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Abstract

We consider a variant of the NP-hard problem of reconstrudtingonvex(0, 1)-matrices from
known row and column sums. Instead of requiring the ones to occur consecutively in each row and
column, we maximize the number of neighboring ones. Thisis reformulated as an integer programming
problem. A solution method based on variable splitting is proposed and tested with good results on
moderately sized test problems.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a matri¥l =[a; ;] of sizem x n with elementsOor 1. LeR=(ry, ..., 1) and
S =(s1, ..., s,) denote the row and column sums&frespectively, that is; = Z;le ai, j
ands; =) 7" 1a; ; for all 1<i<m and 1< j <n. Let A(R, S) be the set of all0, 1)-
matrices with row sumR and column sums. Clearly, for such matrices to exist we must
have thady " ; ri = Z;le s ;. We denote this sum (value) byWe assume throughout the
paper that Xr; <m and 1<s; <n.
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In 1957 it was shown independently by G§8 and Rysel12] that a necessary and
sufficient condition for the existence of@, 1)-matrix with row sumsR and column sums
Sis thatS < R* whereR* is the conjugate sequence®fBnd< denotes the majorization
ordering. See Marshall and OIkjh0] for a thorough discussion of majorization theory and
applications.

The results of Gale and Ryser have found a recent revival in the field of discrete tomog-
raphy[7]. In discrete tomography one of the problems is to reconstruct a discrete-valued
functionf from knowledge of weighted sums of function values over subsets of the domain.
Applications can be found in crystallograpfiy8] and medical imaginf3] amongst others.

A much studied special caseris x n (0, 1)-matrices with known row and column sums,
precisely matrices in the clag§(R, S).

As the number of matrices in this class may be Hitd, it is of interest to study the
reconstruction problem where we impose additional constraints q@tfig-matrices. The
most common restrictions are of a geometrical naturé0,A)-matrix is h-convex if the
ones in a row form a contiguous interval, similarly@ 1)-matrix is v-convex if the ones
occurs contiguously in each column.(®, 1)-matrix is hv-convex if it is bothi- andv-
convex. If the pattern of ones is four-connected, it is called a polyomino. It was shown
by Barcucci et al[2] that the existence problem for bdthandv-convex matrices having
given row and column sums is NP-complete while it is polynomially solvablazdezonvex
polyominoes. Similarly, Woeging€i5] showed that the existence problem far-convex
matrices is NP-complete.

In this paper we examine a new approach to findimgconvex or nearlyv-convex
matrices. Optimizing over the clag(R, S), we try to find a matrix with a maximum
number of neighboring ones in rows and columns. Xdie a(0, 1)-matrix and lety; ;
denote the entry of the matrix in positién ;). We introduce a functiorf (X) that counts
the number of neighboring ones

m—1 n n—1 m
FCO=" " minfx; j.oxiga )+ Y Y mingx . x ). 1)
i—1 j—1 i=1i=1

Using this function as our objective function, we consider the following optimization prob-
lem:

maxX{ f(X) : X € AR, $)}. )

We denote this problem byIAX_NB.

This problem may be formulated as an integer programming problendz ketV, E) be
the graph with a vertex for each entryXnand edges between neighboring entries in both
row and column directions. Introduce a binary varialdor each edge in this graph. We
denote byl the following maximization problem

vl =max )y,

ecE



G. Dahl, T. Flatberg / Discrete Applied Mathematics 151 (2005) 93—-105 95

n
subject to (i) Z xij=r; fori=1,...,m,
=1

m
(II) in,jZSj f0rj=1,...,l’l,
i=1
(i) yo<x;; forallee E, (i, )) ee,
(iv) x; j, ye € {0, 1}. 3

Constraints (i) and (ii) ensure that the matkix=[x; ;1 is a member oRl(R, S). Constraint
(iii) ensures thay, can be set to one only if both neighboring entries are set to one. Note
that constraint (iii) represents two constraints for each edge.

We observe that for each optimal solution y) of I, it holds that

ye =min{x; j, xpr y} fore=[(, ), (', jN], 4)

and thereforep! = maxf(X). Thus, the problemMAX NB corresponds to solving
probleml.

We mention that it may be of interest to study the problem with a more general objective
function >, ve + >_; ; di jxi, j, allowing us to model situations where we have a priori
knowledge about some preferred positions for entries 1 in the matrix. In this article we will
only focus on the simpler version.

The paper is organized as follows. Section 2 gives complexity results and some properties
of the linear programming relaxation bf Section 3 introduces a solution method based
on variable splitting. Section 4 interprets the method in terms of linear programming. We
implemented and tested the methods. The results of these tests are reported in Section 5.

