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In this paper, we introduce a new normal form for context-free grammars, called 
reversible context-free grammars, for the problem of learning context-free grammars 
from positive-only examples. A context-free grammar G = (N, Z, P, S) is said to be 
reversible if (1) A + G( and B -+ a in P implies A = B and (2) A -+ a@ and A --f aCfl 
in P implies B = C. We show that the class of reversible context-free grammars can 
be identified in the limit from positive samples of structural descriptions and there 
exists an efficient algorithm to identify them from positive samples of structural 
descriptions, where a structural description of a context-free grammar is an 
unlabelled derivation tree of the grammar. This implies that if positive structural 
examples of a reversible context-free grammar for the target language are available 
to the learning algorithm, the full class of context-free languages can be learned 
efftciently from positive samples. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

We consider the problem of learning context-free languages from 
positive-only examples. The problem of learning a “correct” grammar for 
the unknown language from finite examples of the language is known as 
the grammatical inference problem. An important aspect of grammatical 
inference is its computational cost. Recently many researchers, including 
Angluin (1987a, 1987b), Berman and Roos (1987), Haussler et al. (1988), 
Ibarra and Jiang (1988), Sakakibara (1988), and Valiant (1984), have 
turned their attention to the computational analysis of learning algorithms. 
One criterion of the efficiency of a learning algorithm is whether its running 
time can be bounded by a polynomial in the relevant parameters. In the 
search for polynomial-time learning algorithms for learning context-free 
grammars, Sakakibara (1988) has considered the problem of learning 
context-free grammars from their structural descriptions. A structural 
description of a context-free grammar is an unlabelled derivation tree of the 
grammar, that is, a derivation tree whose internal nodes have no labels. 

* A preliminary version of the paper was presented at FGCS’88, ICOT, Tokyo, Japan. 
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Thus this problem setting assumes that information on the structure of the 
unknown grammar is available to the learning algorithm, which is also 
necessary to identify a grammar having the intended structure, that is, 
structurally equivalent to the unknown grammar. We showed an efficient 
algorithm to learn the full class of context-free grammars using two types 
of queries, structural membership and structural equivalence queries, in a 
teacher and learner paradigm which was introduced by Angluin (1988b) to 
model a learning situation in which a teacher is available to answer some 
queries about the material to be learned. 

In Gold’s criterion of identification in the limit for successful learning of 
a formal language, Gold (1967) showed that there is a fundamental, impor- 
tant difference in what could be learned from positive versus complete 
samples. A positive sample presents all and only strings of the unknown 
language to the learning algorithm, while a complete sample presents all 
strings, each classified as to whether it belongs to the unknown language. 
Learning from positive samples is strictly weaker than learning from com- 
plete samples. Intuitively, an inherent difficulty in trying to learn from 
positive rather than complete samples depends on the problem of “over- 
generalization.” Gold showed that any class of languages containing all the 
finite languages and at least one infinite language cannot be identified in 
the limit from positive samples. According to this theoretical result, the 
class of context-free languages (even the class of regular sets) cannot be 
learned from positive samples. These facts seem to show that learning from 
positive samples is too weak to find practical and interesting applications. 
However, it may be true that learning from positive samples is very useful 
and important for a practical use of grammatical inference because it is 
very hard for the user to present and understand complete samples which 
force him to have a complete knowledge of the unknown (target) grammar. 

In this paper, to overcome this essential difficulty, of learning from 
positive samples, we again consider learning from structural descriptions, 

the big dog chases a Young girl 

FIG. 1. A structural description for “the big dog chases a young girl.” 
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that is, we assume example presentations in the form of structural descrip- 
tions. The problem is to learn context-free grammars from positive samples 
of their structural descriptions, that is, all and only structural descriptions 
of the unknown grammar. We show that there is a class of context-free 
grammars, called reversible context-free grammars, which can be identified 
from positive samples of their structural descriptions. We also show that 
the reversible context-free grammar is a normal form for context-free gram- 
mars, that is, reversible context-free grammars can generate all of the 
context-free languages. We present a polynomial-time algorithm which iden- 
tifies them in the limit from positive samples of their structural descriptions 
by extending the efficient algorithm of Angluin (1982) which identifies finite 
automata from positive samples to obtain one for tree automata. This 
implies that if positive structural examples of a reversible context-free 
grammar for the target language are available to the learning algorithm, 
the full class of context-free languages can be learned efficiently from 
positive samples. 

We also demonstrate several examples to show the learning process of 
our learning algorithm and to emphasize how successfully and efficiently 
our learning algorithm identifies primary examples of grammars given in 
previous papers for the grammatical inference problem. 

2. BASIC DEFINITIONS 

Let N be the set of positive integers and N* be the free monoid 
generated by N. For y, x E N*, we write y d x if and only if there is a 
ZEN* such that x=y-z, and y<x if and only if y<x and y#x. 

A ranked alphabet V is a finite set of symbols associated with a finite 
relation called the rank relation rv E V x N. V, denotes the subset 
(fE Vl(~n)fzrV} of V. Let m=max{nj V,#@}, i.e., m=min{nIr,E 
vx (0, 1, . ..) n> }. In many cases the symbols in V, are considered as 
function symbols. We say that a function symbol f has an arity n if f~ V, 
and a symbol of arity 0 is called a constant symbol. 

A tree over V is a mapping t from Dom, into V where the domain Dom, 
is a finite subset of N * such that (1) if x E Dom, and y < x, then y E Dam,; 
(2) if y.iEDom, and iEN, then y.jEDom, for 1 <j<i, PENN; (3) 
t(x) f v,, whenever for iEN, X-iEDom, if and only if l<i<n. An 
element of the tree domain Dom, is called a node of t. If t(x) = A, then we 
say that A is the label of the node x of t. VT denotes the set of all trees over 
V. 1 Dom, ( denotes the cardinality of Dam,, that is, the number of nodes 
in t. 

Intuitively, trees are rooted, directed, connected acyclic graphs in which 
each node except the root has one predecessor and the direct successors of 
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any node are linearly ordered from left to right. If we consider V as a set 
of function symbols, the finite trees over V can be identified with well- 
formed terms over I/ and written linearly with commas and parentheses. 
Within a proof or a theorem, we shall write down only well-formed terms 
to represent well-formed trees. Hence when declaring “let t be of the form 
f(t I ) . ..) t,) . . * ” we also declare that f is of arity n 

Let t be a tree over V. A node y in t is called a terminal node if and only 
if for all x E Dam,, y 4: x. A node y in t is an internal node if and only if 
y is not a terminal node. The frontier of Dam,, denoted frontier (Dom,), 
is the set of all terminal nodes in Dom,. The interior of Dam,, denoted 
interior (Dom,), is Dom, --frontier (Dom,). The depth of x E Dam,, 
denoted depth(x), is the length of x. For a tree t, the depth of t is defined 
as depth(t) = max (depth(x) 1 x E Dam,). The size of t is the number of 
nodes in t. 

Let $ be a new symbol (i.e., $ # V) of rank 0. Vf denotes the set of all 
trees in (Vu ($>)’ which contain exactly one $-symbol. For trees s E V$ 
and t E ( Vr u Vc), we define an operation “ # ” to replace the terminal node 
labelled $ of s with t by 

s# t(x) = 4x1 if x E Dom, and s(x) # $, 

t(v) if x=z.y,s(z)=$,andy~Dom,. 

For subsets SE Vc and TE (VT u VT), S# T is defined to be the set 
{s#tlsES and tET}. 

Let t E VT and XE Dom,. The subtree t/x of t at x is a tree such that 
Dam,,= (ylx.yEDom,} and t/x(y)=t(x.y) for any yEDom,,,. The 
co-subtree t\x of t at x is a tree in Vc such that Domt,x = ( y 1 y E Dom, 
andx+y} and 

for y E Dam,,, - {x}, 
for y=x. 

Let T be a set of trees. We define the set SC(T) of co-subtrees of elements 
of T by 

SC(T)= {t\x(tETandxEDom,}, 

and the set Sub(T) of subtrees of elements of T by 

Sub(T)={t/xItETandxEDom,}. 

Also, for any t E VT, we denote the quotient of “T and t by 

(ulue VTandu#tET} if te VT- V,, 

if te V,. 



LEARNING CONTEXT-FREE GRAMMARS 27 

A partition of some set S is a set of pairwise disjoint nonempty subsets 
of S whose union is S. If n is a partition of S, then for any element s E S 
there is a unique element of rc containing s, which we denote B(s, n) and 
call the block of rc containing s. A partition rc is said to refine another parti- 
tion rr’, or rc is finer than rc’, if and only if every block of n’ is a union of 
blocks of rc. If 71 is a partition of a set S and s’ is a subset of S, then the 
restriction of 7~ to S’ is the partition z’ consisting of ail those sets B’ that 
are nonempty and are the intersection of S’ and some block of 7~. The 
trivial partition of a set S is the class of all singleton sets {s) such that 
SE S. An algebraic congruence is a partition 7c of VT with the property 
that for ti, Z+E VT (1 < i < k) and f E V,, B(ti, rr) = B(u,, rr) implies 
w-(t, 7 .--, tk), x) = xf(~l, . . . . uk), rc). If T is any set of trees, then 
for 1 <i<k and fE Vk, U,(t,)= UT(ui) implies Y,(f(tl, . . . . fk))= 
uT(f(U1, t,, *.*, tk)) = “. = UT(f(u,, .*., uk-1, tk)) = UT(f(u,, . . . . uk)), so 

T determines an associated algebraic congruence rcr. by B(t,, rcr) = 
B(t2, 7~~) if and only if U,(t,) = U,(t,). 

DEFINITION. Let I/ be a ranked alphabet and m be the maximum rank 
of the symbols in V. A wontier-to-root) tree automaton over V is a 
quadruple A = (Q, V, 6, F) such that Q is a finite set (Q (7 V, = f25), F is a 
subset of Q, and 6 = (6,, 6,! . . . . 6,) consists of the following maps: 

bk: V, x (Q u V,)” H 2Q (k = 1, 2, . . . . m), 
&(a)=a for aE V,. 

Q is the set of states, F is the set of final states of A, and 6 is the state 
transition function of A. In this definition, the terminal symbols on the 
frontier are taken as “initial” states. 6 can be extended to VT by letting 

i 

U 6k (it 41~ .*.) qk ) if k>O, 
s(f(tl, . ..) tk)) = 41EHfl) ?..., qkEH%) 

lfl if k= 0. 

The tree t is accepted by A if and only if 6(t) n F# a. The set of trees 
accepted by A, denoted T(A), is defined as T(A)= {tE VT16(t)nF#IZ(). 

