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In this paper, an alternate approach to the method of asymptotic expansions for 
the study of a singularly perturbed, linear system with multiparameters and 
multiple time scales is developed. The method consists of developing a linear, non- 
singular transformation that enables one to transform the original system into an 
upper triangular form. This process of upper triangularization will enable us to 
investigate (i) stability and (ii) approximation of solutions of the original system in 
terms of the overall reduced system and the corresponding boundary layer 
systems. 1 198X Academic Prw. Inc 

INTRODUCTION 

Singular perturbation models with multiple time scales do arise in many 
of the dynamical models of physical as well as biochemical processes [ 1, 2, 
4, 9, 15, 161. In previous years, the method of asymptotic expansions has 
been widely used for the study of such systems [S, 6, 13, 141. In recent 
years, an alternative approach has been investigated in which one develops 
a suitable, nonsingular, linear transformation that enables one to partially 
or totally decouple the original system. This transformed system will then 
enable one to study the stability properties of the original system with 
relative ease. Moreover, one gets a closed form expression for first-order 
approximations of solutions to the original system. This idea was initiated 
by Khalil and Kokotovic [7, S] for a two-time scale problem, and by 
Chang [3] for a general boundary value problem. Later, Ladde and Siljak 
[ 111 and Ladde and Rajalakshmi [lo] have used the idea for a three-time 
scale problem. 

* Research partially supported by the U.S. Army under Research Grant DAAG29-84-G- 
0060. 
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In this paper, we have used this idea for the case of an arbitrary n-time 
scale problem. The method consists of developing a linear, nonsingular 
transformation that transforms the original system into an upper triangular 
form. This transformed system is then used to investigate (i) stability and 
(ii) approximation of solutions of the original system in terms of the overall 
reduced system and the corresponding boundary layer systems. 

The paper is organized as follows: In Section 2, by following [ 10, 111, a 
joint n-time scale multiparameter, singular perturbation problem is for- 
mulated. Also, a hierarchical scheme for aggregating and arranging the 
groups of small parameters according to their order and an order reduction 
scheme are presented. In Section 3, an n-fold version of the transformation 
in [ 111 which transforms the given system into an upper triangular form is 
formulated. In Section 4, validity of the transformation developed in 
Section 3 is established. Section 5, the main stability result and the 
approximation to the solution of the original relative to the overall reduced 
and the various boundary layer systems are given. 

Although the results obtained here are only first-order approximations, 
this method of analysis is simple and straightforward. Moreover, the forms 
of these solutions indicate a possibility of developing an algorithm for the 
process, thereby enabling one to employ a computer. In addition, it is 
expected to have great potential in the study of control theory. Work in 
this direction is in progress and will be reported elsewhere. 

2. FORMULATION OF THE PROBLEM 

Let us consider a linear system described by 

72 Yn 
il =Al1(t)x11 + c 4kWX2k + “. + c A;,(t)x,k 

k=l k=l 
(2.1) 

( i A;i(t)x,), iEZ(l, Y,), jE1(2, n), 
/= I k=l 

where Z(a, b) = ( a, a+l, a+2 )...) b}, abh, Z(a,b)=q$ a>b, a,bEZ+, 
1/l = 1, x, =x,i E R”, xii E R!“, 1, = CF=, I,, and the dimension of the system 
(2.1) is N = c,“= I I,. In (2.1), all matrix functions are continuous on R and 
have appropriate dimensions. The parameters sj are small, positive real 
numbers. The crucial assumption is that E;‘S have different orders for fixed i 
and have the same order for fixed j. This implies that the ratio of E; with E; 
for a fixed j is bounded, that is, 
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where L-, and E, are some positive, real numbers. Now, we make the 
followiCg important assumption: 

(Al) lim,,-,+o+ (E,/E;_ ,) = 0, ViE Z(2, n), where E, is defined by 

E, = (Ef, Ef, . . . . E:‘)‘“‘, iE1(2,n)and&, =I. (2.3) 

Using (Al )and (2.3) we can rewrite the system (2.1) as 

> * t?Tlxt?, 
=,g, 

DrnA,k(~)~~k~ X,(tO)=?C,~“,mEJ(l,n), (2.4) 

where xk = (XL,, xk:, . . . . x&,,)~E Rlk and the block matrices of (2.4) are 
formed in an obvious way from the matrices of (2.1) with D,,,‘s given by 

D, = diag $-’ I,,,, , $ Im2, . . . . >m I,,l.T,, 3 m E I(2, n). 
m m m (2.5) 

D, =I,,. 