2. Bounds

If a (0, 1)-matrix ishv-convex, both rows and columns have ones occurring contiguously,
then the number of neighboring ones is

m n
131:2(;’[—1)—}-2(;/—1):21'—m—n.
i=1 =1

Clearly this is an upper bound fgi(X). Moreover, &0, 1)-matrix X is hv-convex if and
only if f(X)=101.

If we can find an optimal solutiox, y) to probleml, the corresponding matriX =[x; ;]
will be hv-convex if £(X) = v/ = 01. If v/ is strictly less thari1, no hv-convex matrix
with the given row and column sums exists. Since the existence problenhiiscanvex
matrix is NP-complet§l5], we have proved the following.

Theorem 2.1. MAX_NB is NP-hard.

An alternative upper bound fa¥ =max £ (X) can be derived by considering two neigh-
boring rows (or columns). The maximum number of possible neighbors between two rows
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(or columns) is equal to the minimum number of ones in each of the two rows. Summing
this over all neighboring rows and columns, we get the bound

m—1 n—1
)<= minfri, riza} + Y minfs;, s 11},
i=1 j=1

An easy observation is that < v is a necessary condition for the existence bbaconvex
(0, D)-matrix in2A(R, S). If bothRandSare unimodal vectors, i.ey <ra < - - - <rg > rep1
> 2rpandsy<so< - <sp > 541> -+ - =5y, We have thabs = 2t — g — 7. Since
rr + 51 <m + n, it follows thatv1 < 02 holds in general for this class of problems.

Let RI be the linear programming relaxationlof

R — maxz Ve
e

n
subject to (i) Z xij=r; fori=1,...,m,
=1

m
(ii)in’jzsj forj:l,...,n,

i=1
(i) 0<y.<x;; foralleec E, (i, })) €e,
(iv) ng,-,jél i<m, j<n.

Define the corresponding matrk = [x; ;] and vectoty = [y.]. Then the following result
holds.

Proposition 2.2. vR! <9,.
Proof. Let (X, y) be a feasible solution tRI. Consider two neighboring rowsandi + 1

and lety; ;41 ; denote the variable corresponding to the edge betweenirandi + 1 in
columnj. Then

n n
Z Viji+l,j S Z Xij =Ti,
j=1 j=1

n n
Z Viii+l,j S Z Xitl,j = Ti+1.
j=1 j=1
Combining these two inequalities leads to the inequality

Z Vii+1,j < min{r;, riy1}.
J

Since this inequality holds in general for alklk <m, and due to a similar inequality for
columns, we get the desired result]
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Remark. Assume that max;r;s; <t, then equality holds in Proposition 2.2. In fact an
optimal solution taRl is given by

riS;
Xij = T] (5)
with they variables set according to (4)
for e =[(i, j), (i, j)].

ris; r;’§
ye—mm{ L i]

Clearly this is a feasible solution (as; < 1) and the corresponding objective?! is

m—1 n n—1 m
URIZZZmn[VlSJ r,_,_lsj} ZZ [rlS] riSj+1}
i=1 j=1 T j=1i=1 T
m—1 n—1
= Z min{r,-,riH} + Z min{Sj,Sj+1} = 0y.
i=1 Jj=1

The matrix with elements defined by (5) is one example of a larger class of matrices
for which equality holds. We call a matrix row-graded it r; .1 impliesx; ; >x; 11 ; for
j=1...,nandr <ripgimpliesx; ; <x;41; for j=1,..., n. Column-graded matrices
are defined similarly. The matrix defined by (5) is clearly both row- and column-graded.
We have the following result.

Lemma 2.3. If X is both row- and column-gradethenv?®’ = 0.

Proof. We consider the edge variables connecting two neighboring rows (or columns) with
row sums; andr; 1. Each edge variable will be set to the minimum of the two adjaxent
variables. Sinc& is row-graded the minimum values will all occur in the same row. Thus
the sum of all edge variables is equal to mjnr;41). Repeating this for all neighboring
pairs of rows and columns gives the resultl

Empirical testing on a large number of random generated test cases indicates that the
optimal solutions oRI are both row- and column-graded also for the case; max; > t,
and thus the bound is obtained.

3. Variable splitting

We propose to solve probleimusing Lagrangian relaxation techniques on the integer
programming formulation (3). More specifically, we will use a technique known as variable
splitting, seq6].