Note that the tree automaton A cannot accept any tree of depth 0. 
A tree automaton is deterministic if and only if for each k-tuple 

ql, . . . . qk E Q v V, and each symbol f E vk, there is at most one element 
in hk(f, 41, . . . . qk). Note that we allow undefined state transitions in 
deterministic tree automata. 

PROPOSITION 1 (Levy and Joshi, 1978). Nondeterministic tree automata 
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are no more powerful than deterministic tree automata. That is, the set 
of trees accepted by a nondeterministic tree automaton is accepted by a 
deterministic tree automaton. 

Note that the deterministic tree automaton may have exponentially 
many more states than the nondeterministic one. 

Remark 1. Let A be a deterministic tree automaton. If d(t,)=c?(t,), 
then UTcAj (tl I= UTcaj (td. 

See Sakakibara (1988) for the proof of Remark 1. Note that z,(,) 
contains finitely many blocks for any tree automaton A. 

Let A = (Q, V, 6, F) and A’ = (Q’, V, 6’, F’ ) be tree automata. A is 
isomorphic to A’ if and only if there exists a bijection cp of Q onto 
Q’ such that q(F) = F’ and for every ql, . . . . qk E Q u V, and f E V,, 
4$&c (.A 41, **-, qk )I = &(.A 4; > .'.T qk), where q:= (p(qi) if qie Q and qi= qi if 
qiEVOfor l<i<k. 

DEFINITION. Let A = (Q, V, 6, F) and A’ = (Q’, V, 6’, F’ ) be tree 
automata. A’ is a tree subautomaton of A if and only if Q’ and F’ are 
subsets of Q and F, respectively, and for every q’, , . . . . qk E Q’ u V, and 
f E V,, Sh(f, q;, . . . . q;) = S,(f, q;, . . . . q;) or &(A q;, . . . . qh) is undefined. 

Clearly T(A’) c T(A). 

DEFINITION. Let A = (Q, V, 6, F) be a tree automaton. If Q” is a subset 
of Q, then the tree subautomaton of A induced by Q” is the tree automaton 
(Q”, V, d”, F”), where F” is the intersection of Q” and F, and 
q” E 8;: (f, q;, . ..) qi) if and only if q” E Q”, q;, . . . . qi E Q” u V,,, and 
4” E S,(f; d, .-a, 4;). 

A state q of A is called useful if and only if there exist a tree t and some 
address x E Dom, such that &t/x) = q and 6(t) E F. States that are not 
useful are called useless. A tree automaton that contains no useless states 
is called stripped. 

DEFINITION. The stripped tree subautomaton of A is the tree sub- 
automaton of A induced by the useful states of A. 

The “stripped tree subautomaton” in fact contains no useless states, that 
is, it is stripped. 

DEFINITION. Let A = (Q, V, 6, F) be any tree automaton. If rc is any par- 
tition of Q, we define another tree automaton A/z = (Q’, V, 6’, F’) induced 
by 7~ as follows: Q’ is the set of blocks of 7~ (i.e., Q’= z). F’ is the set of 
all blocks of rc that contain an element of F (i.e., F’ = (BE 7~ 1 Bn Ff @}). 
6’ is a mapping from V, x (rc u VO)k to 2” and for B,, . . . . B, E Q’ u V, and 
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f~ V,, the block B is in Sk(f, B,, . . . . Bk) whenever there exist q E B and 
qisBiEn or qi= B,e I’, for 1 <idk such that q=S,(f, ql, . . . . qk). 

Remark 2. Let A = ((2, V, 6, F) be a tree automaton and z be a parti- 
tion of Q. Then T(A/rc) 2 T(A ), T(A/rc) = T(A ) if rr is the trivial partition 
of Q, and T(A/rc) E T(A/n’) if n relines rc’. 

DEFINITION. Let T be a set of trees accepted by some tree automaton. 
We define the canonical tree automaton for T, denoted C(T) = (Q, V, 6, I;), 
as follows: 

Q = ( U,(u) I u E Sub(T) - Vo 1, 

F={Wt)lt~T}, 

Sk(.L U,(% 1, ‘.., UAUk)) = u,u-(Ul, . ..> Uk)) 

if ul, . . . . uk andf(u,, . ..) uk) are in Sub(T), 

6,(a) =a for aE V,. 

Since T is accepted by some tree automaton, by Remark 1, the 
set {U,(u)]u~Sub(T)- I/,} is finite. Since UT(q)= UT(+) implies 
Ur(t#ul)= UT(t#u2) for ail trees t in VT, this state transition function 
is well defmed and C(T) is deterministic. C(T) is stripped, that is, contains 
no useless states. A tree automaton A is called canonical if and only if A is 
isomorphic to the canonical tree automaton for T(A). 

DEFINITION. Let Sa be a finite set of trees of VT. We define the base tree 
automaton for Sa, denoted Bs(Sa) = (Q, V, 6, F), as follows: 

Q = Sub(Sa) - V,, 

F= Sa, 

6kt.i ul, .-+> uk) =f(%, ..-, uk) 

whenever ur , . . . . uk E Q u v, and f(% > . . . . uk) E Q, 
6,(a) =a for aE V,. 

Note that Bs(5’a) is a tree automaton that accepts precisely the set Sa. 

An alphabet is a finite nonempty set of symbols. The set of all finite 
strings of symbols in an alphabet 2 is denoted Z*. The empty string is 
denoted E. The length of the string w  is denoted j w  1. If X is a finite set, I Xl 
denotes the cardinality of X. 

DEFINITION. A context-free grammar is denoted G = (N, Z, P, S); where 
N and E are alphabets of nonterminals and terminals, respectively, such 
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that N n Z = @. P is a finite set of productions; each production is of the 
form A -+ a, where A is a nonterminal and a is a string of symbols from 
(N u Z)*. Finally, S is a special nonterminal called the start symbol. If 
A + B is a production of P, then for any strings a and y in (N u X)*, we 
define aAy * c& and we say that aAy directly derives c$y in G. Suppose 
that cur, rxz, . . . . a, are strings in (N u E)*, m > 1, and 

a,*a*,a**aj )...) cI,-~~cI,. 

Then we say c1r 4 a, or CI~ derives CI, in G. That is, 4 is the reflexive and 
transitive closure of +. The finite sequence of strings CI~, a2, . . . . CC, is said 
to be a derivation of CC,,, from a,in G and is written also as 

a,*a,=>a,... *a, 

The language generated by G, denoted L(G), is (w 1 w  is in Z* and S 9 w}. 
Two context-free grammars G and G’are said to be equivalent if and 

only if L(G) = L(G’ ). Two context-$ee grammars G = (N, C, P, S) and 
G’ = (N’, EC, P’, S’) are said to be isomorphic, that is, differ only by the 
names of nonterminals, if and only if there exists a bijection q of N 
onto N’ such that q(S) = S’ and for every A, B,, . . . . B, E N u C, 
A-B1 ... Bk~ P if and only if q(A) + B; ... Bk EP’, where B:= q(B,) if 
BiENand Bi=BiifBi~Zfor l<i<k. 

DEFINITION. Let G = (N, C, P, S) be a context-free grammar. For A in 
N u Z, the set DA (G) of trees over N u 2 is recursively defined as 

D,(G)= (A(tl,..., tk)IA+B1...Bk, tiED,(G)(l<i<k)) 

i 

W if A=~EZ, 

if AEN. 

A tree in D,(G) is called a derivation tree of G from A. 
For the set D,(G) of derivation trees of G from the start symbol S, the 

S-subscript will be deleted. 

A skeletal alphabet Sk is a ranked alphabet consisting of only the special 
symbol Q with the rank relation rsk E {c} x { 1,2, 3, . . . . m}, where m is the 
maximum rank of the symbols in the alphabet Sk. A tree defined over 
Sk u V, is called a skeleton. 

DEFINITION. Let t E VT The skeletal (or structural) description of t, 
denoted s(t), is a skeleton with Dam,(,) = Dom, such that 

s(t)(x) = 
t(x) if x Efrontier (Dom,), 
CT if x E interior (Dom,). 
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Let T be a set of trees. The corresponding skeletal set, denoted K(T), is 
(s(t) I t E T). 

Thus a skeleton is a tree defined over Sk u C which has a special label 
B for the internal nodes. The skeletal description of a tree preserves the 
structure of the tree, but not the label names describing that structure. 
A tree automaton over Sk u C is called a skeletal tree automaton. 

A skeleton in K(D(G)) is called a structural description of G. Then 
K(D(G)) is the set of structural descriptions of G. Two context-free 
grammars G and G’ are said to be structurally equivalent if and only if 
K(D(G))= K(D(G’)). Note that if G and G’ are structurally equivalent, 
they are equivalent, too. Given a context-free grammar G, we can get the 
skeletal alphabet which K(D(G)) is defined over. Let r be the set of the 
lengths of the right-hand sides of all the productions in G. Then the skeletal 
alphabet Sk for K(D(G)) consists of (c} with rsk = {o] x r. 

Next we show two important propositions which connect a context-free 
grammar with a tree automaton. By a coding of the derivation process of 
a context-free grammar in the formalism of a tree automaton, we can get 
the following result. 

DEFINITION. Let G = (N, Z, P, S) be a context-free grammar. The 
corresponding skeletal tree automaton A(G) = (Q, Sk u C, 6, F) is defined 
as follows: 

Q = N, 

F= {S}, 

6, (0, B, , . . . . Bk) 3 A 
if the production of the form A --+ B, . . . Bk is in P, 

6,(a) = a for aEE. 

FROPQSITION 2. Let G be a context-free grammar. Then T(A(G))= 
K(D(G)). That is, the set of trees accepted by A(G) is equal to the set of 
structural descriptions of G. 

ProoJ: First we prove that SEK(D~(G)) if and only if 6(s) 3 A for 
A E N u Z: We prove it by induction on the depth of s. Suppose first that 
the depth of s is 0, i.e., s= aEZ. By the deftnition of D,(G) and A(G), 
aE D,(G) if and only if A = a if and only if 6(a) = {&,(a)) 3 A. Hence 
aE K(D,(G)) if and only if a(a)3 A. 

Next suppose that the result holds for all trees with depth at most h. Let 

643191/l-3 



32 YASUBUMI SAKAKIBARA 

s be a tree of depth h + 1, so that s = 5(u1, . . . . uk) for some skeletons 
ul, . . . . uk with depth at most h. Assume that u~EK(D,,(G)) for 1 < i<k. 
Then 

if and only if there is the production of the form A + B, . . . B, in P, 
by the definition of D, (G), 

if and only if hk (5, B, , . . . . Bk) 3 A, by the definition of A(G), 

ifandonlyif6,(5, B,, . . . . B,)sAand B,E~(u~), . . . . B,Ec?(u~), 
by the induction hypothesis, 

if and only if 6(5(ur, . . . . uk)) 3 A. 

