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Céline Freymond,1,2 Matthias Rottmann,1,2 Ingrid Felger,1,2 Zbynek Bozdech,3 and Till S. Voss1,2,*
1Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051,

Switzerland
2University of Basel, Petersplatz 1, Basel 4003, Switzerland
3School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
4Co-first author

*Correspondence: till.voss@unibas.ch
http://dx.doi.org/10.1016/j.chom.2014.07.004
SUMMARY

Clonally variant expressionof surfaceantigensallows
themalaria parasitePlasmodium falciparum to evade
immune recognition during blood stage infection
and secure malaria transmission. We demonstrate
that heterochromatin protein 1 (HP1), an evolutionary
conserved regulator of heritable gene silencing, con-
trols expression of numerous P. falciparum virulence
genes as well as differentiation into the sexual forms
that transmit to mosquitoes. Conditional depletion of
P. falciparum HP1 (PfHP1) prevents mitotic prolifera-
tion of blood stage parasites and disrupts mutually
exclusive expression and antigenic variation of the
major virulence factor PfEMP1. Additionally, PfHP1-
dependent regulation ofPfAP2-G, a transcription fac-
tor required for gametocyte conversion, controls the
switch from asexual proliferation to sexual differenti-
ation, providing insight into the epigenetic mecha-
nisms underlying gametocyte commitment. These
findings show that PfHP1 is centrally involved in clon-
ally variant gene expression and sexual differentia-
tion in P. falciparum and have major implications for
developing antidisease and transmission-blocking
interventions against malaria.

INTRODUCTION

The protozoan parasite Plasmodium falciparum elicits the most

severe form of malaria in humans and causes several hundred

million clinical cases and 700,000 deaths annually (World Health

Organisation, 2013). Malaria morbidity and mortality occur due

to the massive expansion of the parasite population during

blood-stage infection. Here, parasites mature intracellularly

through the ring and trophozoite stages, before successive S/

M phases produce a multinucleated schizont that releases up

to 32 merozoites ready to invade new red blood cells (RBCs).

In order to secure survival and establish chronic blood-stage

infection,P. falciparum employs clonally variant gene expression

(CVGE) as a means to adapt to environmental challenges in the
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human host, in particular those imposed by the immune system

(Rovira-Graells et al., 2012; Cortés et al., 2012).

The most striking example of CVGE is erythrocyte membrane

protein 1 (PfEMP1), the major antigen and prime immune target

on the surface of infected RBCs (iRBCs) (Scherf et al., 2008).

PfEMP1 is encoded by the 60-member var gene family (Su

et al., 1995; Baruch et al., 1995) and mediates cytoadherence

of iRBCs to microvascular endothelium, which prevents parasite

clearance in the spleen and causes pathology that contributes

substantially to severe malaria outcomes (Kyes et al., 2001).

var transcription conforms to the concept of singular gene

choice (or mutual exclusion); in each parasite only a single var

gene is active, while all other members remain silenced (Scherf

et al., 1998). Transcriptional switches in var gene expression

result in CVGE and consequently antigenic variation of PfEMP1

and immune evasion (Smith et al., 1995; Scherf et al., 1998).

Importantly, this survival strategy is directly linked to malaria

transmission; during each replicative cycle a small number of

parasites commit to sexual development and differentiate into

mature stage V gametocytes, the only stage capable of transmit-

ting the infection to the mosquito vector (Baker, 2010).

Singular var gene choice is regulated by a poorly understood

interplay between transcriptional and epigenetic control mecha-

nisms (Guizetti and Scherf, 2013). Particularly striking is the

observation that var genes are associated with histone 3 lysine

9 trimethylation (H3K9me3) and heterochromatin protein 1

(HP1) (Salcedo-Amaya et al., 2009; Lopez-Rubio et al., 2009;

Flueck et al., 2009; Pérez-Toledo et al., 2009; Chookajorn

et al., 2007; Lopez-Rubio et al., 2007). HP1 is an evolutionarily

conserved regulator of heterochromatin formation and herita-

ble gene silencing and was originally described in Drosophila

melanogaster as a suppressor of position effect variegation (Eis-

senberg et al., 1990). HP1 binds to H3K9me2/H3K9me3, the

hallmark histone modification of heterochromatin, and recruits

H3K9-specific methyltransferases (HKMTs) that modify adjacent

nucleosomes (Lomberk et al., 2006). As a result, HP1 sustains a

self-perpetuating mechanism for heterochromatin spreading

and heritable gene silencing. In addition, HP1 also regulates

euchromatic genes and is involved in other chromatin-related

processes, including cohesion, telomere maintenance, or DNA

replication and repair (Kwon and Workman, 2008). This func-

tional versatility is linked to the evolution of HP1 paralogs, partic-

ularly in metazoans, and the ability of HP1 to recruit functionally
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diverse proteins (Lomberk et al., 2006; Kwon and Workman,

2008).

P. falciparum contains only a single HP1 protein that localizes

primarily to H3K9me3-enriched heterochromatic regions. These

chromosomal domains incorporate all var genes and hundreds

of other clonally variant genes (such as rif, stevor, and pfmc-

2tm) encoding species-specific blood-stage antigens. At the

same time, PfHP1 is also found at a small number of euchromatic

loci (Flueck et al., 2009; Pérez-Toledo et al., 2009). PfHP1 over-

expression leads to increased silencing of some heterochromat-

ic genes (Flueck et al., 2009), and the presence or absence of

PfHP1 is linked to the silenced or active state of var genes,

respectively (Pérez-Toledo et al., 2009). Together, these obser-

vations suggest key functions for PfHP1 in heritable silencing

and phenotypic variation of a large set of factors implicated in

host-parasite interactions and immune evasion. However, if

and to what extent PfHP1 is indeed required for mutually exclu-

sive var expression and/or for CVGE in general is unknown.