Here, Imk’s are identity matrices of appropriate dimensions and the 
elements of the D, matrices are also bounded, that is, 

C, d Em/E:, < ‘%,,, jE1(1,~,,),mEZ(2,n). (2.6 1 

Thus, system (2.4) gives us an n-time scale, multiparameter problem. 
Before proceeding further, let us introduce the following notation: 

A~+“(t)=Al~‘(t)-Al,~~_,(t) 

x (~5:~~’ k)(f)- ’ A;,“! k ,(t) 1 ’ KE qo, n - 1) (2.7) 

A$“( t) = A,,(t), 
where 

El,k_lk(r)=Aj~~k,r,~k(f). 

(Note: (2.7) is a recursive relation.) 
To perform an n-stage reduction of system (2.4) we make the following 

assumption: 

(A2) The block matrices AI,/’ ,,,, ,(f) are nonsingular for all t 3 t,, 
where j E I(0, n - 2). 

Using (A2), we can get the E,, _ ,-reduced system by setting E,, _ , = 0 as 

,~-c./+ll 
E/X, = c D,Aj,“+ ‘)(t)q, 

&=I 

x,(t,)=x,, lEZ(1, n-j- 1) (2.8) 

n- (I+ 1) 
x,-j(t)= - C AL’!,,,, &t)) ’ A!,“,,,(t)x,, jeI(O, n-2). 

h=I 
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We now get the various boundary layer systems as follows. By using the 
transformation z, = (t - t,)/c, and setting E,, = 0 in (2.4), we first get the 
&,-boundary layer system. The other E,, (I+ II -boundary layer systems for 
jEZ(0, n- 3) are then obtained by using the transformation TV+ 1 = 
(t - fo)/L (, + , ) and setting E, Ci+,) = 0 in the corresponding E,, ,-reduced 
subsystem (2.8). They are given by 

di, 

dz,, 
= 0, IEZ(l,n-j-2) 

(I+ 1) 