This completes the induction and the proof of the above proposition. 
Then it immediately follows from this that s E K(D(G)) if and only if 

6(s) 3 S. Hence K(D(G)) = T(A(G)). Q.E.D. 

Conversely, by a coding of the recognizing process of a tree automaton 
in the formalism of a context-free grammar, we can get the following result. 

DEFINITION. Let A = (Q, Sk u Z, 6, P) be a deterministic skeletal tree 
automaton for a skeletal set. The corresponding context-free grammar 
G(A) = (IV, C, P, S) is defined as follows: 

N= Q u {S), 

P= (&(5,X1, . . ..xk)+xl “‘Xk 

(oESkk,xI,..., xkEQuZand6,(5,x,,...,x,)isdefined) 

u (S-x, ’ ’ ’ xk 1 dk (5, xl, . . . . xk) E f-}. 

PROPOSITION 3. Let A = (Q, Sk v C, 6, F) be a skeletal tree automaton. 
Then K(D(G(A))) = T(A). That is, the set of structural descriptions of-G(A) 
is equal to the set of trees accepted by A. 

ProoJ: First we prove that (i) 6(s) = q if and only if s E K(D,(G(A))) for 
q E Q u C. We prove it by induction on the depth of s. Suppose first that 
the depth of s is 0, i.e., s = asZ. By the definition of G(A) and D,(G), 
6(a) = q if and only if q = a if and only if a E D,(G(A)). Hence 6(a) = q if 
and only if a E K(D,(G(A))). 

Next suppose that the result holds for all trees with depth at most h. Let 
s be a tree of depth h + 1, so that s = 5(u1, . . . . uk) for some skeletons 
u1 , . . . . uk with depth at most h. Assume that 6(q) = xi for 1 < i < k. Then 
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if and only if Sk(~, 6(u,), . . . . 6(u,)) = q 

if and only if 6, ((I, x1, . . . . xk) = q 
if and only if there is the production of the form q -+ x1 ...xk in G(A), 
by the definition of G(A), 

if and only if q --P x1 . . . xk in G(A) and u1 E K(D,, (G(A ))), . . . . 

uk E K(D,(G(A))), by the induction hypothesis, 

if and only if ~(ui, . . . . +)EK(D~(G(A))), by the definition of DA(G). 

This completes the induction and the proof of (i). 
Secondly we prove that (ii) seK(D,(G(A))) if and only if 

s E K(D,(G(A))) for some q E F. Let s be a skeleton of the form a(ui, . . . . uk) 
for some skeletons ul, . . . . uk. If seK(D,(G(A))), then since if 
ui E K(D,,(G(A))), then qi = 6(si) for 1 < i < k by (i), there is the production 
of the form S-+6(u1)...6(uk) in G(A) and S,(o, @a,), . . . . 6(u,))EFby the 
definition of G(A). Then 6(o(u,, . . . . uJ) E F and so 6(s) E F. Hence by (i), 
SEK(D,(G(A))) for some qE F. 

Conversely if seK(D,(G(A))) for some qEF, then 6(s)=6,(0, 6(u,), ..,, 
6(u,)) E F by (i). By the definition of G(A), there is the production of the 
form S-+ 6(u,) ..-6(u,) in G(A). Since z+EK(D,(,,,(G(A))) for 16i~k by 
(i), 6(u,, . . . . Q)EK(D~(G(A))). Hence seK(D,(G(A))). 

Lastly it immediately follows from (i) and (ii) that 6(s) E F if and only 
ifs E K(D(G(A))). Hence T(A) = K(D(G(A))). QED. 

Therefore the problem of learning a context-free grammar from 
structural descriptions can be reduced to the problem of learning a tree 
automaton. 

3. STRUCTURAL IDENTIFICATION 

Gold’s (1967) theoretical study of language learning introduces a 
fundamental concept that is very important in inductive inference: iden- 
tification in the limit. In Gold’s definition, to a learning algorithm M that 
is attempting to learn the unknown language L, an infinite sequence of 
examples of L is presented. A positive presentation of L is an infinite 
sequence giving all and only the elements of L. A xomplete pbesentation of 
L is an infinite sequence of ordered pairs (w, d) from C* x {O,, 1 > such that 
d = 1 if and only if w  is a member of L, and such that every element w  of 22% 
appears as the first component of some pair in the sequence, where C is the 
alphabet which the language L is defined over. A positive presentation 
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eventually includes every member of L, whereas a complete presentation 
eventually classifies every, element of ,Z* as to its membership in L. If 
after some finite number of steps in a positive (complete) presentation of 
L, M guesses a correct conjecture for the unknown language L and never 
changes its guess after this, then M is said to identify L in the limit from 
positive (complete) samples. In the case that the conjectures are in the form 
of grammars, M identifies in the limit a grammar G such that L(G) = L. 

On the other hand, as indicated by Sakakibara (1988), in order to 
identify a grammar which has the intended structure, it is necessary to 
assume that information on the structure of the grammar is available to the 
learning algorithm M. In the case of context-free grammars, the structure 
of a grammar is represented by the structural descriptions of it. Suppose G 
is the unknown context-free grammar (not the unknown language). This is 
the grammar that we assume has the intended structure, and that is to be 
learned (up to structural equivalence) by the learning algorithm M. In this 
case, a sequence of examples of the structural descriptions K@(G)) is 
presented. A positive presentation of K(D(C)) . is an infinite sequence giving 
all and only the elements of K(D(G)). A complete presentation of K( D( G)) 
is an infinite sequence of ordered pairs (s, d) from (Sk u 2)’ x {O, 1 > such 
that d= 1 if and only if s in a member of K(D(G)), and such that every 
element s of (Sk uZ)r appears as the first component of some pair in 
the sequence, where Sk is the skeletal alphabet for the grammar G. Then 
a learning algorithm identifies in the limit a grammar G’ such that 
K(D(G')) = K(D(G)) (i.e., structurally equivalent to G) from a presentation 
of the structural descriptions K(D(G)). This type of identification criterion 
is called structural ident$cation in the limit. 

4. CONDITION FOR LEARNING FROM Posmm SAMPLES 

In order to learn formal languages from positive samples in Gold’s 
criterion of identification in the limit, we must avoid the problem of “over- 
generalization,” which means guessing a language that is a strict superset 
of the unknown language. Angluin (1980) showed various conditions for 
correct identification of formal languages from positive samples that avoids 
overgeneralization. In her framework, the target domain is an indexed 
family of nonempty recursive languages L, , L,, L,, . . . . 

An indexed family of nonempty recursive languages L,, L,, L,, . . . . is said 
to be learnable from positive (complete) samples if and only if there exists 
a learning algorithm M which identifies Lj in the limit from positive 
(complete) samples for all i> 1. 

One of necessary and sufficient conditions for correct identification from 
positive samples is the following. 
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Condition 1. An indexed family of nonempty recursive languages 
L,, L,, L,, ..a, satisfies Condition 1 if and only if there exists an effective 
procedure which on any input i > 1 enumerates a set of strings Tj such that 

1. Ti is finite, 
2. Ti c Li, and 
3. for all j 3 1, if Ti c Lj then Lj is not a proper subset of Li. 

This condition requires that for ,every language L,, there exists a “tell- 
tale” finite subset Ti of L, such that no language of the family that also 
contains Ti is a proper subset of L,. Angluin proved that an indexed family 
of nonempty recursive languages is learnable from positive samples if and 
only if it satisfies Condition 1. 

These characterizations and results can be easily applied to the problem 
of learning tree automata, and hence to the problem of structural iden- 
tification of context-free grammars because Angluin’s results assume only 
the enumerability and recursiveness of a class of languages. 

5. REVERSIBLE CONTEXT-FREE GRAMMARS 

DEFINITION. A skeletal tree automaton A = (Q, Sk u Z, 6, F) is reset- 
free if and only if for no two distinct states q1 and q2 in Q do there exist 
a symbol B E Skk, a state q3 E Q, an integer iE F+J (1 $ i d k), and k - l-tuple 
ul, . . . . ukPI E Q u C such that 6,(0, ul, . . . . uimI, ql, ui, . . . . ukbl) =q3 = 
6k(a~ ul~ -.a) ui-1, q2, ui, ...Y uk-1 ). The skeletal tree automaton is said to be 
reversible if and only if it is deterministic, has at most one final state, and 
is reset-free. 

The idea of the reversible skeletal tree automatqn comes from the 
“reversible automaton” and the “reversible languages” of Angluin (1982). 
Basically, the reversible skeletal tree automaton is the extension of the 
“zero-reversible automaton.” 

Remark 3. If A is a reversible skeletal tree automaton and A’ is any 
tree subautomaton of A, then A’ is a reversible skeletal tree automaton. 

LEMMA 4. Let A = (Q, Sk u 2,6, { qf} ) be a reversible skeletal tree 
automaton. For t~(Sku.E)~andu,,u,~(Sku~)T, ifAacceptsboth t#ul 
and t#u,, then 6(u,) = 6(u,). 

ProoJ We prove it by induction on the depth of the node labelled $ in 
t. Suppose first that t = $. Since A has only one final state qf, 
6(u,) = d(t#u,) = qf= s(t#u,) = 6(u,). Next suppose that the result holds 
for all t E (Sk u C): in which the depth of the node labelled $ is at most h. 
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Let t be an element of (Sk u Z): in which the depth of the node labelled 
$ is h + 1, so that t = t’# ~(si, . . . . si- i, $, si, . . . . sk- i) for some si, . . . . s+ r E 
(Sk u Z)T, i E N and t’ E (Sk ti .Z)c in which the depth of the node labelled 
$ish. IfA accepts both t#u, = t’#o(sl, . . . . si-r, ui, si, . . . . skP1) and t#u,= 
t’#o(Sl, . . . . si-1, ~2, siy . . . . ~k-1)~ then ~(o(s,, . . . . si-1, ~1, si, . . . . s,z-1))~ 
6(o(sl, .*-T sj- 1, u2, sj, ...) Sk- 1 )) by the induction hypothesis. So 

ak(c, d(sl 1, ...Y d(si-l), d(ul), d(si), **.Y d(sk-1)) 

Since A is reset-free, 6(u,) = 6(u,), which completes the induction and the 
proof of Lemma 4. Q.E.D. 

DEFINITION. A context-free grammar G = (N, Z, P, 5’) is said to be 
invertible if and only if A + c1 and B + CI in P implies A = B. 