Moreover, since the pfhp1 locus is refractory to genetic deletion

(Flueck et al., 2009; Pérez-Toledo et al., 2009), additional un-

known HP1-dependent pathways essential for parasite prolifer-

ation are likely to exist in P. falciparum.

Here, we conducted a comprehensive functional analysis

of PfHP1 by generating a conditional PfHP1 loss-of-function

mutant. We show that PfHP1 is indispensable for the heritable

silencing of heterochromatic genes in general and in particular

for the maintenance of singular var gene choice and antigenic

variation of PfEMP1. In addition, PfHP1 is required at the G1/S

transition phase for mitotic proliferation of blood-stage para-

sites. Intriguingly, we also discovered that PfHP1 controls sexual

commitment by regulating the bistable expression of single

euchromatic locus encoding an ApiAP2 transcription factor.

RESULTS

PfHP1 Is Indispensable for Mitotic Proliferation of
Blood-Stage Parasites
We applied the FKBP destabilization domain (DD) technique that

allowsmodulating expression levels through the stabilizing com-

pound Shield-1 (Banaszynski et al., 2006; Armstrong and Gold-

berg, 2007) and generated a clonal parasite line expressing

endogenous PfHP1 as a C-terminally tagged GFP-DD fusion

(3D7/HP1ON) (Figure S1, available online). In the presence of

Shield-1, 3D7/HP1ON parasites exhibited no growth phenotype

(Figure 1A) and multiplied at a rate within a single asexual repli-

cation cycle (3.8-fold ± 0.6 SD) similar to that of 3D7/HP1ctrl

parasites in which PfHP1 is tagged with GFP only (4.4-fold ±

0.4 SD). When Shield-1 was withdrawn at 4–12 hr postinvasion

(hpi), 3D7/HP1OFF parasites completed the current intraery-

throcytic developmental cycle (IDC) and subsequent ring-stage

development with normal kinetics. Strikingly, however, these

parasites arrested prior to schizogony in generation 2 (Figure 1A),

and all efforts to select for proliferating subpopulations were

unsuccessful.

Live-cell imaging revealed the expected perinuclear localiza-

tion of tagged PfHP1 in 3D7/HP1ON and 3D7/HP1ctrl parasites

throughout the IDC, whereas in 3D7/HP1OFF parasites PfHP1

was undetectable 12 hr after Shield-1 withdrawal (Figure 1B). A

more direct assessment by parallel western blot and immunoflu-
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orescence assays (IFA) showed that after Shield-1 removal at 4–

12 hpi, PfHP1 was still detectable but reduced in late ring stages

(16–24 hpi) and early schizonts (32–40 hpi) and localized diffusely

to the nucleoplasm and cytoplasm (Figure 1C). After reinvasion,

PfHP1 was undetectable in 3D7/HP1OFF parasites by both

methods. Similarly, targeted chromatin immunoprecipitation

(ChIP-qPCR) showed that PfHP1 occupancy at subtelomeric

(PF3D7_0426000) and chromosome-internal (PF3D7_0412400)

var loci was unchanged in late ring stages but substantially

reduced in schizonts and subsequent generation 2 ring stages

(Figure 1D).

We next analyzed parasite viability using isothermal microcal-

orimetry (Wenzler et al., 2012). In generation 1, 3D7/HP1ON and

3D7/HP1OFF populations both displayed a typical heat emission

profile marked by increased heat flow in trophozoites and schiz-

onts (Figure 1E). In generation 2, however, the metabolic activity

in PfHP1-depleted parasites changed dramatically, and heat

emission remained low over the entire 48 hr period of measure-

ment. Importantly, these parasites were still viable since they

emitted heat at a rate significantly higher than that of uninfected

RBCs.

PfHP1 Controls Sexual Differentiation
Intriguingly, prolonged microscopic observation revealed that

PfHP1-depleted parasites consisted of a mixture of growth-ar-

rested trophozoites and sexual forms undergoing gametocyte

development (Figure 2A). Note that sexual conversion occurs

through an unknown mechanism during the cell cycle prior to

gametocyte development and that all daughter parasites

released from a committed schizont undergo sexual differentia-

tion (Bruce et al., 1990). To discriminate quantitatively between

growth-arrested and sexual forms, we visualized the gameto-

cyte-specific marker Pfs16 (Bruce et al., 1994) and knob-associ-

ated histidine-rich protein (KAHRP) (a marker for iRBCs) (Taylor

et al., 1987) by indirect IFA. Remarkably, 52.7% (±3.1 SD) of

3D7/HP1OFF parasites expressed Pfs16 in generation 2,

compared to only 2.3% (±1.2 SD) of background conversion in

the 3D7/HP1ON population (Figure 2B). Overview images of a

Giemsa-stained blood smear (6 days postinvasion) and an

a-Pfs16 IFA experiment (32–40 hpi) provide visual confirmation

of this phenotype showing a high proportion of stage II/III and

stage I gametocytes, respectively, in 3D7/HP1OFF parasites (Fig-

ures 2C and 2D). Notably, PfHP1-depleted gametocytes

completed sexual development within 8–10 days, similar to con-

trol gametocytes (Figure S2). Hence, PfHP1 depletion triggers

the synchronous hyperinduction of viable gametocytes, which

demonstrates that sexual commitment in malaria parasites is

epigenetically regulated.

