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Abstract

We consider a variant of the NP-hard problem of reconstructinghv-convex(0,1)-matrices from
known row and column sums. Instead of requiring the ones to occur consecutively in each row and
column, we maximize the number of neighboring ones.This is reformulated as an integer programming
problem. A solution method based on variable splitting is proposed and tested with good results on
moderately sized test problems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a matrixA=[ai,j ] of sizem×n with elements 0 or 1. LetR= (r1, . . . , rm) and
S = (s1, . . . , sn) denote the row and column sums ofA, respectively, that is,ri =∑n

j=1 ai,j

and sj = ∑m
i=1 ai,j for all 1� i�m and 1�j�n. Let A(R, S) be the set of all(0,1)-

matrices with row sumsRand column sumsS. Clearly, for such matrices to exist we must
have that

∑m
i=1 ri = ∑n

j=1 sj . We denote this sum (value) by�. We assume throughout the
paper that 1�ri �m and 1�sj �n.
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In 1957 it was shown independently by Gale[5] and Ryser[12] that a necessary and
sufficient condition for the existence of a(0,1)-matrix with row sumsRand column sums
S is thatS ≺ R∗ whereR∗ is the conjugate sequence ofRand≺ denotes the majorization
ordering. See Marshall and Olkin[10] for a thorough discussion of majorization theory and
applications.

The results of Gale and Ryser have found a recent revival in the field of discrete tomog-
raphy[7]. In discrete tomography one of the problems is to reconstruct a discrete-valued
functionf from knowledge of weighted sums of function values over subsets of the domain.
Applications can be found in crystallography[13] and medical imaging[3] amongst others.
A much studied special case ism × n (0,1)-matrices with known row and column sums,
precisely matrices in the classA(R, S).

As the number of matrices in this class may be high[14], it is of interest to study the
reconstruction problem where we impose additional constraints on the(0,1)-matrices. The
most common restrictions are of a geometrical nature. A(0,1)-matrix ish-convex if the
ones in a row form a contiguous interval, similarly a(0,1)-matrix isv-convex if the ones
occurs contiguously in each column. A(0,1)-matrix ishv-convex if it is bothh- andv-
convex. If the pattern of ones is four-connected, it is called a polyomino. It was shown
by Barcucci et al.[2] that the existence problem for bothh- andv-convex matrices having
given row and column sums is NP-complete while it is polynomially solvable forhv-convex
polyominoes. Similarly, Woeginger[15] showed that the existence problem forhv-convex
matrices is NP-complete.

In this paper we examine a new approach to findinghv-convex or nearlyhv-convex
matrices. Optimizing over the classA(R, S), we try to find a matrix with a maximum
number of neighboring ones in rows and columns. LetX be a(0,1)-matrix and letxi,j
denote the entry of the matrix in position(i, j). We introduce a functionf (X) that counts
the number of neighboring ones

f (X) =
m−1∑
i=1

n∑
j=1

min{xi,j , xi+1,j } +
n−1∑
j=1

m∑
i=1

min{xi,j , xi,j+1}. (1)

Using this function as our objective function, we consider the following optimization prob-
lem:

max{f (X) : X ∈ A(R, S)}. (2)

We denote this problem byMAX_NB.
This problem may be formulated as an integer programming problem. LetG= (V ,E) be

the graph with a vertex for each entry inX and edges between neighboring entries in both
row and column directions. Introduce a binary variableye for each edge in this graph. We
denote byI the following maximization problem

vI = max
∑
e∈E

ye
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subject to (i)
n∑

j=1

xi,j = ri for i = 1, . . . , m,

(ii )
m∑
i=1

xi,j = sj for j = 1, . . . , n,

(iii ) ye�xi,j for all e ∈ E, (i, j) ∈ e,

(iv) xi,j , ye ∈ {0,1}. (3)

Constraints (i) and (ii) ensure that the matrixX=[xi,j ] is a member ofA(R, S). Constraint
(iii) ensures thatye can be set to one only if both neighboring entries are set to one. Note
that constraint (iii) represents two constraints for each edge.