The motivation for studying invertible grammars comes from the theory 
of bottom-up parsing. Bottom-up parsing consists of (1) successively 
finding phrases and (2) reducing them to their parents. In a certain sense, 
each half of this process can be made simple but only at the expense of the 
other. Invertible grammars allow reduction decisions to be made simply. 
Invertible grammars have unique right-hand sides of the productions so 
that the reduction phase of parsing becomes a matter of table lookup. The 
invertible grammar is a normal form for context-free grammars. Gray and 
Harrison (1972) proved that for any context-free language L, there is an 
invertible grammar G such that L(G) = L. 

PROPOSITION 5 (Gray and Harrison, 1972). For each context-free gram- 
mar G there is an invertible context-free grammar G’ so that L(G’) = L(G). 
Moreover, if G is E-free then so is G’. 

Note that this result is essentially the same one as the determinization of 
a frontier-to-root tree automaton, and suffers the same exponential blowup 
in the number of nonterminals in the grammer. It however preserves struc- 
tural equivalence. (This needs a slight modification of the definition for 
context-free grammars. See also McNaughton (1967).) 

DEFINITION. A context-free grammar G = (IV, Z, P, S) is reset-free if and 
only if for any two nonterminals B, C and a, /? E (Nu Z)*, A --f EBB and 
A + CYC~ in P implies B = C. 

DEFINITION. A context-free grammar G is said to be reversible if and 
only if G is invertible and reset-free. A context-free language L is defined 
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to be reversibze if and only if there exists a reversible context-free grammar 
G such that L = L(G). 

EXAMPLE. The following is a reversible context-free grammar for a 
subset of the syntax for the programming language Pascal. 

Statement --f Ident : = Expression 
Statement -+ while Condition do Statement 
Statement + if Condition then Statement 
Statement + begin Statementlist end 
Statementlist -+ Statement; Statementlist 
Statementlist -+ Statement 
Condition -+ Expression > Expression 
Expression --f Term + Expression 
Expression -+ Term 
Term -+ Factor 
Term -+ Factor x Term 
Factor -+ Ident 
Factor + (Expression). 

Even if the above grammar contains the production “Expression -+ 
Term - Expression” or “Term --f Factor/Term,” it is still reversible. 
However, if it contains the production “Factor -+ Number” or “Factor -+ 
Function,” it is no longer reversible. 

DEFINITION. Let A = ((2, Sk u Z, 6, (qf)) be a reversible skeletal tree 
automaton for a skeletal set. The corresponding context-free grammar 
G’(A) = (N, A’, P, S) is defined as follows: 

N=Q, 

s=qy, 

P= (6&,x, ,..., xk)+xl...xk 1 oESkk,xl ,..., x,EQuZ 

and 6,(a, x1, . . . . xk) is defined}. 

By the definitions of A(G) and G’(A), we can conclude the following. 

PROPOSITION 6. If G is a reversible context-free grammar, then A(G) is 
a reversible skeletal tree automaton such that T(A(G)) = k(D(G)). Conver- 
sely if A is a reversible skeletal tree automaton, then G’(A) is a reversible 
context-free grammar such that K(D(G’(A))) = T(A). 

Therefore the problem of structural identification of reversible context- 
free grammars is reduced to the problem of identification of reversible 
skeletal tree automata. 
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Next we show some important theorems about the normal form 
property of reversible context-free grammars. We give two transformations 
of a context-free grammar into an equivalent reversible context-free gram- 
mar. The first transformation adds a number of copies of a nonterminal 
that derives only E to the right-hand side of each production to make each 
production unique. 

THEOREM 7. For any context-free language L, there is a reversible 
context-free grammar G such that L(G) = L. 

Prooj First we assume that L does not contain the empty string. Let 
G’ = (N’, C, P’, S’ ) be an s-free context-free grammar in Chomsky normal 
form (see Hopcroft and Ullman (1979) for the definition of Chomsky 
normal form) such that L(G’) = L. Index the productions in P’ by the 
integers 1,2, . . . . ( P’ / . Let the index of A + o[ E P’ be denoted I (A + IX). Let 
R be a new nonterminal symbol not in N’ and construct G = (N, Z:, P, s’) 
as follows: 

N= N’u {R}, 

P={A+aRij;4+a~P’ and i=I(A-+a)) 

u {R+E}. 

Clearly G is reversible and L(G) = L. 
If E E L, let L’ = L - {E > and G’ = (N, ,Y, P, S’ ) be the reversible context- 

free grammar constructed in the above way for L’. Then G = (N u (S}, 
Z, Pu {S-t s’, S+ RR), S) is reversible and L(G) = L. Q.E.D. 

The trivialization occurs in the previous proof because s-productions are 
used to encode the index of the production We prefer to allow s-produc- 
tions only if absolutely necessary and prefer s-free reversible context-free 
grammars if possible because s-free grammars are important in practical 
applications such as efficient parsing. Unfortunately there are context-free 
languages for which there do not exist any s-free reversible context-free 
grammars. An example of such a language is 

(aili> l} u (b’lj> 1) u {c}. 

However, if a context-free language does not contain the empty string and 
any terminal string of length one, then there is an s-free reversible context- 
free grammar which generates the language. The second transformation 
achieves this result by means of chain rules with new nonterminals. 

THEOREM 8. Let L be any context-free language in which all strings 
are of length at least two. Then there is an E-free reversible context-free 
grammar G such that L(G) = L. 
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ProoJ: We construct the reversible context-free grammar G= 
(N, C, P, S) in the following steps. 

First by the proof of Proposition 5 of Gray and Harrison (1972), there 
is an invertible context-free grammar G’= (N’, C, P’, s’) such that 
L(G’) = L and each production in P’ is of the form 

1. A--+BCwith A,B,CeN’--{S’} or 
2. A-+a with AEN’- (S> and aE:C or 
3. S’+ A with AEN’- (S’}. 

Since all strings in L are of length at least two, P’ has no production of the 
form A-+a for AEN’-{S’) and aeZ such that S’--+AeP’. 

Next for all productions in P’, we make them reset-free while preserving 
invertibility. P is defined as follows: 

1. For each AEN’- {S’}, let 

{A -+ a,, A -+ tx2, . . . . A -+ a,} 

be the set of all productions in P’ whose left-hand side is A. P contains the 
set of productions 

(A -+a,, A -+X,,, X,, 4~2, X,, -+X/,2, . ..> &,-1-,~,), 

where Xa,, X,,, . . . . XA,-, are new distinct nonterminal symbols. 
2. For each production A -+ BC E P’ such that s’ -+ A E P’, let I con- 

tain the production of the form S -+ BY,, where Y, is a new nonterminal 
symbol. Let us denote for the set I, 

I= {s-q,, s-p,, . ..) S-Q,). 

P contains the set of productions 

where Xs,, X,,, . . . . X,+, are new distinct nonterminal symbols. 

3. P contains the set of productions { Y, -+ C 1 CE N’ - (s’ > }. 

Let G= (N, C, P, S), where N= (N’- {s’})u (XA1, XA2, . . . . XA,-, 1 AE 
N’-{~‘~}u{Y,I~~N’-{~‘)}u{~s,,~~~,...,~,~~,>u(~>. 

NOW we begin the proof that G is reversible, c-free, and L(G) = L(G’ ). 

CLAIM 1. G is reversible. 

Proof. Since G’ is invertible, each production of the form A + BC, 
A-+a, X.++BBC or Xa,-+a for A,B, CEN’ and aEC in P has a unique 
right-hand side by the construction 1 of P, and each production of the form 
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S + BY, or X, + BY, in P also has a unique right-hand side by the con- 
struction 2 of P. By the constructions 1, 2, and 3 of P, each production of 
the form A --, B for A, BEN in P has a unique right-hand side. Hence G 
is invertible. 

For each A EN, by the constructions 1, 2, and 3 of P, there are at most 
two productions whose left-hand side is A in P. Furthermore they have dif- 
ferent forms, that is, A -+ BC or A + a and A + B, where A, B, CE N and 
a E ,Z. Hence G is reset-free. Therefore G is reversible. 

CLAIM 2. L(G’)sL(G). 

ProofI By the construction 1 of P, for each A E N’ - (S’ }, A -+ CI in G’ 
implies A &. a in G. By the construction 2 and 3 of P, s’ 3 A * BC in G’ 
implies S 3 BY, j BC in G. Hence for each w  EC*, S’ 4 w  in G’ implies 
S % w  in G. 

CLAIM 3. L(G’)zL(G). 

ProoJ: First we prove by induction on the length of a derivation in G 
that for each AEN’- and each WEZ*, A 4 w  or XAj Z$ w  in G 
implies A &. w  in G’. Suppose first that A=> w  or XA,* w  in G. Then 
A + w  or XAZ + w  is in P. By the construction 1 of P, A + w  is in P’. Hence 
A 3 w  in G’. 

Next suppose that the result holds for all derivations of the length at 
most m. Let A + BC 9 w  or XAi + BC 9 w  (B, C E N’ ) be a derivation of 
length m + 1 in G. This implies that A -+ BC or XAi + BC is in P and 
BC 9 w  is a derivation of length m in G. By the construction 1 of P and 
the induction hypothesis, A 3 BC is in P’ and BC i!, w  in G’. Hence 
A 4 win G’. Let A*X 4 w  or XAi*X 9 w  (XEN) be a derivation of 
length m + 1 in G. By the construction 1 of P, this implies that 
X = XAi, A --f XAj or XAi -+ XAj is in P, and XA, Z, w  is a derivation of 
length m in G. By the induction hypothesis, A !I, w  in G’. This completes 
the induction. 

Suppose that S B w  in G. By the constructions 2 and 3, this implies that 
S a BYc* BC in G, s’* A* BC in G’, and BC 9 w  in G for some 
B, CE N’ - {S’}. By the above result, BC 4 w  in G’. Hence s’ Z, w  in G’. 
This completes the proof of Claim 3. 

By Claim 2 and 3, L(G’) = L(G). To finish the proof, note that G is 
s-free. Q.E.D. 

We analyze how much the transformation used in Theorem 8 blows up 
the size of the grammar. Let G’ = (N’, Z, P’, S) be any invertible context- 
free grammar such that each production in P’ has the form given in 
Theorem 8 and G = (N, Z, P, S) be the resulting equivalent reversible con- 
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text-free grammar by the transformation. Then 1 N} < 2 1 N’ I+ 2 1 P’ I- 3 
and 1 P) < 4 1 P’ 1 + 1 N’ 1 - 3. Thus this transformation polynomially blows 
up the size of the grammar. However, the transformation of any 
context-free grammar into an equivalent one that is invertible suffers an 
exponential blowup in the number of nonterminals in the grammar. 