PfHP1-Depleted Asexual Parasites Enter a Reversible
Cell-Cycle Arrest
To investigate at which stage of the cell cycle the nongametocyte

subpopulation of 3D7/HP1OFF parasites arrested, we performed

single-cell DNA content analysis by flow cytometry. This re-

vealed that in contrast to 3D7/HP1ON parasites, virtually all par-

asites in the 3D7/HP1OFF population failed to replicate their

genome in generation 2 (Figure 3A). While this is expected for

nonproliferative gametocytes, this result demonstrates that the

population of asexual parasites arrested prior to or during the
er Inc.



Figure 1. Growth Phenotype of a Conditional PfHP1 Loss-of-Function Mutant and Kinetics of PfHP1 Depletion

(A) Giemsa-stained blood smears showing development of 3D7/HP1ON and 3D7/HP1OFF parasites over two generations (96 hr). See also Figure S1.

(B) Expression and localization of PfHP1 in 3D7/HP1ON, 3D7/HP1OFF, and 3D7/HP1ctrl parasites by live fluorescence microscopy (images taken 12 hr after

removal of Shield-1).

(C) Expression and localization of PfHP1 in 3D7/HP1ON and 3D7/HP1OFF parasites by IFA and western blot (Shield-1 removal at 4–12 hpi). The production and

specificity of affinity-purified polyclonal a-PfHP1 antibodies is described in Figure S1 and the Supplemental Experimental Procedures.

(D) PfHP1 occupancy at two heterochromatic var and two euchromatic control loci in 3D7/HP1ON and 3D7/HP1OFF parasites was determined by ChIP-qPCR

(Shield-1 removal at 4–12 hpi). See also Figure S6.

(E) Heat emission as determined by isothermal microcalorimetry in two 3D7/HP1 clones (Cl.2 and Cl.3) grown in the presence or absence of Shield-1. uRBC,

uninfected RBCs.
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first S phase of schizogony. Interestingly, this cell-cycle defect

was reversible since PfHP1-depleted trophozoites reentered S

phase and mitotic proliferation when Shield-1 was added back

to the culture medium (Figure 3B). Even after 12 days in the

absence of Shield-1, rescued trophozoites reaccumulated peri-

nuclear PfHP1 and progressed through schizogony (Figure 3C).

This was not due to a genetic reversion, as rescued parasites

entered developmental arrest and gametocyte hyperconversion

when Shield-1 was withdrawn for a second time (data not
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shown). With prolonged time in the absence of Shield-1, how-

ever, the parasitemia decreased, and the time required for

growth resumption after Shield-1 replenishment increased,

showing that a subset of PfHP1-depleted parasites died over

time (Figures 3B and 3D). Together, these data corroborate the

essential function of PfHP1 in mitotic proliferation and show

that a subset of PfHP1-depleted trophozoites remained in a state

of dormancy capable of reentering the cell cycle if PfHP1 expres-

sion was restored.
t & Microbe 16, 165–176, August 13, 2014 ª2014 Elsevier Inc. 167



Figure 2. PfHP1Depletion InducesGameto-

cyte Conversion

(A) 3D7/HP1OFF and 3D7/HP1ctrl gametocytes and

cell-cycle-arrested 3D7/HP1OFF trophozoites. dpi,

days postreinvasion.

(B) Distinction between 3D7/HP1OFF early game-

tocytes and arrested trophozoites by IFA (left) and

proportion of Pfs16/KAHRP-positive parasites in

3D7/HP1ON and 3D7/HP1OFF (right). Values show

the mean ± SD of three biological replicates (100

KAHRP-pos. iRBCs were scored per experiment).

(C) Giemsa-stained blood smear of a 3D7/HP1OFF

parasite culture (Shield-1 removal at 4–12 hpi) at

6 days postreinvasion (dpi) (image taken at 603

magnification). The gametocyte hyperinduction

phenotype is highlighted by the high proportion of

stage II/III gametocytes among all iRBCs.

(D) a-Pfs16 IFA of a 3D7/HP1OFF parasite culture

(Shield-1 removal at 4–12 hpi) at 32–40 hr post-

reinvasion (image taken at 403 magnification).

The gametocyte hyperinduction phenotype is

highlighted by the high proportion of Pfs16-posi-

tive stage I gametocytes among all DAPI-positive

iRBCs. See also Figure S2.
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Lack of S/M Phase Entry Correlates with Decelerated
Transcriptome Progression in G1 Phase
We next conducted genome-wide transcriptional profiling of

paired synchronous 3D7/HP1ON and 3D7/HP1OFF cultures at

11 consecutive time points (TPs) spanning generations 1 and 2

to (i) study the effect of PfHP1 on heritable gene silencing and

(ii) identify the PfHP1-dependent pathway responsible for game-

tocyte conversion (Figure 4A and Table S1). Until 16–24 hpi in

generation 2, the corresponding transcriptomes were highly

comparable between both populations (Figure 4A) and pro-

gressed with similar kinetics through the first IDC and second-

generation ring-stage development (TPs 2–9) (Figures 4B and

4C). In contrast, at 24–48 hr after reinvasion (TPs 10–12), when

3D7/HP1ON parasites went through schizogony and the 3D7/

HP1OFF population consisted of a mixture of early gametocytes

and arrested trophozoites, the transcriptomes correlated poorly

(Figure 4A), and parasites failed to launch a schizont-specific

transcription profile (Figures 4B and 4C). This slowdown in tran-

scriptome development reflects a substantial deceleration in G1

progression and failure to enter S phase in generation 2, which is

consistent with the growth phenotype observed for 3D7/HP1OFF

parasites.

