
(
∂d+1(α)

)= ∂d+1
(
C(α)

)= ∂d+1
(
a2)= ∂d+1(w · 1̂ + y · a) = wπd+1 + yπd+2 = πd+3 = C(Π d+3

2
).

From Proposition 8.2 and the sequence of inclusions (47) it follows that

∂d+1(1) = Π d+1
2

and ∂d+1(α) = Π d+3
2

.

Finally, the statement (B) of Proposition 8.2 implies Eq. (48).
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8.2.2. The case when d is even
In this section we prove that

Indexd+2
D8,Z Sd × Sd = 〈Π d+2

2
,Π d+4

2
, MΠ d

2
〉. (49)

The previous section implies that

〈Π d
2
,Π d+2

2
〉 ⊇ Indexd+2

D8,Z Sd × Sd ⊇ 〈Π d+2
2

,Π d+4
2

〉. (50)

From Corollary 8.6 we know that Indexd+2
D8,Z Sd × Sd is generated by three elements ∂d+1(ζ1), ∂d+1(ζ2), ∂d+1(ζ3) of degrees d+2, d+3, d+4.

Thus, ∂d+1(ζ1) = Π d+2
2

and ∂d+1(ζ2) = MΠ d
2

. Since Π d+4
2

/∈ 〈Π d+2
2

, MΠ d
2
〉, then ∂d+1(ζ3) = Π d+4

2
. The proof of Eq. (49) is concluded.

Alternatively, the proof can be obtained with the help of the morphism C of Serre spectral sequences (40) and (38).
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