Note that while the standard transformation to make a context-free 
grammar invertible preserves structural equivalence (see, McNaughton, 
1967, for example), the transformations including ones used in Theorems 7 
and 8 to achieve reset-freeness in general do not, and cannot always, 
preserve structural equivalence, although they preserve language equiva- 
lence. This is because some sets of skeletons aocepted by skeletal tree 
automata are not accepted by any reversible skeletal tree automaton, which 
is the correct analog of the theory in the case of finite automata, where not 
all regular languages are reversible. 

DEFINITION. A context-free grammar G = (N, Z; P, S) is said to be 
extended reversible if and only if for p’=P- (S+aIaEq, 
G’ = (N, Z, P’, 5’) is reversible. 

By the above theorem, reversible context-free grammars can be easily 
extended so that for any context-free language not containing E, we can 
find an extended reversible context-free grammar which is e-free and 
generates the language. 

THEOREM 9. Let L be any context-free language not containing E. Then 
there is an E-free extended reversible context-free grammar G such that 
L(G) = L. 

ProoJ It is obvious from the definition of the extended reversible 
context-free grammars and Theorem 8. Q.E.D. 

6. LEARNING ALGORITHMS 

In this section we first describe and analyze the algorithm RT to learn 
reversible skeletal tree automata from positive, samples. Next we apply this 
algorithm to learning context-free grammars from positive samples of their 
structural descriptions. Essentially the algorithm RT is an extension of 
Angluin’s (1982) learning algorithm for zero-reversible automata. Without 
loss of generality, we restrict our consideration to only e-free context-free 
grammars. 

DEFINITION. A positive sample of a tree automaton A is ‘a finite subset 
of T(A ). A positive sample CS of a reversible ‘skeletal tree automaton A is 
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a characteristic sample for A if and only if for any reversible skeletal tree 
automaton A’, T(A’) 1 CS implies T(A) c T(A’). 

6.1. The Learning Algorithm RTfor Tree Automata 

The input to RT is a finite nonempty set of skeletons Sa. The output is 
a particular reversible skeletal tree automaton A = RT(Sa). The learning 
algorithm RT begins with the base tree automaton for Sa and generalizes 
it by merging states. RT finds a reversible skeletal tree automaton whose 
characteristic sample is precisely the input sample. 

On input Sa, RT first constructs A = B.s(Sa), the base tree automaton for 
Sa. It then constructs the finest partition rrY of the set Q of states of A with 
the property that A/nf is reversible, and outputs A/7tf 

To construct rcfnf, RT begins with the trivial partition of Q and repeatedly 
merges any two distinct blocks B, and B, if any of the following conditions 
is satisfied: 

1. B1 and B, both contain final states of A. 

2. There exist two states q E B, and q’ E B, of the forms 
q = O(U1) . ..) z+) and q’ = o(u;, . . . . uk) such that for 1 <j< k, uj and U; both 
are in the same block or the same terminal symbols. 

3. There exist two states q, q’ of the forms q = o(ul, . . . . z+) and 
q’ = O(u;) . ..) ui) in the same block and an integer I (1~ I< k) such that 
uI E B, and u; E B, and for 19 j d k and j # 1, uj and ui both are in the same 
block or the same terminal symbols. 

When there no longer remains any such pair of blocks, the resulting parti- 
tion is 7cY 

To implement this merging process, RT keeps track of the further merges 
immediately implied by each merge performed. The variable LIST contains 
a list of pairs of states whose corresponding blocks are to be merged. RT 
initially selects some final state q of A and places on LIST all pairs (q, q’) 
such that q’ is a final state of A other than q. This ensures that all blocks 
containing a final state of A will eventually be merged. 

After these initializations, RT proceeds as follows. While the list LIST is 
nonempty, RT removes the first pair of states (ql, q2). If q1 and q2 are 
already in the same block of the current partition, RT goes on to the next 
pair of states in LIST. Otherwise, the blocks containing q1 and q2, call 
them B, and B,, are merged to form a new block B3. This action entails 
that LIST be updated as follows. For any two states q, q’ E Q of the forms 
q = b(z.41) . ..) z+) and q’ = a(~;, .,., u;), if q and q’ are not in the same block 
and ui and U; both are in the same block or the same terminal symbols for 
1 d j d k, then the pair (q, q’) is added to LIST. Also for any q E B, , q’ E B, 
of the forms q = ~(ui, . . . . uk) and q’= CJ(U;, ..,, uk) and an integer 
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l (1 ~< 1 ~< k), if ul and u'~ are states of A and not in the same block and uj 
and uj bo th  are in the same block or the same terminal  symbols  for 
l<<.j<~k and j ¢ l ,  then the pair  (ul, u't) is added to LIST.  After this 
updat ing,  R T  goes on to the next pair  of  states f rom LIST.  

When  L I S T  becomes empty,  the current  part i t ion is gf. R T  outputs  A/~ r 
and halts. 

The learning a lgor i thm R T  is illustrated in Fig. 2. This completes  the 
descript ion of the a lgor i thm RT, and we next analyze its correctness. 

6.2. Correctness of  R T  

In this section, we show that  R T  correctly finds a reversible skeletal tree 
a u t o m a t o n  whose characterist ic sample is precisely the input  sample.  

LEMMA 10. Let Sa be a positive sample of  some tree automaton A. Let 
be the partition ~r(A) restricted to the set S u b ( S a ) - Z .  Then Bs(Sa)/rc is 

isomorphic to a tree subautomaton of  the canonical tree automaton C( T(A )). 
Furthermore, T(Bs(Sa)/Tz) is contained in T(A). 

Proof The result holds trivially if Sa = ~ ,  so assume that  S a ~  ~ .  Let 
Bs(Sa) /~=(Q,  V, 6, F) and C(T(A) )=(Q ' ,  V, 6', F'). The par t i t ion rc is 
defined by B(tl ,  rc )=B( t2 ,  re) if and only if Ur~A)(tl)= UT~A~(t2), for all 
t l , t 2 E Sub( Sa ) - S. Hence h( B( t, ~ ) ) =  U r~ A ) ( t ) is a well-defined and injec- 
tive m a p  f rom Q to Q'. If  B 1 is a final state of Bs(Sa)/~z, then B1 = B(t, ~) 
for some t in Sa, and since T(A)  contains Sa, Ur~A)(t) is a final state of  
C(T(A)) .  Hence h maps  F to F' .  

Bs(Sa)/z is determinist ic because for f ( t l  ..... tk) and f ( u  I . . . . .  Uk) in 
Sub(Sa) ,  B( t i , ~ )=B(u i ,  Tt) if ti, u i E S u b ( S a ) - X  and t i=ui  if ti, ui~27 
( l~< i~<k)  imply B ( f ( t l  ..... t k ) , n ) = B ( f ( u l  ..... Uk),n). For  ql ..... qk~ 
Q w X  a n d f ~  Vk, 

h(6k(f,  q1 .... , qk)) 

= h ( B ( f ( t l  ..... tk),~z)), where B(ti, n ) = q i  if qi~Q 

and t~=qi if q ~ S ( l < ~ i < ~ k ) ,  

= UrcA)(f(tl ..... tk)) 

-= (~'k(f, U T ( A ) ( t l )  . . . . .  UT(A) ( tk  ))" 

Thus  h is an i somorph ism between Bs(Sa)/n and a tree s u b a u t o m a t o n  of 
C(T(A )). Q.E.D. 

LEMMA 1 1. Suppose A is a reversible skeletal tree automaton. Then the 
stripped tree subautomaton A' of  A is canonical. 



44 YASUBUMI SAKAKIBARA 

Input : ,a nonempty positive sample So; 

Output : a reversible skeletal tree automaton A; 
Procedure : 
%% Initialization 
Let A = (Q, V, 6, F) be Bs(Sa); 

Let zo be the trivial partition of Q; 

Choose some q E F; 

Let LIST contain all pairs (q, q’) such that q’ E F - {q}; 

Let I = 0; 

%% Main Routine 

%% Merging 

While LIST# 0 do 
Begin 

Remove first element (~1, qs) from LIST; 

Let & = B(q,, rr;) and B2 = B(qz, q); 
If Bl # B2 then 

Begin 

Let ri+r be ?r; with B1 and Bz merged; 

pUPDATE(ri+r) and s-UPDATE(ri+r, B1, Bz); 
Increase i by 1; 

End 

End 

%% Termination 
Let f = i and output the tree automaton A/r,. 
%% Sub-routine 

where 

pUPDATE(ri+l) is : 
For all pairs of states o(ul,. . . , ub) and u(u;, . . . , u;) in Q with 

B(Uj,q+l) = B(u$,x~+~) OF Uj = U: E C for 1 5 j 5 k 
and B(a(q, . . . , 4, T+1) # B(44,. . . ,4), ?+I) 

do 

Add the pair (~(ur,. . . , uk), (~(u;, . . . , u;)) to LIST; 

+UPDATE(s+l, Bl, Bs) is : 

For all pans of states u(ur, . . . , uk) E B1 and a(u;, . . . ,tii) E B2 with 

UI,U~ E Q and B(ul, n;+l) # B(uj,q+l) for some I (1 5 I 5 k) 
and B(uj, 9+1) = B(u>, 4+1) or ~j = ~5 E C for 1 < j 5 k and j # 1 

do 

Add the pair (ur, u{) to LIST. 

FIG. 2. The learning algorithm RT for reversible tree automata. 
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Proof By Remark 3, A’ is a reversible skeletal tree automaton, and 
accepts T= T(A). If T= 0, then A’ is the tree automaton with the empty 
set of states and therefore canonical. So suppose that Tf 0. Let 
C(T)= tQ, Sku& 4 kf}) and A’= (Q’, Sku.Z, 8, (4;)). We define 
h(q’) = U,(u) if S’(U) = q’ for q’ E Q’. By Remark 1, h is a well-defined and 
surjective map from Q’ to Q. Let q; and q; be states of A’, and suppose 
that U,(u,) = U,(u,) for u1 and u2 such that S’(u,) = q’, and S’(u,) = q;. 
Since A’ is stripped, this implies that there exists a tree t E (Sk u Z): such 
that t # u1 and t# u2 are in T. Thus, by Lemma 4, q\ = q;. Hence h is 
injective. Since 6’(u) = qi for any u E T, h maps { qi } to {qf ). For 
q;, . . . . qi E Q’ u 2 and G E Skk, 

h(~K(~, 4; > . ..f qh)) = h(6’(o(u,, ..., u,))), where S’(q) = q: for 1 < iQ k, 

= U*(d%, . . . . Uk)) 

= d,(fJ, U,(Ul), . . . . u,(%c)). 