We duplicate the set of; ; variables, obtaining two sets of variable#,j andx;jj. To
ensure that two corresponding vanabtx-ig andx; ; share the same value in the feasible
solutions, we add a constraint stating that the corresponding variables should be equal.
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The following is a reformulation of:

ol = maxz Ve
e

n
subject to (i) Z xti=r fori=1....m,
=1

m
(ii)le?szsj for j=1,...,n,
i—1
(iiia) yo<x]'; for all horizontale, (i, j) € e,
(iiib) yegxi'jj for all verticale, (i, j) € e,

R h _ v
(Iv) X=X

V) x! xP i, ye €10, 1}, ©6)

for all 7, j,

We relax constraint (iv) using Lagrangian multiplies; and get the problem
max 3 vt Y sl <)
e i,j

n
subject to (i) Zx{szri fori=1,...,m,
im1

m

(i) inljjzsj for j=1,...,n,
i=1

(iila) y. <x/'; for all horizontale, (i, j) € e,

(iiib) yegx;fj for all verticale, (i, j) € e,

W) /. x5, ve € {0, 1. (7)

We denote this problen S1(/) and its optimal valueV5! (/). Because of the variable
splitting the problem naturally divides into separate horizontal and vertical problems which
can be further separated into subproblems for each row and column.

Since the above problem is a relaxation of the original problénY, (1) is an upper bound
on the value of. We want to find the best possible bound, that is, solve the Lagrangian dual
problem

wVSD_ min WS,

(8)

This is a convex, non-differentiable optimization problem which can be solved by a sub-
gradient method. For an introduction to subgradient methodfld¢e

During the subgradient procedure we have to evaluat&( 1) for a givenl. As mentioned
this reduces to solving a separate subproblem for each row and column. Each of these
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Fig. 1. Arcs going to and from a vertex.

subproblems will be of the form

N-1 N
max Z Yk + Z Ck Xk
=1 =1
subject to (i) Z xi = b,
%

(i) ye <,
(i) yr <xps1,
(V) vk, xx € {0, 1}, (9)

whereN is n (m) for row (column) subproblemsy is the suitable; or s; and¢y is the
suitable Lagrange multiplier (or its negative if we consider a column). This problem may
be solved as the longest (simple) path problem with exactiyl edges in a directed graph.
Let the graphD = (V, A) have a vertex set consisting of one vertex for egchariable
together with a source verteand a target verteix The arc sef\ consists of the following
arcs:

(s, xx) with costcy,

(xx—1, xx) with costc; + 1,

(x7, xx) for I <k — 1 with costcy,
(xx, t) with cost 0.

The construction is illustrated Fig. 1 The longest path frorato t in D with exactlyb + 1
edges corresponds to a solution of problem (9) by settinggual to one if vertex; is
used in the longest path and zero otherwise. Similarly, we;stt one if the longest path
visits bothx;_1 andx; and zero otherwise.

The longest path problem with a prescribed number of arcs in an acyclic graph can be
solved efficiently by dynamic programming. L&, j) denote the value of the longest path
from vertexs to vertexi using exactlyj edges. The values @f(i, j) can be calculated from

di,1) =¢;
di, jy=maxdwu,j— D +c;jforu<i—-1,di—-1,j—-D+c+1}
The optimal value is thed(z, b+1) = max d (i, b) and the corresponding solution can be

found by retracing the path in the graph. The algorithm has running tithe’@ Thus the
problemV S1(A) can be solved efficiently. Still, sindetypically is O(n) and the problem
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has to be solved for each row and column, the total complexityi§ OThus, the algorithm
may have scaling problems wharbecomes large.

4. A reformulation of the Lagrangian dual

In this section we again consider the Lagrangian dual (8) and its optimalw\éﬁB We
explain how to construct a linear programming problem whose optimal value ex}{ﬁ%

Note that this reformulation is in terms of continuous variables (in contrast with problem
(7)). Moreover, this LP is aompact formulationmeaning that the number of variables and
constraints grow polynomially as a functionrofandn.

Letz" = [x i ;» Yel be the vector of the “horizontal” vanableé (i <m, j<n)and the
variablesy,. Similarly, zV is the vector of the “vertical” variabl (z <m, j<n)andthe
variablesy,. As mentioned the Lagrangian subproblem (6) decomposes into a horizontal
problem involving: and a vertical probleminvolving' . Let A"z <b" (AVz" <bV) denote
the constraints in the horizontal (vertical) problem. Then we obtain from the general theory
of Lagrangian relaxation and variable splitting (cor{fet, Corollary 6.12) that

UVSDZ max Z Ye:z=1[xij, yel € Pinpl, (20)
e

whereP" = conu{z : A"z<b"}) andP¥ = conu{z : AYz<b"}). Now, the maximization
problem in (10) is an LP, but, unfortunately, a complete linear descriptidtt:qbr P?) is

not known. However, we get around this problem by finding an extended formulatii for

by introducing additional variables. To this end it suffices to find an extended formulation
of the feasible set of problem (9).