We observe that for each optimal solution(x, y) of I, it holds that

ye = min{xi,j , xi′,j ′ } for e = [(i, j), (i ′, j ′)], (4)

and therefore,vI = maxf (X). Thus, the problemMAX_NB corresponds to solving
problemI.

We mention that it may be of interest to study the problem with a more general objective
function

∑
e ye + ∑

i,j di,j xi,j , allowing us to model situations where we have a priori
knowledge about some preferred positions for entries 1 in the matrix. In this article we will
only focus on the simpler version.

The paper is organized as follows. Section 2 gives complexity results and some properties
of the linear programming relaxation ofI. Section 3 introduces a solution method based
on variable splitting. Section 4 interprets the method in terms of linear programming. We
implemented and tested the methods. The results of these tests are reported in Section 5.

2. Bounds

If a (0,1)-matrix ishv-convex, both rows and columns have ones occurring contiguously,
then the number of neighboring ones is

v̂1 =
m∑
i=1

(ri − 1) +
n∑

j=1

(sj − 1) = 2� − m − n.

Clearly this is an upper bound forf (X). Moreover, a(0,1)-matrixX is hv-convex if and
only if f (X) = v̂1.

If we can find an optimal solution(x, y) to problemI, the corresponding matrixX=[xi,j ]
will be hv-convex iff (X) = vI = v̂1. If vI is strictly less than̂v1, no hv-convex matrix
with the given row and column sums exists. Since the existence problem for ahv-convex
matrix is NP-complete[15], we have proved the following.

Theorem 2.1.MAX_NB is NP-hard.

An alternative upper bound forvI =maxf (X) can be derived by considering two neigh-
boring rows (or columns). The maximum number of possible neighbors between two rows
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(or columns) is equal to the minimum number of ones in each of the two rows. Summing
this over all neighboring rows and columns, we get the bound

f (X)� v̂2 =
m−1∑
i=1

min{ri, ri+1} +
n−1∑
j=1

min{sj , sj+1}.

An easy observation is thatv̂1� v̂2 is a necessary condition for the existence of ahv-convex
(0,1)-matrix inA(R, S). If bothRandSare unimodal vectors, i.e.r1�r2� · · · �rk > rk+1
� · · · �rm ands1�s2� · · · �sl > sl+1� · · · �sn, we have that̂v2 = 2� − rk − sl . Since
rk + sl �m + n, it follows thatv̂1� v̂2 holds in general for this class of problems.

LetRI be the linear programming relaxation ofI

vRI = max
∑
e

ye

subject to (i)
n∑

j=1

xi,j = ri for i = 1, . . . , m,

(ii )
m∑
i=1

xi,j = sj for j = 1, . . . , n,

(iii ) 0�ye�xi,j for all e ∈ E, (i, j) ∈ e,

(iv) 0�xi,j �1 i�m, j�n.

Define the corresponding matrixX = [xi,j ] and vectory = [ye]. Then the following result
holds.

Proposition 2.2. vRI � v̂2.

Proof. Let (X, y) be a feasible solution toRI. Consider two neighboring rowsi andi + 1
and letyi,i+1,j denote the variable corresponding to the edge between rowsi andi + 1 in
columnj. Then

n∑
j=1

yi,i+1,j �
n∑

j=1

xi,j = ri ,

n∑
j=1

yi,i+1,j �
n∑

j=1

xi+1,j = ri+1.

Combining these two inequalities leads to the inequality∑
j

yi,i+1,j � min{ri, ri+1}.

Since this inequality holds in general for all 1� i�m, and due to a similar inequality for
columns, we get the desired result.�
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Remark. Assume that maxi,j risj ��, then equality holds in Proposition 2.2. In fact an
optimal solution toRI is given by

xi,j = risj

�
(5)

with they variables set according to (4)

ye = min
{ risj

�
,
ri′sj ′

�

}
for e = [(i, j), (i ′, j ′)].