Thus h is an isomorphism between C(T) and A’. Hence A’ is canonical. 
Q.E.D. 

LEMMA 12. Suppose that A is a reversible skeletal tree automaton. Then 
the canonical tree automaton C(T(A)) is reversible. 

Praof. By the above lemma and Remark 3, the stripped tree sub- 
automaton A’ of A is canonical, reversible, and accepts T(A). Thus, since 
C( T(A )) is isomorphic to A’, C( T(A)) is reversible. Q.E.D. 

LEMMA 13. Let Sa be any nonempty positive sample of skeletons, and x,- 
be the final partition found by RT on input Sa. Then 7cf is the finest partition 
such that Bs( Sa)/zf is reversible. 

Proof Let A= (Q, SkuZ, 6,F) be Bs(Sa). If the pair (ql, q2) is ever 
placed on LIST, then q1 and q2 must be in the same block of the final par- 
tition, that is, B(q, ,rcf) = B(q,, rrf ). Therefore, the initialization guarantees 
that all the final states of A are in the same block of K~, so A/z,. has exactly 
one final state. For any B,, . . . . Bk E: rc,-u 2 and 0 E Skk, all the elements of 
a,(~, B, , . . . . Bk) are contained in one block of rcP Thus A/x, is deter- 
ministic. Also, for any block B of 5, any pair of states ql, q2 E B of the 
forms q1 = ~(ur, . . . . uk) and q2 = a(~;, . . . . ub) and any integer I (1 <I< k), if 
B(uj, 7~~) = B(uj, zf) or uj = U; E C for 1 <j < k and j # 1, then both uI and 
u; are in the same block or the same terminalisymbols. Thus A/xf is reset- 
free. Hence A/x~ is reversible. 

Next we show that if rr is any partition of Q such that A/z is reversible, 
then rcf refines rc. We prove by induction that rci refines n for i * 0, 1, . . ..f 
Clearly x0, the trivial partition of Q, relines n. Suppose that rcO, or, . . . . ni all 
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reline 7~ and ni+ i is obtained from 7ci by merging the blocks B(q,, nj) and 
B(q,, ni) in the course of processing entry (ql, q2) from LIST. Since zj 
relines Z, B(q,, 7ri) is a subset of B(q,, Z) and B(q,, 7~~) is a subset of 
B(q,, 7~). So in order to show that xi+ i refines 7c, it is sufficient to show 
that B(q,, n) = B(q2, n). 

If (ql, q2) was first placed on LIST during the initialization stage, then 
q1 and q2 are both final states, and since A/Z is reversible, it has only one 
final state, and so B(q,, 7~) = B(q,, z). Otherwise, (ql, q2) was first placed 
on LIST in consequence of some previous merge, say the merge to produce 
71, from 7r,-1, where 0 <m d i Then either q1 and q2 are of the forms 
4% 7 “*, uk) and c(u;, . . . . uh), respectively, and B(z+, z,) = B(u$ n,) or 
uj = U; e Z for 1 <j< k, or there exist two states q; in the block B, and q; 
in the block B, of the forms ~(ui, . . . . z+-i, ql, ut, . . . . ukMI) and a(~;, . . . . 

I u;- 1, qz, Ul, *.., 4-l)? respectively, for some I (1 < I< k) such that 
B(uj, n,)=B(u$n,) or u~=u~EZ for lgjgk-1, where B, and B, are 
the blocks of x,,, _ 1 merged in forming TC,. Since rc, refines n by the induc- 
tion hypothesis and A/Z is reversible, B(q, , n) = B(q,, n). Thus in either 
case 7ci+ r refines 7~. Hence by finite induction we conclude that 7~~ relines 76. 

Q.E.D. 

THEOREM 14. Let Sa be a nonempty positive sample of skeletons, and A, 
be the skeletal tree automaton output by the algorithm RT on input Sa. 
Then for any reversible skeletal tree automaton A, T(A) 2 Sa implies 
T(A,) 5 T(A). 

Proof The preceding lemma shows that Af is a reversible skeletal tree 
automaton such that T(Af) 2 Sa. Let A be any reversible skeletal tree 
automaton such that T(A) 2 Sa, and 71 be the restriction of the partition 
nn,(,) to the set Sub(Sa)-2. Lemma 10 shows that Bs(Sa)/n is isomorphic 
to a tree subautomaton of C(T(A)) and T(Bs(Sa)/n) is contained in T(A). 
Lemma 12 shows that C( T(A)) is reversible, and therefore by Remark 3, 
Bs(Sa)/z is reversible. Let x,- be the final partition found by RT. By 
the above lemma, x,. relines X, so T(Bs(Sa)/7c,) = T(Ar) is contained in 
T(Bs(Sa)/n) by Remark 2. Hence, T(Af) is contained in T(A). Q.E.D. 

6.3. Time Complexity of RT 

THEOREM 15. The algorithm RT may be implemented to run in time 
polynomial in the sum of the sizes of the input skeletons, where the size of 
a skeleton (or tree) t is the number of nodes in t, i.e., 1 Dom, I. 

ProoJ: Let Sa be the set of input skeletons, n be the sum of the sizes of 
the skeletons in Sa, and d be the maximum rank of the symbol c in Sk. The 
base tree automaton A = Bs(Sa) may be constructed in time O(n) and con- 
tains at most n states. Similarly, the time to output the final tree automaton 
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is O(n). The partitions rc, of the states of A may be queried and updated 
using the simple MERGE and FIND operations described by Aho, Hop- 
croft, and Ullman (1983). Processing each pair of states from LIST entails 
two FIND operations to determine the blocks containing the two states. If 
the blocks are distinct, which can happen at most IZ - 1 times, they are 
merged with a MERGE operation, and p-UPDATE and s-UPDATE pro- 
cedures process 2(d+ 1) n(n - 1) and at most 2dn(n - 1) FIND operations, 
respectively. Further at most IZ - 1 new pairs may be placed on LIST. Thus 
a total of at most 2n(n - 1) + (n - 1) pairs may be placed on LIST. Thus 
at most 2((2d+ 1) n(n - 1) + 2n + l)(n - 1) FIND operations and n - 1 
MERGE operations are required. The operation MERGE takes O(n) time 
and the operation FIND takes constant time, so RT requires a total time 
of O(n3). Q.E.D. 

6.4. Identification in the Limit of Reversible Tree Automata 

Next we show that the algorithm RT may be used at the finite stages of 
an infinite learning process to identify the reversible skeletal tree automata 
in the limit from positive samples. The idea is simply to run RT on the 
sample at the n th stage and output the result as the nth guess. 

DEFINITION. An operator RT, from infinite sequences of skeletons 
Sl, s2,s3, . . . . to infinite sequences of skeletal tree automata A,, A,, A,, . . . . is 
defined by 

Ai= RT({s,, s2, . . . . si>) for all i3 1. 

We need to show that this converges to a correct guess after a finite 
number of stages. 

DEFINITION. An infinite sequence of skeletons si , s2, s3, . . . . is defined to 
be a positive presentation of a skeletal tree automaton A if and only if the 
set {s1,s2,s3,...,) . P is recisely T(A). An infinite sequence of skeletal tree 
automata A,, AZ, A,, . . . . is said to converge to a skeletal tree automaton A 
if and only if there exists an integer N such that for all i3 IV, Ai is 
isomorphic to A. 

The following result is necessary for the proof of correct identification in 
the limit of the reversible skeletal tree automata from positive presentation. 
We extend 6 to (Vu Q)T by letting 6(q) = q for qE Q, where Q is 
considered as a set of terminal symbols. In this definition, if q = 6(u) for 
qEQ and UE V’, then &t#q)=S(t#u) for te Vc. 

tiOPOSITION 16. For any reversible skeletal tree automaton A = 
(Q, =uG 6, &I), th ere effectively exists a characteristic sample. 

643/97/l-4 



48 YASUBUMI SAKAKIBARA 

Proof Clearly, if T(A ) = a, then CS = 0 is a characteristic sample for 
A. Suppose T(A) # 0. For each state qE Q, let u(q) be a tree of the 
minimum size in Sub(T(A)) such that 6(u(q)) = q, and u(q) be a tree of the 
minimum size in Sc(T(A)) such that G(u(q)#q) = qy For each a E Z, 
let u(a)=a. Let CS consist of all skeletons of the form v(q)#u(q) such 
that q E Q and all skeletons of the form u(q) # o( u(q, ), . . . . u(qk)) such 
that ql, . . . . gk~ Q u Z, cr E Sk,, and q = &,(a, ql, . . . . qk). It is clear that 
CSS T(A). We show that CS is a characteristic sample for A. 

Let A’ be any reversible skeletal tree automaton such that T(A’) EI CS. 
We show that 17~~~‘) (t) = UTcA,) (u(q)) for all skeletons t E Sub(T(A)), 
where q = s(t). We prove it by induction on the depth of t. Suppose first 
that the depth of t is 0, i.e., t = a E Z: Since u(a) = a, it holds for the depth 
0. Next suppose that this holds for all skeletons of depth at most h, 
for some h Z 0. Let t be a skeleton of depth h + 1 from Sub(T(A)), 
so that t = ~(si, . . . . sk) for some skeletons .si, . . . . SUE Sub(T(A)) with 
depth at most h. By the induction hypothesis, UTcA,) (si) = UTcA,) (u(qj)), 
where qi = 6(si) for 1 d i < k. Thus, Urea,)(t) = UTcajj (o(sI, . . . . sk)) = 
U,,~,(~(441), s2, *a., Sk)) = ... = &-(,4~,(4u(q,), . ..7 4%l), Sk)) = 

UT(A’)w(ql)7 ..‘> 44k))). If 4’ = 6,(0, 41, *.., qk) = b(t), then v(d) # u(d) 

and u(d) # o(u(q, >, .-, u(qk)) are both elements of CS. So u(q’)#u(q’), 
v(d) # 4441), a.., 4qd E TW. BY Lemma 4, uT~Ar,W(ql)~ . . . . 4qd)) 
= U,,,,(u(q’)). Hence U TtAfJ(t) = U,,.,(u(q’)), which completes the 
induction. 

Thus for every t E T(A), U,,.,(t) = U,,.,(u(qf)). Since v(qf) = $, 
u(qf) E CS and so u(e) E T(A’). This implies that $E U,,.,(u(qf)) = 
U,,,,(t). Thus t = $# t E T(A’). Hence T(A) is contained in T(A’). 
Therefore CS is a characteristic sample for A. Q.E.D. 