PfHP1 Silences Heterochromatic Genes and Is Essential
for the Maintenance of Singular Var Gene Choice
To identify genes differentially expressed in direct response to

PfHP1 depletion, we focused our analysis on the comparable

growth phase ranging from generation 1 trophozoites to late

ring stages in generation 2 (TPs 4–9). Consistent with the
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conserved role for HP1 in heritable gene

silencing, we observed a general dere-

pression of heterochromatic genes in

3D7/HP1OFF parasites, and 113 PfHP1-

associated genes (31.2%) displayed a

significant increase in mean expression
(>1.5-fold, false discovery rate [FDR] < 0.1) compared to 3D7/

HP1ON parasites (Figure 5A and Table S1). In contrast, only 16

euchromatic genes (0.34%) were differentially expressed, of

which four upregulated genes had previously been associated

with early gametocyte development: PF3D7_1102500 (phistb;

GEXP02), PF3D7_1335000 (msrp1), PF3D7_1472200 (class II

histone deacetylase [HDAC]), and PF3D7_1473700 (nup116)

(Silvestrini et al., 2010; Eksi et al., 2012) (Figure 5B and Table

S1). Strikingly, the strongest derepression was observed for

the var gene family; 52 out of 60 members were significantly

and highly upregulated in PfHP1-depleted parasites. In addition,

many rif and pfmc-2tm genes and several members of other sub-

telomeric gene families were significantly induced, and even

among the nonsignificantly deregulated heterochromatic genes,

the majority was still upregulated in the absence of PfHP1 (Fig-

ures 5A and S3).

We next investigated the prevailing role of PfHP1 in var gene

silencing in more detail. Removal of Shield-1 at 4–12 hpi had

no immediate effect on var transcription in generation 1 (Fig-

ure 6A), which is explained by the persistent binding of PfHP1

to chromatin shortly after Shield-1 withdrawal (Figure 1D). var

transcription was also unchanged in schizonts, demonstrating

that var promoters retain their ring-stage-specific activation pro-

file even in the absence of PfHP1. By contrast, almost all var

genes were massively upregulated after reinvasion, and individ-

ual genes showed expression levels up to 30-fold higher

(Figure 6A). Importantly, however, the few var genes already

dominantly expressed in 3D7/HP1ON parasites, most notably

var2csa (PF3D7_1200600) (Salanti et al., 2003), were not or



Figure 3. PfHP1 Depletion Causes Reversible Cell-Cycle Arrest at

the G1/S Transition Phase

(A) Flow cytometry analysis of genomic DNA content in 3D7/HP1ON and 3D7/

HP1OFF parasites at five consecutive time points in generation 2. The per-

centage of iRBCs with R2 genomes is indicated. Prior to S phase (gray), this

value corresponds to RBCs infected with R2 parasites (confirmed by micro-

scopy). n, number of gated iRBCs.

(B) Cell-cycle-arrested 3D7/HP1OFF parasites reestablish asexual growth after

adding back Shield-1 at 24 or 72 hr postreinvasion (arrows). Values show the

mean of three biological replicates ± SD.

(C) Growth-arrested 3D7/HP1OFF parasites reenter mitotic proliferation after

Shield-1 replenishment. dpi, days postreinvasion.

(D) Synchronous 3D7/HP1ON cultures (�0.1% parasitemia) were split at

0–8 hpi and cultured in either the presence or absence of Shield-1. Shield-1

Cell Host & Microbe

HP1-Dependent Gene Regulation in Malaria Parasites

Cell Hos
only slightly induced (Figures 6A and S4). This proves that var

activation was not due to transcriptional switches but that all

var genes were active simultaneously in 3D7/HP1OFF parasites.

Consistent with these findings, PfHP1-depleted parasites coex-

pressed several PfEMP1 variants of different sizes, whereas

3D7/HP1ON parasites predominantly expressed a single protein

consistent with the size of VAR2CSA (Figure 6B). IFAs further

corroborated hyperexpression of PfEMP1 in 3D7/HP1OFF para-

sites at the single-cell level and indicated correct trafficking of

PfEMP1 to the iRBC surface (Figure 6C).

Sexual Differentiation Is Linked to the
PfHP1-Dependent Derepression of the ApiAP2
Transcription Factor PfAP2-G
Interestingly, a single member of the apiap2 family of genes en-

coding phylum-specific transcription factors (TFs) (Balaji et al.,

2005) was also significantly derepressed in 3D7/HP1OFF para-

sites (Figure 5A). This apiap2 gene (PF3D7_1222600) represents

the only PfHP1-associated member of the family (Flueck et al.,

2009) and encodes the TF AP2-G that is essential for gametocyte

conversion in P. falciparum and P. berghei (Kafsack et al., 2014;

Sinhaet al., 2014).Moreover, amongall deregulatedPfHP1-asso-

ciated loci,pfap2-gwas theonly gene that doesnot encodea sur-

face antigen or exported protein (Table S1). We observed that

pfap2-gderepressionwas already initiated in 3D7/HP1OFF gener-

ation 1 schizonts (32–40 hpi), coincident with the dissociation of

PfHP1 from the pfap2-g locus (Figure 7A). Importantly, when

3D7/HP1OFF parasiteswere allowed to reaccumulate PfHP1prior

to schizogony (28–36 hpi), gametocyte hyperconversion was

prevented (Figures 7B and S5). Restoring PfHP1 expression at

34–42 hpi was only moderately effective in preventing sexual

commitment, and parasites rescued at 40–48 hpi or after reinva-

sion showed a hyperconversion phenotype similar to that of

nonrescued parasites. The temporal correlation between dere-

pression of pfap2-g and gametocyte commitment during schi-

zogony, together with the fact that both processes are strictly

PfHP1 dependent, identifies the targeted activation of PfAP2-G

as the key mechanism responsible for sexual conversion.