Clearly this is a feasible solution (asxi,j �1) and the corresponding objective,vRI is

vRI =
m−1∑
i=1

n∑
j=1

min
{ risj

�
,
ri+1sj

�

}
+

n−1∑
j=1

m∑
i=1

min
{ risj

�
,
risj+1

�

}

=
m−1∑
i=1

min{ri, ri+1} +
n−1∑
j=1

min{sj , sj+1} = v̂2.

The matrix with elements defined by (5) is one example of a larger class of matrices
for which equality holds. We call a matrix row-graded ifri �ri+1 impliesxi,j �xi+1,j for
j = 1, . . . , n andri �ri+1 impliesxi,j �xi+1,j for j = 1, . . . , n. Column-graded matrices
are defined similarly. The matrix defined by (5) is clearly both row- and column-graded.
We have the following result.

Lemma 2.3. If X is both row- and column-graded, thenvRI = v̂2.

Proof. We consider the edge variables connecting two neighboring rows (or columns) with
row sumsri andri+1. Each edge variable will be set to the minimum of the two adjacentx
variables. SinceX is row-graded the minimum values will all occur in the same row. Thus
the sum of all edge variables is equal to min(ri, ri+1). Repeating this for all neighboring
pairs of rows and columns gives the result.�

Empirical testing on a large number of random generated test cases indicates that the
optimal solutions ofRI are both row- and column-graded also for the case maxi,j risj > �,
and thus the bound is obtained.

3. Variable splitting

We propose to solve problemI using Lagrangian relaxation techniques on the integer
programming formulation (3). More specifically, we will use a technique known as variable
splitting, see[6].

We duplicate the set ofxi,j variables, obtaining two sets of variables,xhi,j andxvi,j . To

ensure that two corresponding variablesxhi,j andxvi,j share the same value in the feasible
solutions, we add a constraint stating that the corresponding variables should be equal.
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The following is a reformulation ofI:

vI = max
∑
e

ye

subject to (i)
n∑

j=1

xhi,j = ri for i = 1, . . . , m,

(ii )
m∑
i=1

xvi,j = sj for j = 1, . . . , n,

(iiia) ye�xhi,j for all horizontale, (i, j) ∈ e,

(iiib) ye�xvi,j for all vertical e, (i, j) ∈ e,

(iv) xhi,j = xvi,j for all i, j ,

(v) xhi,j , x
v
i,j , ye ∈ {0,1}. (6)

We relax constraint (iv) using Lagrangian multipliers�i,j and get the problem

max
∑
e

ye +
∑
i,j

�i,j (xhi,j − xvi,j )

subject to (i)
n∑

j=1

xhi,j = ri for i = 1, . . . , m,

(ii )
m∑
i=1

xvi,j = sj for j = 1, . . . , n,

(iiia) ye�xhi,j for all horizontale, (i, j) ∈ e,

(iiib) ye�xvi,j for all vertical e, (i, j) ∈ e,

(v) xhi,j , x
v
i,j , ye ∈ {0,1}. (7)

We denote this problemV SI(�) and its optimal valuevV SI (�). Because of the variable
splitting the problem naturally divides into separate horizontal and vertical problems which
can be further separated into subproblems for each row and column.

Since the above problem is a relaxation of the original problem,vV SI (�) is an upper bound
on the value ofI. We want to find the best possible bound, that is, solve the Lagrangian dual
problem

vVSD= min
�

vV SI (�). (8)

This is a convex, non-differentiable optimization problem which can be solved by a sub-
gradient method. For an introduction to subgradient methods see[11].

During the subgradient procedure we have to evaluateV SI(�̄) for a given�̄.As mentioned
this reduces to solving a separate subproblem for each row and column. Each of these
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Fig. 1. Arcs going to and from a vertexxk .

subproblems will be of the form

max
N−1∑
k=1

yk +
N∑
k=1

ckxk

subject to (i)
∑
k

xk = b,

(ii ) yk�xk,

(iii ) yk�xk+1,

(iv) yk, xk ∈ {0,1}, (9)

whereN is n (m) for row (column) subproblems,b is the suitableri or sj andck is the
suitable Lagrange multiplier (or its negative if we consider a column). This problem may
be solved as the longest (simple) path problem with exactlyb+1 edges in a directed graph.
Let the graphD = (V ,A) have a vertex set consisting of one vertex for eachxk variable
together with a source vertexsand a target vertext. The arc setA consists of the following
arcs:

• (s, xk) with costck,
• (xk−1, xk) with costck + 1,
• (xl, xk) for l < k − 1 with costck,
• (xk, t) with cost 0.