Then we conclude the following result. 

THEOREM 17. Let A be a reuersible skeletal tree automaton, s1 , s2, s3, . . . . 
be a positive presentation of A, and At, Al, A,, . . . . be the output of RT, on 
this input. Then A,, A,, A,, . . . . converges to the canonical skeletal tree 
automaton A’ for T(A). 

Proof By Theorem 16, there exists a characteristic sample for A. Let N 
be sufficiently large that the set {sl, s2, . . . . sN} contains a characteristic 
sample for A. For any reversible skeletal tree automaton A’, T(A’) 2 
{ sl, s2, . . . . si> implies T(A,) G T(A’), by the definition of RT, and 
Theorem 14. Thus for i> N, T(A,) = T(A), by the definition of a 
characteristic sample. Moreover it is easily checked that the skeletal 
tree automaton output by RT is stripped, and therefore canonical, by 
Lemma 11. Hence Ai is isomorphic to C(T(A)) for all ib N, so 
A,, A,, A3, . . . . converges to C( T(A)). Q.E.D. 
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We may modify RT by a simple updating scheme to have good 
incremental behavior so that Ai+, may be obtained from Ai and si+ r. 

Recently Pitt (1989) has discussed and analyzed various definitions for 
polynomial-time identification in the limit to find natural formal definitions 
that capture the notion of “efficient” identification in the limit. In the 
course of his study, he proposed two important notions that seem to be 
needed for natural definitions, polynomial update time and implicit error of 
prediction. We describe these notions by using our terminology in the case 
of identification of tree automata from positive samples. (See Pitt (1989) 
for the general definition.) The algorithm implemented so as to have poly- 
nomial update time is allowed at most p(n, m, + m2 + .. . + m,) running 
time to output it’s ith output, where p is any polynomial function of two 
variables, n is the number of states of the target tree automaton A, and mj 
(1 <j< i) is the size of the jth input skeleton in a presentation of A. The 
algorithm is said to make implicit error of prediction at stage i if it’s ith out- 
put of tree automata does not accept (i + 1 )st input skeleton. Ultimately, 
he arrived at what he believes to be one of few possible natural definitions 
for polynomial-time identification in the limit: Tree automata can be iden- 
tified in the limit in polynomial-time if and only if there exists an algorithm 
M such that for any tree automaton A, M has polynomial update time and 
the number of implicit errors of prediction made by M is at most q(n), 
where 4 is a polynomial and iz is the number of states of A. By Theorem 15, 
the algorithm RT, has polynomial update time. However, the result of 
Angluin (1989) implies that the number of implicit errors of prediction 
made by RT, is not bounded by any polynomial in n. Theorem 17 only 
shows that the number of implicit errors of prediction made by RT, is 
finite. 

6.5. IdentiJication in Other Learning Models 

In the last section, we have shown how reversible skeletal tree automata 
can be identified in the limit in the sense described by Gold (1967) by using 
the algorithm RT. In this section, we consider identification of tree 
automata in other learning models recently proposed by Angluin (1988b), 
identification using equivalence queries, and by Valiant (1984), probably 
approximately correct identification (PAC-identlyication), and we investigate 
whether the results obtained above have implications for learning in these 
models as well. For convenience, we use our terminology to describe these 
models in the case of learning tree automata. 

Angluin (1988b, 1989) has considered learning algorithms that have 
access to a fixed set of oracles that will answer specific kinds of queries 
about the target material. The query we consider here is called an equiv- 
alence query. An equivalence query proposes a description of a conjectured 
tree automaton A’ and asks whether T(A’) = T(A) for the target tree 
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automaton A. If T(A’) = T(A), then the answer to the learning algorithm 
is “yes” and the learning is completed. Otherwise the algorithm is told “no” 
and a counter-example is also provided, that is, a skeleton in the symmetric 
difference of T(A’) and T(A). Angluin gave the following definition: Tree 
automata can be identzyied using equivalence queries in polynomial-time if 
and only if there exists an algorithm M such that for any tree automaton 
A, when M is run with an oracle for equivalence queries for A, it eventually 
halts and outputs a tree automaton A’ such that T(A’) = T(A) and there 
is a polynomial p(n, m) such that at any point in the run, the time used by 
M is bounded by p(n, m), where IZ is the number of states of A and m is 
the maximum size of any counter-example returned by equivalence queries 
so far in the run. 

Angluin (1989) proved that the class of zero-reversible finite automata 
cannot be identified using equivalence queries in polynomial-time. This 
unfortunately implies that the class of reversible skeletal tree automata 
cannot be identified using equivalence queries in polynomial-time. Thus the 
algorithm RT cannot contribute to efficient identification of reversible 
skeletal tree automata using equivalence queries. This result also implies 
that the class of reversible skeletal tree automata cannot be identified in the 
limit in polynomial-time in the sense of Pitt (1989) defined in the last 
section. 

Valiant (1984) has introduced a distribution-independent model of learn- 
ing from examples in which examples are chosen randomly and a criterion 
of probably approximately correct identz&ation (PAC-identification). Here 
we give the definition described by Angluin (1988b) among a number of 
variations of this model. We first assume that there is an unknown and 
arbitrary probability distribution D on the set of skeletons (Sk u Z)‘. The 
probability of skeleton s with respect to D is denoted Pr,(s). There is a 
sampling oracle EX( ), which has no input. Whenever EX( ) is called, it 
draws a skeleton s E (Sk u Z)’ according to the distribution D and returns 
the skeleton S, together with an indication of whether or not s is accepted 
by the target tree automaton A. The learning algorithm makes a number 
of calls to EX( ) and then conjectues a tree automaton. The success of 
identification is measured by two parameters, the accuracy parameter E and 
the confidence parameter 6, which are given as inputs to the learning algo- 
rithm. We define a notion of the difference between two tree automata A 
and A’ with respect to the probability distribution as 

d(A, A’)= 1 Pb (4, 
SE r(a)er(a’) 

where T(A)@ T(A’) denotes the symmetric difference of T(A) and T(A’). 
Tree automata are said to be PAC-identzj?ed in polynomial-time if and only 
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if there is an algorithm M such that for any tree automaton A, it always 
halts and outputs a tree automaton A’ such that 

Pr[d(A,A’)<&]>l-6 

and runs in time polynomial in n, m, l/~, and l/6, where n is the number 
of states of A, and m is an upper bound on the size of any skeleton 
returned by EX( ) during the run. 

Angluin (1988b) provided a general technique for converting a 
polynomial-time identification algorithm that uses equivalence queries into 
a polynomial-time PAC-identification algorithm. However, by the above 
negative result for identification of reversible skeletal tree automata using 
equivalence queries, this technique is not helpful to show that the 
algorithm RT could be used as a polynomial-time PAC-identification 
algorithm for reversible skeletal tree automata. It is an open problem 
whether or not reversible skeletal tree automata can be PAC-identified in 
polynomial-time. 

6.6. The Learning Algorithm RC for Context-Free Grammars 

In this section, we describe and analyze the algorithm RC using the algo- 
rithm RT to learn reversible context-free grammars from positive samples 
of structural descriptions. 

A positive structural sample of a context-free grammar G is a finite subset 
of K(D(G)). A positive structural sample CS of a reversible context-free 
grammar G is a characteristic structural sample for G if and only if for any 
reversible context-free grammar G’, K(D(G’)) 2 CS implies K(D(G)) E 
NW@)). 

The input to RC is a finite nonempty set of skeletons Sa. The output is 
a particular reversible context-free grammar G = RC(Sa) whose charac- 
teristic structural sample is precisely Sa. The learning algorithm RC is 
illustrated in Fig. 3. 

The following propositions and theorems of the correctness, time com- 
plexity, and correct structural identification in the limit of the algorithm 
RC are straightforwardly derived by using Proposition 6 from the 
corresponding results for the algorithm RT described in Sections 6.2, 6.3, 
and 6.4. 

Irapvt : a nonempty positive structural sample Sa; 

Output : a reversible context-free grammar G; 

Procedure : 

Run RT on the sample Sa; 

Let G = G’(RT(Sa)) and output the grammar G, 

FIG. 3. The learning algorithm RC for reversible grammars. 
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THEOREM 18. Let Sa be a nonernpty positive structural sample of 
skeletons, and Gf be the output of the context-free grammar by the algorithm 
RC on input Sa. Then Gf is reversible and for any reversible context-free 
grammar G, K(D(G)) 7 Sa implies K(D(G,-)) c K(D(G)). 

TJIEOFCEM 19. The algorithm ‘RC may be implemented to run in time 
polynomial in the sum of the sizes of the input skeletons. 

Define an operator RC, from infinite sequences of skeletons sl, s2, sg, . . . . 
to infinite sequences of context-free grammars G1, G,, G,, . . . . by 

Gi=RC({sI,sz,...,si}) for all i> 1. 

An infinite sequence of skeletons sl, s2, s3, . . . . is defined to be a positive 
structural presentation of a context-free grammar G if and only if the set 
i sl, s2, s3, . ...> is p recisely K(D(G)). An infinite sequence of context-free 
grammars G1, GS, G3, . . . . is said to converge to a context-free grammar G 
if and only if there exists an integer N such that for all i> N, G, is 
isomorphic to G. 

PROPOSITION 20. For any reversible context-free grammar G, there effec- 
tively exists a characteristic structural sample. 

Now we have the following. 

THEOREM 21. Let G be a reversible context-free grammar, sl, s2, s3, . . . . 
be a positive structural presentation of G, and G,, G,, G,, . . . . be the output 
of RC, on this input. Then G1, GZ, G3, . . . . converges to a reversible context- 
free grammar G’ such that K(D(G’)) = K(D(G)). 

We modify the algorithm RC to learn extended reversible context-free 
grammars from positive samples of their structural descriptions. We can 
easily verify that given a positive structural presentation of an extended 
reversible context-free grammar G, the algorithm RC’, illustrated in Fig. 4, 

Input : a nonempty positive structural sample Sa; 

Outpat : an extended reversible context-free grammar G; 
Procedure : 
Let Sa’ = Sa - {c~(cz) 1 a E C}; 

Let Uni = Sa fl {(~(a) ) a E C}; 

Run RC on the sample Sa’ and let G’ = (N, C, P, S) be RC(Sa’); 
Let .P’ = {S -+ a 1 u(a) E Uni}; 
Let G = (N, C, P U P’, S) and output the grammar G. 

FIG. 4. The learning algorithm RC’ for extended reversible grammars. 
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converges to an extended reversible context-free grammar which is struc- 
turally equivalent to G and runs in time polynomial in the sum of the sizes 
of the input skeletons. This implies that if the structure of an extended 
reversible context-free grammar for the target language is available to the 
learning algorithm, the full class of context-free languages can be learned 
efficiently from positive samples. 