PfHP1Depletion Results in Reduced H3K9me3 Levels at
Heterochromatic Loci
HP1-dependent recruitment of SU(VAR)3-9-type HKMTs is

essential for the spreading and inheritance of H3K9me3 marks

in model eukaryotes (Grewal and Jia, 2007). We therefore tested

if the local depletion of PfHP1 caused a reduction of H3K9me3

levels. Indeed, ChIP-qPCR experiments demonstrated that

H3K9me3 occupancy was substantially reduced at var genes

and the pfap2-g locus in 3D7/HP1OFF parasites, in both genera-

tion 1 schizonts and generation 2 ring stages (Figure S6).

Notably, the drop in H3K9me3 enrichment at individual loci

was pronounced to a degree equal to that of the depletion of

PfHP1 itself. As expected, PfHP1 and H3K9me3 were not asso-

ciated with the early gametocyte marker pfs16 in both cultures at

both TPs, which confirms that upregulation of pfs16 in early ga-

metocytes is PfHP1 independent and rather occurs as a result of
was added back to 3D7/HP1OFF cultures at nine consecutive TPs. Cultures

were smeared daily and analyzed by Giemsa staining until they reached a

parasitemia of >1%. Values show the mean of three biological replicates ± SD.
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Figure 4. PfHP1 Depletion Leads to a Marked Slowdown in Transcriptome Progression

(A) 3D7/HP1ON and 3D7/HP1OFF parasites were sampled for comparative transcriptome analysis. Pairwise correlation between transcriptomes of corresponding

TPs is indicated by Pearson correlation coefficient r (asterisk).

(B) Mapping of experimental transcriptomes to a high-resolution reference data set (Mok et al., 2011). Blue and red boxes identify the best-fit TP (hpi) in a high-

resolution reference data set for each 3D7/HP1ON and 3D7/HP1OFF transcriptome, respectively. Spearman rank coefficients (r) are provided. See also

Supplemental Experimental Procedures.

(C) Comparison of global temporal expression profiles in generations 1 and 2. Heatmaps are ordered according to the phase calculated for 3D7/HP1ON parasites

(TPs 7–12, starting at�p/2) and display relative gene expression levels (red/green) and fold changes (FCs) in gene expression (yellow/blue). See also Table S1 and

Supplemental Experimental Procedures.
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Figure 5. PfHP1 Depletion Leads to Dere-

pression of PfHP1-Associated Genes

(A) Scatter plot comparing mean relative expres-

sion values of all 362 PfHP1-associated genes.

Significantly deregulated genes are indicated by

circles (>1.5-fold; FDR < 0.1). See also Figure S3

and Table S1.

(B) Scatter plot comparing mean relative expres-

sion values of all 4,771 euchromatic genes.

Significantly deregulated genes are indicated by

circles (>1.5-fold; FDR < 0.1). See also Table S1.
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a gametocyte-specific transcriptional program. Together, these

findings show that, in analogy to other eukaryotes, PfHP1 is

required for the local deposition and inheritance of H3K9me3

marks on newly replicated chromatin. This is likely mediated

by the PfHP1-dependent recruitment of a H3K9-specific HKMT

(probably PfSET3; Volz et al., 2010; Lopez-Rubio et al., 2009).

However, confirmation of PfSET3 as a functional SU(VAR)3-9 ho-

molog aswell as a possible physical interaction of this factor with

PfHP1 remains to be determined.

Identification of Genes Associated With Early
Gametocyte Development
Our experimental setup combined with the high rate of synchro-

nous gametocyte induction in PfHP1-depleted parasites allowed

us to identify transcriptional events linked to gametocyte conver-

sion in real time and based on comparison of two isogenic

clones. Following derepression of pfap2-g in generation 1,

known markers of early sexual development were upregulated

only after reinvasion (Table S1), and this was confirmed by quan-

titative RT-PCR (qRT-PCR) (Figure 7C). We therefore queried our

data set to identify genes induced upon gametocyte conversion

and identified 29 additional early gametocyte candidate genes

(Figure 7D and Table S1). Notably, 17 (58.6%) of these genes

have been linked to early sexual development in previous high-

throughput studies (Silvestrini et al., 2005, 2010; Eksi et al.,

2012; Young et al., 2005), which underpins the high accuracy

and stringency of our search. qRT-PCR confirmed upregulation

of these genes in 3D7/HP1OFF parasites and showed that apart

from pfap2-g, only one additional gene (PF3D7_0832300;

phista-like) was upregulated already during the commitment

phase. In contrast, induction of all other genes was delayed until

the sexual ring stage and increased further during stage I game-

tocyte development (24–40 hpi) (Figures 7D and S7). Finally, we

tested if these candidate genes are also upregulated in naturally

induced gametocytes by comparing their transcription between

3D7 wild-type parasites and a gametocyte-deficient clone of

3D7 (F12) (Alano et al., 1995). Indeed, all predicted genes

showed consistently higher transcription levels in 3D7 compared

to F12, which ultimately confirms that their activation is related to

early gametocyte differentiation (Figure S7).

DISCUSSION

Our study shows that PfHP1 is strictly required to propagate

nonpermissive heterochromatin to daughter cells in order to

silence a vast antigenic repertoire and, in particular, to perpet-
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uate mutually exclusive var transcription. Since the landmark

discovery of the var gene family (Su et al., 1995; Baruch et al.,

1995; Smith et al., 1995), a large number of studies firmly estab-

lished that antigenic variation in P. falciparum is controlled by a

complex epigenetic strategy involving reversible histone modifi-

cations, chromatin remodeling, and locus repositioning (Lopez-

Rubio et al., 2007, 2009; Jiang et al., 2013; Freitas-Junior

et al., 2005; Tonkin et al., 2009; Duraisingh et al., 2005; Petter

et al., 2011; Voss et al., 2006; Ralph et al., 2005). Together, these

findings support a model in which singular var gene choice is

achieved by restricting transcription of a single locus to an

elusive perinuclear var expression site (VES) and where switch-

ing occurs through competitive replacement of the active gene

with a previously silenced member. How these different pro-

cesses and layers of regulation are interconnected to control

antigenic variation, however, is only poorly understood.