This can be done by constructing a certain acyclic directed gtagh (V, A). The
construction is such that there is a correspondence between feasible solutions in (9) and
certain directed paths in the graph.

The graph is organized intd2- 1 layers withN, = N — k + 1 vertices in each layer,
together with a source vertexand a sink vertex. Thus the total number of vertices is
(2k — )Ny + 2. For the odd numbered layelss= 1, 3, ..., 2k — 1, label the vertices in
layerl aSvl’.H,fl)/Z, i=1,..., Ny. The vertices in the even-numbered layers are labeled
w;yi/2—1- The arc se consists of the following arcs:

(s,vh)fori=1,..., N,
72 for all | andz <J,

(vl, wl+1) foralli, 1,
s}

(w l+1)foral|zl
.(v?" .0 fori=k,...,N.

1

(vl, v

The total number of arcs %Nk(Nk —1)(k—1)+2kNy. The graph is illustrated for a small
case inFig. 2
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Fig. 2. The graplt for the caseVv =5 andk = 3.

We first show that there is a one-to-one correspondence between dseptets in the
graphG and feasible solutions in (9). Assume we have a direstg@ath, then we create a
feasible solution to (9) by the following procedure. If the path uses a vehwxe setx; to
one, and similarly if it uses;i. we sety; to one. Since there akeodd numbered layers and
there are no possible paths from a veri;éXo any verteXU’/‘. fork >1 andj <1, this will
lead tok differentx; set to one. By construction any path that u&@swill also have to use

v/t andv’!, thus we have that; is one only if bothr; andsx; 11 is one. In a similar way,
we may construct ast-path from a feasible solution to (9).
We now return to the maximization problem in (10). We introduce flow varidtitasall
arcs in the graph. Ldi be a column vector whose components correspond to the vertices
in G, and whereh, = —1, b, = 1 andb; = 0 otherwise. LeA be the incidence matrix of the

graphG. Then thest-paths inG correspond to the vertices of the network flow polyhedron
Af =b, 0<f<1, (11)

due to the fact thaf is totally unimodular. The values of the variables in the original
subproblem (9) are obtained from the flow variables following the procedure described in
the previous section. We write this as

x = Bf,

y=Cf, (12)
whereB andC are suitablg0, 1)-matrices. Letf, be the vector of flow variables in (11)
for the problem associated with rowlet z, = (x1, ..., xy, y1, ..., yny) and define the
polytope

EP, ={(zr, fr) : z and f, are feasible solutions t@l1) and (12)}.

Since the problems in each row are independent we may define the extended polytope for
the complete horizontal problem as

EP'"=EPi x EPyx ---x EP,,.
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From the previous discussion it is clear that P” if and only if (z, /") € EP" for
some vectorf” = (f1, ..., f») of extended variables and that the number of variables and
inequalities is polynomially bounded g andn. A similar construction may also be done
for the vertical problem leading to a compact description of the polyfopé.

Combining the discussion above with the result in (10), we obtain the following theorem.

Theorem 4.1. The value of the Lagrangian duaYSPin problem(8)is equal to the optimal
value of the compact linear programming problem

max{} ye: @ f") € EP', o, f) e EP'). (13)

As a consequence one may solve this compact LP in order to find the hdlrid
However, in practice, this LP becomes so large that the alternative approach of solving the
Lagrangian dual via the subgradient method is preferable.

5. Computational results

Test data Test data were generated for three different classes of problems. Since the
algorithmis designed to findv-convex or nearlyrv-convex(0, 1)-matrices, we constructed
binary test imageg 0, 1)-matrices) having this property. The classes are illustrat&dgn
3. hv-convex data were obtained by creating tiwe-convex polyominoes, sg@], and
then combining them. Thevo circlesdata consist of two disjoint circles with overlap in
horizontal and vertical placements. One circle is centered in the upper left corner while the
other is centered in the lower left corner. The radius of both circles were approximately a
third of the image size. The resultis a matrix that is ietconvex, but with a maximum of
two intervals of ones in each row and column. The images in the third ctasiym circles
were generated by placing a specified number of circles (10 for the three smallest cases and
20 for the two largest) with random radius and center in the image. The maximal value for
the radius was a quarter of the image size. Based on the images constructed, test data were
generated by calculating the number of black pixels (ones) in each row and column.