Note that this result does not imply that all context-free grammars can 
be identified in the limit from positive samples of their structural descrip- 
tions, because even if a source of structural examples is available for some 
context-free grammar, that context-free grammar may not have any struc- 
turally equivalent reversible context-free grammar, and the proposed algo- 
rithms RC, RC’ may fail. We illustrate this point by the following example 
in which the positive structural examples are drawn from a nonreversible 
context-free grammar and the algorithm RC fails. 

EXAMPLE. Consider the following context-free grammar G: 

S-+ab 

S--+aAb 

A-tab. 

Then L(G) = {ab, aabb}, K(D(G)) = {o(a, b), o(a, cr(a, b), b)), G is not 
reversible, and there is no reversible context-free grammar structurally 
equivalent to G. 

Given the positive structural sample {g(a, b), o(a, a(a, b), b)) ,of G, the 
algorithm RC outputs the following reversible context-free grammar G’: 

S+ab 

S + aSb. 

However, L(G’) f L(G) (K(D(G’)) # K(D(G))) and hence the algorithm 
RC fails to identify G. 

7. EXAMPLE RUNS 

In the process of learning context-free grammars from their structural 
descriptions, the problem is to reconstruct the nonterminal labels because 
the set of derivation trees of the unknown context-free grammar is given 
with all nonterminal labels erased. 

The structural descriptions of a context-free grammar can be equiv- 
alently represented by means of the parenthesis grammar. For example, the 
structural description in Fig. 1 can be represented as the following sentence 
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of the parenthesis grammar (see McNaughton (1967) for the definition of 
paren thesis grammar) : 

((the (big dog))(chases (a(young girl)))). 

In the following, we demonstrate three examples to show the learning 
process of the algorithm RC. Three kinds of grammars will be learned, the 
first is a context-free grammar for a simple natural language, the second is 
a context-free grammar for a subset of the syntax for a programming 
language Pascal, and the third is an inherently ambiguous context-free 
grammar. 

7.1. Simple Natural Language 

Now suppose that the learning algorihtm RC is going to learn the 
following unknown context-free grammar G, for a simple natural 
language: 

Sentence + Noun-phrase Verb-phrase 
Noun_phrase -+ Determiner Noun-phrase2 
Noun-phrase2 --t Noun 
Noun-phrase2 -+ Adjective Noun-phrase2 
Verb-phrase -+ Verb Noun-phrase 
Determiner --t the 
Determiner -+ a 
Noun + girl 
Noun + cat 
Noun -+ dog 
Adjective + young 
Verb + likes 
Verb -+ chases. 

First suppose that the learning algorihtm RC is given the sample: 

RC first constructs the base context-free grammar for them. However, it 
is not reversible. So RC merges distinct nonterminals repeatedly and out- 
puts the following reversible context-free grammar: 

S--f NT1 NT2 
NT1 + NT3 NT4 
NT4 -+ NT5 
NT2 + NT6 NT7 
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NT7 -+ NT8 NT9 
NT9 + NT10 
NT3 + the 
NT5 -+ girl 
NT6 -+ likes 
NTX-+a 
NT10 -+ cat 
NT10 + dog. 

RC has learned that “cat” and “dog” belong to the same syntactic 
category. However, RC has not learned that “girY belongs to the same 
syntactic category (noun) as “cat” and “dog,” and “a” and “the” belong to 
the same syntactic category (determiner). Suppose that in the next stage the 
following examples are added to the sample: 

Then RC outputs the reversible context-free grammar: 

S -+ NT1 NT2 
NT1 + NT3 NT4 
NT4 -+ NT5 
NT2 -+ NT6 NT1 
NT1 -+ NT7 NT8 
NT8 + NT9 
NT3 --f the 
NT5 -+ girl 
NT6 -+ likes 
NT6 -+ chases 
NT’l-+a 
NT9 + cat 
NT9 + dog. 

RC has learned that “likes” and “chases” belong to the same syntactic 
category (uerb) and “the girl,” “a dog,” and “a cat” are identified as the 
same phrase (noun-phrase). However, RC has not learned yet that “a” and 
“the” belong to the same syntactic category. Suppose that in the further 
stage the following examples are added to the sample: 

(((a>((dog)))(<chases)<(a)<(girl))))) 

<((the)((dog)))<(chases)((a)((young)<Cgirl)))))). 

643197/l-5 
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RC outputs the reversible context-free grammar: 
S -+ NT1 NT2 
NT1 --f NT3 NT4 
NT4 + NT5 
NT4 --t NT6 NT4 
NT2 -+ NT7 NT1 
NT3 -+ the 
NT3-+a 
NT5 + girl 
NT5 -+ cat 
NT5 -+ dog 
NT6 -+ young 
NT7 + likes 
NT7 -+ chases. 

This grammar is isomorphic to the unknown grammar G,. 

7.2. Programming Language 

Suppose that the learning algorithm RC is going to learn the following 
unknown context-free grammar G, for a subset of the syntax for the 
programming language Pascal: 

Statement -+ v : = Expression 
Statement + while Condition do Statement 
Statement -+ if Condition then Statement 
Statement --t begin Statementlist end 
Statementlist 3 Statement; Statementlist 
Statementlist + Statement 
Condition -+ Expression > Expression 
Expression -+ Term + Expression 
Expression + Term 
Term + Factor 
Term + Factor x Term 
Factor + v 
Factor + (Expression). 

First suppose that RC is given the sample 

(v := <(<v)>+ <<(v>>>>> 

(0 := <(<v>x <<v>>>>> 

(v:= (((v)>+(((v>x((v>>>>>> 

<fJ := (<<‘(‘<<<v>>+ <<<u>>)>‘)‘>x <<u>>))). 
RC outputs the following reversible context-free grammar which 
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generates the set of all assignment statements whose right-hand sides are 
arithmetic expressions consisting of a variable “II,” the operations of addi- 
tion “ + ” and multiplication “ x “, and the pair of parentheses “(” and “),,: 

S-+v:= NT1 
NT1 + NT2 
NT1 -+ NT2 + NT1 
NT2 -+ NT3 
NT2 -+ NT3 x NT2 
NT3-+v 
NT3 -+ (NT1 ). 

Next suppose that RC is given four more examples: 

(while (((<v>>>> (<<v>x (<v>>>>> 
do Cv := (<<v)>+ ((<v>)>>>) 

(if((((v>)>>(((v)x((v>>>>> 
then <v:= <(W>+ WV)>>>)> 

<begin <<v := (<<v>>+ <<<v)>)>>; 
<(v:= <((v>x<<v>>>>>>)end) 

<begin<(v:= <(<v>x((v>>>>>>end). 

RC outputs the following reversible context-free grammar isomorphic to 
the unknown grammar G,: 

S-v := NT1 
S + while NT4 do S 
S -+ if NT4 then S 
S -+ begin NT5 end 
NT1 + NT2 
NT1 -+ NT2 + NT1 
NT2 + NT3 
NT2 + NT3 x NT2 
NT3-+v 
NT3 -+ (NTl) 
NT4 + NT1 > NT1 
NT5-+S 
NT5 + S; NT5 

7.3. Inherently Ambiguous Language 

Suppose that the learning algorithm RC is going to learn the following 
unknown context-free grammar G, for the language (a”bmcndnlm >, I, 
n > l} u { a”b”c”dm 1 m > 1, n > 1 > which is known to be an inherently 
ambiguous context-free language (Hopcroft and Ullman, 1979): 
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S-,AB 
S-+aCd 
A+ab 
A-+aAb 
B-+cd 
B+cBd 
C-D 
D+aDd 
D-+E 
E-+bc 
E -+ bEc. 

First suppose that RC is given the sample 

(<ab)(cd)) 

((dab) b)<c<cO d)) 

((ab)(c(cO d)). 
RC outputs the following reversible context-free grammar which 

generates the language (ambmcnd* ] m > 1, IZ >, 1) : 
S + NT1 NT2 
NT1 -+ ab 
NT1 --f aNT1 b 
NT2 --) cd 
NT2 -+ cNT2 d. 

Next suppose that RC is given three more examples: 

(a<<(bc>))d) 

<a<<a(<b<bc) c>>d)) d) 

(a(<(Kbc) c>>> d). 

RC outputs the following reversible context-free grammar isomorphic to 
the unknown grammar G,: 

S -+ NT1 NT2 
S-taNT3d 
NT1 -+ ab 
NT1 + aNT1 b 
NT2 + cd 
NT2 --, cNT2 d 
NT3 -+ NT4 
NT4 + NT5 
NT4 + aNT4 d 
NT5 --, bc 
NT5 + bNT5 c. 
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8. CONCLUDING REMARKS 

In this paper, we have considered the problem of learning context-free 
grammars from positive samples of their structural descriptions and 
investigated the effect of assuming example presentations in the form of 
structural descriptions on learning from positive samples. By introducing 
the class of reversible context-free grammars, we have shown that the 
assumption of examples in the form of structural descriptions makes it 
possible to learn the full class of context-free languages from positive sam- 
ples and in polynomial-time. Thus this problem setting makes our learning 
algorithm practical and useful. 

Angluin (1988a) has taken an entirely different approach with the same 
motivation of investigating what assumption can compensate for the lack 
of explicit negative information in positive samples and studied the effect of 
assuming randomly drawn examples on various types of limiting identifica- 
tion of formal languages. She showed that in her criterion for limit iden- 
tification analogous to the finite criterion of Valiant (1984), the assumption 
of stochastically generated examples does not enlarge the class of learnable 
sets of formal languages from positive samples. Comparing this result with 
ours in this paper, we can conclude that the assumption of examples in the 
form of structural descriptions strongly compensates for the lack of explicit 
negative information in positive samples and is helpful for efficient learning 
of context-free grammars. 

Lastly we remark on related work. Crespi-Reghizzi (1972) is most closely 
related, as it describes a constructive method for learning context-free 
grammars from positive samples of structural descriptions. However, his 
algorithm and ours use completely different methods and learn different 
classes of context-free grammars. The class of reversible context-free 
grammars can generate all of the context-free languages, while his class 
of context-free grammars defines a subclass of context-free languages, 
called noncounting context-free languages, of Crespi-Reghizzi, Guida, and 
Mandrioli (1978). Since our formalization is based on tree automata, one 
of the merits of our method is the simplicity of the theoretical analysis and 
the ease of understanding the algorithm, whereas the time efficiency of the 
algorithm of Crespi-Reghizzi (1972) is still not clear. 
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