Here, we demonstrate that depletion of PfHP1 during schi-

zogony leads to the simultaneous activation of all var genes

and concomitant hyperexpression of PfEMP1 in daughter para-

sites. This shows that PfHP1 is required to protect var genes

from activation outside the VES, which is further supported by

the fact that var promoter fragments activate stage-specific tran-

scription by default when placed upstream of the transcriptional

start site of a euchromatic gene (Brancucci et al., 2012). Hence,

unlike in African trypanosomes (Navarro and Gull, 2001), the

functional principle of the VES is not based on the sequestration

of exclusive transcription machinery but rather depends on

histone modifying and remodeling activities capable of disas-

sembling heterochromatin at a single locus. This concept is

consistent with the recent description of the H3K4me-specific

methyltransferase (HKMT) PfSET10 that localizes exclusively to

the VES (Volz et al., 2012). Note that mutually exclusive var tran-

scription is also disrupted in parasites lacking expression of the

H3K36-specific HKMT PfSET2 (also known as PfSETvs) (Jiang

et al., 2013). Interestingly, Jiang et al. (2013) observed a reduc-

tion in H3K36me3 as well as H3K9me3 occupancy at active

var loci in DPfSET2 parasites, suggesting functional interdepen-

dence of different epigenetic control processes in regulating

antigenic variation. Taken together, these results fill an important

gap in our understanding of the regulatory mechanisms underly-

ing mutually exclusive var gene transcription and antigenic vari-

ation of PfEMP1 andwill be instrumental for the further functional

dissection of this important immune evasion strategy. Moreover,

the PfEMP1 hyperexpression phenotype reported here will serve

as a useful tool to study PfEMP1-based pathogenesis and immu-

nity and may provide opportunities for the development of a
t & Microbe 16, 165–176, August 13, 2014 ª2014 Elsevier Inc. 171



Figure 6. PfHP1 Is Required for Heritable var Gene Silencing and Maintenance of Singular var Gene Choice

(A) Temporal progression of relative abundance (red/green) and fold change (FC) in expression (yellow/blue) for all var genes in 3D7/HP1ON and 3D7/HP1OFF

parasites across all 11 TPs analyzed. Asterisk, var2csa. See also Figure S4 and Table S1.

(B) PfEMP1 expression in 3D7/HP1ON, 3D7/HP1OFF, and 3D7/HP1ctrl parasites at 16–24 hpi in generation 2. Equal cell numbers were analyzed in each lane. The

pan-specific a-PfEMP1 antibody (mAb 6H1) was raised against a part of the C-terminal acidic terminal segment (ATS) domain that is conserved among PfEMP1

variants (Duffy et al., 2002). uRBC, uninfected RBCs (note that a-PfEMP1 antibodies cross-react with human spectrin).

(C) a-PfHP1/a-PfEMP1 (mAb 6H1) IFAs of 3D7/HP1ON and 3D7/HP1OFF parasites at 16–24 hpi in generation 2.
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malaria vaccine. Notably, in an analogous system, immuniza-

tion with mutant Giardia lamblia parasites coexpressing many

variant-specific surface proteins has successfully been applied

to induce strain-transcendent protective immunity in an experi-

mental infection model (Rivero et al., 2010).

In addition to virulence gene silencing, we also identified an

essential role for PfHP1 in mitotic proliferation. In the absence

of PfHP1, asexual trophozoites fail to proliferate and enter a state

of cell-cycle arrest that is reversible in a PfHP1-dependent

manner. Although the exact pathway in which PfHP1 is required

for cell-cycle progression remains unknown, the lack of signifi-

cant levels of DNA synthesis in PfHP1-depleted trophozoites is

indicative of defects in S phase entry or progression. Indeed,

HP1 directly interacts with several factors involved in prereplica-

tive complex assembly and replication initiation or elongation

(e.g., CDC18/CDC6, ORCs, MCMs, CAF1) in model eukaryotes

(Kwon and Workman, 2008; Christensen and Tye, 2003; Li

et al., 2011). Moreover, loss of HP1 function causes delayed

replication timing and/or S phase progression defects in

S. pombe, D. melanogaster, and mouse cells (Hayashi et al.,

2009; Schwaiger et al., 2010; Quivy et al., 2008). Hence, it is

conceivable that PfHP1 may be essential for DNA replication in

P. falciparum, and further experiments are now required to test

this intriguing hypothesis in more detail.

Remarkably, we demonstrate that PfHP1’s capacity to regu-

late the bistable transcription of a single euchromatic gene bal-

ances mitotic proliferation and sexual differentiation of malaria

blood-stage parasites. In this context, it is notable that silencing

of heterochromatic genes in P. falciparum is functionally depen-

dent on the sirtuin HDACs PfSIR2A/PfSIR2B (Tonkin et al., 2009;

Duraisingh et al., 2005), PfSET2 (Jiang et al., 2013), and the

class II HDAC PfHDA2 (Coleman et al., 2014). Of these his-

tone-modifying enzymes, however, only PfHDA2 also controls

pfap2-g expression, suggesting that PfHP1 and PfHDA2 coop-

erate in a distinct silencing pathway to also regulate euchro-

matic genes. It will therefore be interesting to test if PfHP1

and PfHDA2 occur together in a specific silencing complex.