The subgradient procedur@he subgradient procedure is an iterative search procedure
that may be used to solve (8). In each iteration the Lagrange multipliers are updated

@ (b)

Fig. 3. Classes of test data: (a)-convex; (b) two circles; (c) random circles.
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according to

15+1 s
Ay = +t d, I

wheret* is the steplength andf is the search direction. For search direction we used the

subgradientl; ; = xh . and the steplength was = pop wherek is increased after
a specified number of |terat|ons We performed tests with more sophisticated schemes, but
gaining no better performance.

To check the accuracy of the subgradient procedure we compared it to the results obtained
by solving the variable splitting problem directly using ILOG CPLEX Pbon the LP
formulation described in Section 4. If we allowed up to 1000 subgradient iterations, the
maximal deviation was 0.1%. The LP problems quickly became too large, so we tested only
for problem sizes up to 20 times 20.

Primal heuristic To obtain primal feasible solutions for calculating Iower boundsbn
we use the following heuristic. Define a cost matfix=[¢; ;1 by ¢; j = x i+ x! i i.e.a
cost function that prefers entries where both solutions have a value of one. Using this as
input, we solve the following network flow problem:

max Z Ci jXi,j
i,j

subject toZ xij=ri, i<m

J
E Xij=Sj, J<n
i

ng,',j <1

This may be solved efficiently using e.g. the network simplex method.1$eEor integer

data, the vertices of the corresponding polytope are integral. Any method that finds an
optimal vertex solution will give an integer solution and the mafix= [x;;] will be a
member oRI(R, S).

ExampleFig. 4shows the result of solving a reconstruction problem using a subgradient
procedure to solve the Lagrangian dual (8). Feasible solutions were obtained with the
heuristic described above.

Results Table 1gives the results of five test runs of various size for each class of
test data. The tests were performed on a Dell Latitude PC with a 1.2 GHz processor and
512 MBs of RAM. The reported value af/SPwas obtained with a subgradient proce-
dure with a maximum of 1000 iterations, the steplength was reduced with a factor of 0.7
every 50th iteration. The final value was rounded down to the nearest iniédeis the
value of the best feasible solution obtained with the primal heuristic run at intervals of
100 subgradient iterationg.is the gap betweenVSP andvLE. The reported timdsg
involves only the subgradient optimization and excludes the time used for the lower bound
calculations.
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Fig. 4. Reconstruction example,= n = 40: (a) Original figure; (b) best feasible solution.

Table 1
Computational results

Type m n b1 o yVSD LB g (%) Tg (sec.)
hv-convex 14 16 98 102 98 98 0 0.77
34 36 432 444 432 432 0 3.67
56 54 1140 1163 1140 1140 0 15.1
73 77 1748 1784 1748 1748 0 38.2
100 90 3094 3124 3094 3094 0 103
Two circles 20 20 432 438 426 424 0.47 2.59
40 40 2148 2148 2144 2144 0 11.6
60 60 4196 4198 4176 4158 0.43 72.7
80 80 8200 8192 8180 8180 0 190

100 100 11812 11818 11781 11657 1.05 500

Random circles 20 20 268 267 265 265 0 1.08
40 40 1682 1674 1674 1674 0 7.84
60 60 3101 3082 3072 2914 5.14 59.7
80 80 8499 8489 8483 8408 0.884 253
100 100 9506 9426 9423 8347 114 456

6. Conclusions

In this paper we have studied a variant to the problem of reconstrugtirgpnvex
(0, 1)-matrices from horizontal and vertical projections. Instead of requiring the ones to
occur contiguously, we maximize the number of neighboring ones. This leads to an NP-
hard combinatorial optimization problem. The problem is formulated as an integer problem
and several upper bounds are derived. To solve the problem, we suggest an algorithm based
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on a Lagrangian relaxation technique called variable splitting. By duplicating some of the
variables, the problem decomposes into small problems that can be solved efficiently. The
Lagrangian dual problem is solved by a subgradient procedure and a heuristic based on a
network flow formulation is used to obtain feasiljle 1)-matrices.

Even though the number of test cases are limited, the results seem to indicate that the
algorithm is more successful with the cases having a large degree@jnvexity in the
original image. For thév-convex data, optimal solutions were produced for all cases. There
is a considerable increase in running time as the size of the problems increases. Thus, the
algorithm in its current form will have problems handling large problems.

The algorithm can be generalized to handle problems with more than two projection di-
rections and general neighborhood relations. A forthcoming jdpeeats these extensions
in detail.
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