The construction is illustrated inFig. 1. The longest path froms to t in D with exactlyb+ 1
edges corresponds to a solution of problem (9) by settingxk equal to one if vertexxk is
used in the longest path and zero otherwise. Similarly, we setyk to one if the longest path
visits bothxk−1 andxk and zero otherwise.

The longest path problem with a prescribed number of arcs in an acyclic graph can be
solved efficiently by dynamic programming. Letd(i, j) denote the value of the longest path
from vertexs to vertexi using exactlyj edges. The values ofd(i, j) can be calculated from

d(i,1) = ci

d(i, j) = max{d(u, j − 1) + cj for u< i − 1, d(i − 1, j − 1) + ci + 1}
The optimal value is thend(t, b+1) = maxi d(i, b) and the corresponding solution can be
found by retracing the path in the graph. The algorithm has running time O(bn2). Thus the
problemV SI(�) can be solved efficiently. Still, sinceb typically is O(n) and the problem
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has to be solved for each row and column, the total complexity is O(n4). Thus, the algorithm
may have scaling problems whenn becomes large.

4. A reformulation of the Lagrangian dual

In this section we again consider the Lagrangian dual (8) and its optimal valuevVSD. We
explain how to construct a linear programming problem whose optimal value equalsvVSD.
Note that this reformulation is in terms of continuous variables (in contrast with problem
(7)). Moreover, this LP is acompact formulation, meaning that the number of variables and
constraints grow polynomially as a function ofmandn.

Let zh = [xhi,j , ye] be the vector of the “horizontal” variablesxhi,j (i�m, j�n) and the
variablesye. Similarly,zv is the vector of the “vertical” variablesxvi,j (i�m, j�n) and the
variablesye. As mentioned the Lagrangian subproblem (6) decomposes into a horizontal
problem involvingzh and a vertical problem involvingzv. LetAhzh�bh (Avzv�bv) denote
the constraints in the horizontal (vertical) problem. Then we obtain from the general theory
of Lagrangian relaxation and variable splitting (confer[11, Corollary 6.12]) that

vVSD= max

{∑
e

ye : z = [xi,j , ye] ∈ Ph ∩ Pv

}
, (10)

wherePh = conv({z : Ahz�bh}) andPv = conv({z : Avz�bv}). Now, the maximization
problem in (10) is an LP, but, unfortunately, a complete linear description ofPh (orPv) is
not known. However, we get around this problem by finding an extended formulation forPh

by introducing additional variables. To this end it suffices to find an extended formulation
of the feasible set of problem (9).

This can be done by constructing a certain acyclic directed graphG = (V ,A). The
construction is such that there is a correspondence between feasible solutions in (9) and
certain directed paths in the graph.

The graph is organized into 2k − 1 layers withNk = N − k + 1 vertices in each layer,
together with a source vertexs and a sink vertext. Thus the total number of vertices is
(2k − 1)Nk + 2. For the odd numbered layers,l = 1,3, . . . ,2k − 1, label the vertices in
layer l asvli+(l−1)/2, i = 1, . . . , Nk. The vertices in the even-numbered layers are labeled
wi+l/2−1. The arc setA consists of the following arcs:

• (s, v1
i ) for i = 1, . . . , Nk,

• (vli , v
l+2
j ) for all l andi < j ,

• (vli , w
l+1
i ) for all i, l,

• (wl
i, v

l+1
i+1) for all i, l,

• (v2k−1
i , t) for i = k, . . . , N .

The total number of arcs is12Nk(Nk −1)(k−1)+2kNk. The graph is illustrated for a small
case inFig. 2.
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Fig. 2. The graphG for the caseN = 5 andk = 3.