Indeed, several class II HDACs interact directly with HP1 and
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are important for HP1-dependent gene silencing in model eu-

karyotes (Yamada et al., 2005; Zhang et al., 2002). We propose

that epigenetic silencing of pfap2-g promotes continuous

mitotic proliferation and antagonizes sexual conversion, while

local dissociation of PfHP1 from the pfap2-g locus activates

PfAP2-G expression and triggers sexual conversion and game-

tocyte differentiation. In analogy to the essential role of ApiAP2

TFs in stage-specific gene expression and parasite develop-

ment in other life cycle stages (Yuda et al., 2009, 2010; Iwanaga

et al., 2012), PfAP2-G likely regulates a transcriptional response

effecting gametocyte development and cell-cycle exit. In both

P. falciparum and P. berghei, PfAP2-G binding motifs were

indeed found enriched in the upstream region of genes associ-

ated with sexual differentiation, and the occurrence of the

respective target sites upstream of pfap2-g itself further indi-

cates that PfAP2-G may establish an autoregulatory feedback

loop (Kafsack et al., 2014; Sinha et al., 2014). Interestingly, we

demonstrate that transcriptional changes associated with the

early phase of differentiation are limited to a small number of

genes but become more pronounced once gametocytes enter

stage I development. We explain this by the fact that both

asexual and sexually committed schizonts need to produce

invasive merozoites capable of establishing RBC infection. In

fact, many of the early gametocyte genes predicted here and

elsewhere (Eksi et al., 2005; Silvestrini et al., 2010) code for pro-

teins implicated in host cell remodeling, which is indicative for

the requirement of gametocyte-specific host cell modifications.

While it is possible that PfAP2-G regulates some or all of these

genes directly, genome-wide ChIP approaches will be neces-

sary for a comprehensive identification of PfAP2-G target genes

and understanding of PfAP2-G function.

Our results reveal important mechanistic insight into the

pathway underlying sexual commitment and identify PfHP1 as

a crucial factor in controlling cell-fate decision in P. falciparum.

Interestingly, the blood stage of infection is the only phase of

the entire life cycle where parasites have a choice to enter either

one of two developmental pathways. It thus appears likely that

the epigenetic basis for this switch evolved to adapt sexual
er Inc.



Figure 7. Gametocyte Differentiation Is Linked to the PfHP1-Dependent Activation of pfap2-g

(A) Temporal expression profile (Cy5/Cy3 log2 ratios) of pfap2-g (top) and ChIP-qPCR results showing PfHP1 occupancy at the pfap2-g locus (bottom). The

sexual commitment phase is highlighted in purple. See also Figure S6 and Table S1.

(B) Proportion of Pfs16/KAHRP-positive parasites in 3D7/HP1OFF populations rescued at different TPs in generation 1 (x axis) as determined by IFA at 32–40 hr

post reinvasion in generation 2. Values show the mean ± SD of three biological replicates. See also Figure S5.

(C) Induction of pfap2-g and the three early gametocyte markers pfs16 (PF3D7_0406200) (Bruce et al., 1994), pfg27 (PF3D7_1302100) (Alano et al., 1991), and

pfg14_748 (PF3D7_1477700) (Eksi et al., 2005) in 3D7/HP1OFF compared to 3D7/HP1ON parasites as determined by qRT-PCR on biological replicate samples.

Negative control genes are in gray. n.d., not determined.

(D) Temporal progression of fold changes in expression of known (upper heatmap) and predicted (lower heatmap) early gametocyte genes in 3D7/HP1OFF

compared to 3D7/HP1ON parasites. Early gametocyte genes identified in previous studies are highlighted in purple. See also Figure S7, Table S1, and Sup-

plemental Experimental Procedures.
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conversion rates for optimal transmission during the course of

infection. Indeed, gametocyte conversion rates are highly vari-

able between different isolates and clones and influenced by a

broad spectrum of environmental conditions (Baker, 2010; Alano

and Carter, 1990). Although the molecular factor(s) triggering

gametocyte conversion have not been identified, two recent

studies reported that cell-cell communication via exosomes/

microvesicles causes a dramatic increase in gametocyte con-

version (Regev-Rudzki et al., 2013; Mantel et al., 2013). It is

therefore tempting to speculate that cargo delivered by these

vesicles may trigger a signaling cascade that ultimately evicts

PfHP1 from the pfap2-g locus.

In conclusion, we identified PfHP1 as an essential factor in

mitotic proliferation and as a key mediator of two systems of

CVGE that secure the survival and transmission of malaria

blood-stage parasites, respectively. Our data provide important

mechanistic insight into the regulatory processes underlying

antigenic variation and sexual conversion and generate knowl-

edge relevant for investigating conceptually similar systems in

other eukaryotes. Importantly, we established that gametocyte

commitment is epigenetically regulated. This significant dis-

covery will facilitate the targeted dissection of the molecular

pathway triggering sexual conversion and has major implica-

tions for the identification of approaches to prevent malaria

transmission.
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EXPERIMENTAL PROCEDURES

Parasite Culture and Transfection

P. falciparum 3D7 cell culture and transfection was performed as described

(Trager and Jenson, 1978; Lambros and Vanderberg, 1979; Voss et al.,

2006). Transfection constructs are described in the Supplemental Experi-

mental Procedures and in Figure S1. Parasites were grown in the presence

of the indicated combinations of 4 nM WR99210 (WR) and 625 nM Shield-1.

3D7/HP1ON clones were obtained by limiting dilution.

Western Blot Analysis

Nuclei were isolated as described (Voss et al., 2003) and lysed in 2% SDS,

10 mM Tris, 1 mM dithiothreitol (pH 8.0). Proteins were detected using rabbit

a-PfHP1 1:5,000 (Figure S1 and Supplemental Experimental Procedures)

and a-H4 1:10,000 (Abcam ab10158). PfEMP1 was extracted as described

(Van Schravendijk et al., 1993) and detected using the pan-specific a-PfEMP1

mouse monoclonal antibody (mAb) 1B/6H-1 (1:500) (Duffy et al., 2002).

Fluorescence Microscopy

Live-cell fluorescence microscopy and IFAs were performed as described

(Witmer et al., 2012). IFAs were performed on methanol-fixed cells using

mouse immunoglobulin G2a (IgG2a) mAb a-HRP1 (a-KAHRP) (kind gift

from D. Taylor), 1:500; mouse IgG1 mAb a-Pfs16 (kind gift from Robert

W. Sauerwein), 1:250; mouse IgG1 mAb a-PfEMP1 (1B/6H-1) (Duffy et al.,

2002), 1:150; and rabbit a-PfHP1, 1:100. Secondary antibody dilutions

were as follows: Alexa Fluor 568-conjugated a-rabbit IgG (Molecular

Probes), 1:250; Alexa Fluor 568-conjugated a-mouse IgG2a (Molecular Pro-

bes), 1:250; Alexa Fluor 488-conjugated a-mouse IgG1 (Molecular Probes),
t & Microbe 16, 165–176, August 13, 2014 ª2014 Elsevier Inc. 173
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1:250; and FITC-conjugated a-mouse IgG (Kirkegaard Perry Laboratories),

1:250. Images were taken at 96-fold magnification on a Leica DM 5000B

microscope with a Leica DFC 300 FX camera, acquired via the Leica IM

1000 software, and processed using Adobe Photoshop CS6. For each

experiment, images were acquired and processed with identical settings.

Isothermal Microcalorimetry

Isothermal microcalorimetry measures the heat flow produced by a biological

sample over time. Isothermal microcalorimetry experiments and data analysis

were performed as described using a Thermal Activity Monitor (Model 3102

TAM III, TA Instruments) with minor modifications (Wenzler et al., 2012) (see

Supplemental Experimental Procedures).

qRT-PCR

3D7/HP1ON parasites were synchronized twice 16 hr apart to obtain an 8 hr

growth window and then split into two populations at 4–12 hpi and cultured

in either the presence or absence of Shield-1. 3D7/HP1ON and 3D7/HP1OFF

parasites were harvested at 40–48 hpi in generation 1 and at three consecutive

time points in generation 2 (4–12 hpi, 24–32 hpi, and 32–40 hpi). 3D7 and F12

populations were synchronized identically, and time points were harvested at

4–12 hpi, 24–32 hpi, and 40–48 hpi. Isolation and processing of total RNA

and qRT-PCR were conducted as described with minor modifications (Witmer

et al., 2012) (see Supplemental Experimental Procedures). Primer sequences

are listed in Table S2.

Targeted Chromatin Immunoprecipitation

3D7/HP1ON parasites were synchronized twice 16 hr apart to obtain an 8 hr

growth window and then split into two populations, one of which was taken

off Shield-1 at 4–12 hpi. Sample pairs were harvested at 16–24 hpi and

40–48 hpi in generation 1 and at 16–24 hpi in generation 2. Isolation of formal-

dehyde-crosslinked chromatin and ChIP-qPCR analysis were performed as

described with minor modifications (Flueck et al., 2009) using 0.6 mg affinity-

purified a-PfHP1, 5 mg a-H3K9me3 (Millipore 07_442), or 5 mg rabbit IgG nega-

tive control antibodies (Millipore 12–370) (see Supplemental Experimental Pro-

cedures). Primer sequences are listed in Table S2.

Flow Cytometry

Tightly synchronized 3D7/HP1ON parasites were split at 0–4 hpi and cultured in

either the presence or absence of Shield-1. At 20–24 hpi after reinvasion, the

3D7/HP1ON and 3D7/HP1OFF populations were synchronized again to obtain a

4 hr growth window. DNA content analysis was carried out on five consecutive

TPs in generation 2, starting at 24–28 hpi. Packed RBCs (100 ml) were fixed in

4% formaldehyde/0.015% glutaraldehyde; washed three times in RPMI-

HEPES; incubated in 1 ml RPMI-HEPES, 0.1%Triton X-100, 0.1 mg/ml RNase

A, and 20 mM FxCycle Far Red stain (Molecular Probes) for 30 min in the dark;

and analyzed using an AccuriC6 instrument (BD Biosciences). A minimum of

4,000 gated iRBCs weremeasured (excitation 640 nm; 30mWdiode; emission

detection FL4 675 nm± 12.5 nm). Acquired data were processed using FlowJo

software (Version 10.0.5).

Microarray Experiments and Data Analysis

RNA extraction and cDNA synthesis were carried out as described (Bozdech

et al., 2003). Cy5-labeled test cDNAs were hybridized against a Cy3-labeled

3D7 cDNA reference pool that was made by combining total RNA isolated

from five consecutive time points across the IDC. Equal amounts of Cy5- and

Cy3-labeled samples were hybridized on a P. falciparum glass slide microarray

containing 10,416 70-mer open reading frame probes (Hu et al., 2007). Hybridi-

zation was carried out at 65�C in a MAUI automated hybridization station for at

least 12 hr (Bozdech et al., 2003). Slides were washed twice in 0.53 saline-so-

diumcitrate (SSC)/0.02%SDS,once in0.053SSC, spundry, andscannedusing

the GenePix scanner 4000B and GenePix pro 6.0 software (Axon Laboratory).

Detailed protocols describing microarray reannotation, data processing, and

analysis are provided in the Supplemental Experimental Procedures section.

ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the microarray data re-

ported in this paper is GSE53176.
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