We first show that there is a one-to-one correspondence between directedst-paths in the
graphG and feasible solutions in (9). Assume we have a directedst-path, then we create a
feasible solution to (9) by the following procedure. If the path uses a vertexvli we setxi to
one, and similarly if it useswl

j we setyj to one. Since there arek odd numbered layers and

there are no possible paths from a vertexvli to any vertexvkj for k > l andj < i, this will

lead tok differentxi set to one. By construction any path that useswl
j will also have to use

vl−1
j andvl+1

j+1, thus we have thatyj is one only if bothxj andxj+1 is one. In a similar way,
we may construct anst-path from a feasible solution to (9).

We now return to the maximization problem in (10). We introduce flow variablesf for all
arcs in the graph. Letb be a column vector whose components correspond to the vertices
in G, and wherebs = −1, bt = 1 andbi = 0 otherwise. LetA be the incidence matrix of the
graphG. Then thest-paths inG correspond to the vertices of the network flow polyhedron

Af = b, 0�f �1, (11)

due to the fact thatA is totally unimodular. The values of the variables in the original
subproblem (9) are obtained from the flow variables following the procedure described in
the previous section. We write this as

x = Bf ,

y = Cf , (12)

whereB andC are suitable(0,1)-matrices. Letfr be the vector of flow variables in (11)
for the problem associated with rowr, let zr = (x1, . . . , xN , y1, . . . , yN) and define the
polytope

EP r = {(zr , fr) : zr andfr are feasible solutions to(11) and (12)}.
Since the problems in each row are independent we may define the extended polytope for
the complete horizontal problem as

EPh = EP 1 × EP 2 × · · · × EPm.
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From the previous discussion it is clear thatz ∈ Ph if and only if (z, f h) ∈ EPh for
some vectorf h = (f1, . . . , fm) of extended variables and that the number of variables and
inequalities is polynomially bounded bymandn. A similar construction may also be done
for the vertical problem leading to a compact description of the polytopeEPv.

Combining the discussion above with the result in (10), we obtain the following theorem.

Theorem 4.1. Thevalueof theLagrangiandualvVSDinproblem(8) is equal to theoptimal
value of the compact linear programming problem

max
{∑

ye : (z, f h) ∈ EPh, (z, f v) ∈ EPv
}

. (13)

As a consequence one may solve this compact LP in order to find the boundvVSD.
However, in practice, this LP becomes so large that the alternative approach of solving the
Lagrangian dual via the subgradient method is preferable.

5. Computational results

Test data: Test data were generated for three different classes of problems. Since the
algorithm is designed to findhv-convex or nearlyhv-convex(0,1)-matrices, we constructed
binary test images ((0,1)-matrices) having this property. The classes are illustrated inFig.
3. hv-convex data were obtained by creating twohv-convex polyominoes, see[8], and
then combining them. Thetwo circlesdata consist of two disjoint circles with overlap in
horizontal and vertical placements. One circle is centered in the upper left corner while the
other is centered in the lower left corner. The radius of both circles were approximately a
third of the image size. The result is a matrix that is nothv-convex, but with a maximum of
two intervals of ones in each row and column. The images in the third class,random circles,
were generated by placing a specified number of circles (10 for the three smallest cases and
20 for the two largest) with random radius and center in the image. The maximal value for
the radius was a quarter of the image size. Based on the images constructed, test data were
generated by calculating the number of black pixels (ones) in each row and column.
The subgradient procedure: The subgradient procedure is an iterative search procedure

that may be used to solve (8). In each iteration the Lagrange multipliers are updated

(a) (b) (c)

Fig. 3. Classes of test data: (a)hv-convex; (b) two circles; (c) random circles.
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according to

�s+1
i,j = �si,j + t sdsi,j ,

wheret s is the steplength anddsi,j is the search direction. For search direction we used the

subgradientdi,j = xhi,j − xvi,j and the steplength wast s = �0�
k, wherek is increased after

a specified number of iterations. We performed tests with more sophisticated schemes, but
gaining no better performance.

To check the accuracy of the subgradient procedure we compared it to the results obtained
by solving the variable splitting problem directly using ILOG CPLEX 7.5[9] on the LP
formulation described in Section 4. If we allowed up to 1000 subgradient iterations, the
maximal deviation was 0.1%. The LP problems quickly became too large, so we tested only
for problem sizes up to 20 times 20.
Primal heuristic: To obtain primal feasible solutions for calculating lower bounds onvI ,

we use the following heuristic. Define a cost matrixC = [ci,j ] by ci,j = xhi,j + xvi,j , i.e. a
cost function that prefers entries where both solutions have a value of one. Using this as
input, we solve the following network flow problem:

max
∑
i,j

ci,j xi,j

subject to
∑
j

xi,j = ri, i�m

∑
i

xi,j = sj , j�n

0�xi,j �1.

This may be solved efficiently using e.g. the network simplex method, see[1]. For integer
data, the vertices of the corresponding polytope are integral. Any method that finds an
optimal vertex solution will give an integer solution and the matrixX = [xij ] will be a
member ofA(R, S).
Example: Fig. 4shows the result of solving a reconstruction problem using a subgradient

procedure to solve the Lagrangian dual (8). Feasible solutions were obtained with the
heuristic described above.
Results: Table 1 gives the results of five test runs of various size for each class of

test data. The tests were performed on a Dell Latitude PC with a 1.2 GHz processor and
512 MBs of RAM. The reported value ofvVSDwas obtained with a subgradient proce-
dure with a maximum of 1000 iterations, the steplength was reduced with a factor of 0.7
every 50th iteration. The final value was rounded down to the nearest integer.vLB is the
value of the best feasible solution obtained with the primal heuristic run at intervals of
100 subgradient iterations.g is the gap betweenvVSDandvLB . The reported timeTSG
involves only the subgradient optimization and excludes the time used for the lower bound
calculations.
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(a) (b)

Fig. 4. Reconstruction example,m = n = 40: (a) Original figure; (b) best feasible solution.

Table 1
Computational results

Type m n v̂1 v̂2 vVSD vLB g (%) TSG (sec.)

hv-convex 14 16 98 102 98 98 0 0.77
34 36 432 444 432 432 0 3.67
56 54 1140 1163 1140 1140 0 15.1
73 77 1748 1784 1748 1748 0 38.2

100 90 3094 3124 3094 3094 0 103

Two circles 20 20 432 438 426 424 0.47 2.59
40 40 2148 2148 2144 2144 0 11.6
60 60 4196 4198 4176 4158 0.43 72.7
80 80 8200 8192 8180 8180 0 190

100 100 11812 11818 11781 11657 1.05 500

Random circles 20 20 268 267 265 265 0 1.08
40 40 1682 1674 1674 1674 0 7.84
60 60 3101 3082 3072 2914 5.14 59.7
80 80 8499 8489 8483 8408 0.884 253

100 100 9506 9426 9423 8347 11.4 456

6. Conclusions

In this paper we have studied a variant to the problem of reconstructinghv-convex
(0,1)-matrices from horizontal and vertical projections. Instead of requiring the ones to
occur contiguously, we maximize the number of neighboring ones. This leads to an NP-
hard combinatorial optimization problem. The problem is formulated as an integer problem
and several upper bounds are derived. To solve the problem, we suggest an algorithm based
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on a Lagrangian relaxation technique called variable splitting. By duplicating some of the
variables, the problem decomposes into small problems that can be solved efficiently. The
Lagrangian dual problem is solved by a subgradient procedure and a heuristic based on a
network flow formulation is used to obtain feasible(0,1)-matrices.

Even though the number of test cases are limited, the results seem to indicate that the
algorithm is more successful with the cases having a large degree ofhv-convexity in the
original image. For thehv-convex data, optimal solutions were produced for all cases. There
is a considerable increase in running time as the size of the problems increases. Thus, the
algorithm in its current form will have problems handling large problems.

The algorithm can be generalized to handle problems with more than two projection di-
rections and general neighborhood relations.A forthcoming paper[4] treats these extensions
in detail.
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