di n-(i+l) 
dz 

= A’/+ I) n~(i+l).,l~(,+l)(f)~.rr-,,+l)(~i+l) 
/+I 

~~~-~~+l)(")~x~~(j+I),O 

+ i ~~'~+(:,,l),,*-(,+l,(~o) 
k=l 

xA(i+l) 
‘I-~ (,+ ,)X,r -(I+ ILO, jEZ(l,?z-3). (2.9) 

Two of our main objectives here are (i) to study the stability of system 
(2.4) and (ii) to get approximate solutions to (2.4) in terms of the solutions 
to the overall reduced system (obtained by setting j = n - 2 in (2.8)) and 
the various boundary layer systems (2.9). 

3. TRIANGULARIZATION 

In this section, we develop an n-fold version of the transformation in 
[11] which results in transforming the system (2.4) into an upper 
triangular form. This form of partial decoupling will then enable us to 
achieve our objectives with relative ease. 

We can rewrite system (2.4) in a matrix form as 

where 

.i = A(r)x, 

and 

x= (Xl, x2, . . . . X,,)T A(f) = (Q,(t)),,, 

(3.1) 

a;,(t) = &,- ’ D,A ij( t). 

Now, we introduce a similarity transformation from R’l x RI2 x . x Rh 
into itself represented by the matrix T= (T,,,,),, x ,I. The elements of T are 
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submatrix functions of appropriate dimensions. These submatrix functions 
are given by 

for qeZ(p+ 1, n) 

for p=q (3.2) 

for qEZ(l, p- l), 

where L,, are determined by the initial value problem 

%L- I = - f ‘Lpi( 
,=I &, 

i D,Ajk(f)Rk.p ‘(t)), PEI(~,~) 
k=p-I 

(3.3) 

&,ipy = - 
1 f: ' Lp, DiAjq(t)Rqq i=l Ei - Qwj> PEZ(3,fl), YEZ(l, p-2) 

with initial conditions 

L&J = (A;- P’( t,)) ’ A;, J”(t,), 

PEW,n),q~~(1,P-l), 

where 

Q,,(t) = 2 [ f ’ L,(t) D;A,rn(t) ( f Rmk(f) L,,(t))], 
,,I = p /=I El k=p 

(3.4 

(3.5 

and for alljEZ(l, n- 1) we have 

i 
0, iEZ(1, j- 1) 

R,,(t) = ( I;, i=j 
I-1 

-k;,L;k(t)Kk,(t)~ iEI(j+ 1, n). 

We make a note that, for a fixedj, the elements R,(t) given by (3.6) are 
obtained in a recursive fashion. Moreover, it is easy to verify that 
R = (R,),x. is the matrix representing the inverse of the transformation T. 

The similarity transformation (3.2) determined by (3.3) and (3.4) trans- 
forms (3.1) into an upper triangular form as 

2.i = B(f)& (3.7) 

where u = (u, , u*, ..,, u,~)~, B = (h,,(t)), xn, and for all p E Z( 1, n), bpy’s are 
given by 

i 

,g, (,$ ; LPi(f) D,A,k(t)) h,(f), qE z(p, n) 
hi% = 

(3 8) 

0 for qEZ(1, p- 1). 
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The upper triangular form (3.7) of (3.1) will make the study of stability 
properties of multi-time scale problems relatively easy. In the next section, 
we will proceed to verify the validity of the transformation (3.2). 

4. VERIFICATION OF THE TRANSFORMATION 

In this section, our objective is to verify the validity of the transfor- 
mation (3.2) which is necessary in establishing the upper triangular form 
(3.7) of (3.1). For the transformation to be valid, we need to establish the 
existence, uniqueness, and boundedness of solutions to the initial value 
problems (3.3) and (3.4). 

The existence and uniqueness of these solutions follow from continuity of 
the coefficient matrices in (2.4) and continuous differentiability of the right- 
hand side of the system of Eq. (3.3) with respect to L,. Thus, it is enough 
to show that these solutions are bounded. In addition, we develop a certain 
type of convergence results which enable us to obtain approximations for 
the matrix functions LJf). The usefulness of these approximations will 
become obvious in the next section. 

To establish the boundedness and approximations of these solutions, we 
use the following recursive procedure. First, we establish the boundedness 
of the matrix functions in the last row of the transformation and show that 
these functions have good approximations. We then proceed to show the 
boundedness of matrix elements in the previous row and obtain the 
corresponding approximations. We repeat this procedure till we come to 
the second row of the transformation. Once we have established the boun- 
dedness of all these solutions, it is easy to see that the matrix function 
L,,(t) is bounded. Thus, we only need to get an approximation for Lzl(f). 

We now actually establish these results. First, we make the following 
assumptions. 

(A3) All matrix functions A,(t) in (2.4) are bounded on R. 

(A4) For all 0, satisfying (2.6), there exist positive numbers 
ajJ-j) > 0 such that 

L{Dj,4J!-j)(t)} < -aj;pj) Vt 2 t,, jE Z(2, n). (4.1) 

(A5) The matrix functions (Ai,!-‘)(t) Af-‘j(t) for iE~(2, n), 
j E 1(2, i - 1) and their first derivatives are bounded on R. 

Consider the differential equations for Ln,( t), je I( 1, n - 1). Using 
(3.3t(3.6), we can rewrite these equations in the form 

c,tnj = D,A,,(t)Lni -: Lj, DjAjj(t) + S,(t) 
I (4.2) 

Lnj(tO) = An;l(rO) Anj(tO)9 
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where 

&jW = f: 5 Lk{(l - dk,) DkAkJf) L,(t) 
k,,&k 

- (1 -6kj) DkAkj(f)). 

Let qS,,(t, z; E,) denote the state transition matrix of 

&“i = D,A,,(t)z. 

Then, we have the following lemma. 

LEMMA 4.1. Under (A4), we have 

(4.3) 

(4.4) 

Proof It is analogous to the proof of Lemma 4.12 in [lo]. 
Let q5,Jt, z; sj) be the state transition matrix of 

Ejj j  = DjA,(t)yj, iEZ(l,n-1). 

Then the estimates on their norms are of the form 

$,j(& 7; &j) 6 expCa,,(t - 713, t37, 

(4.5) 

(4.6) 

where ajj are some positive real numbers. We now have the following result. 

Resulr 4.1. Under (Al), (A3), and (A4), there exist E,” >O, k E 1(2, n), 
such that for all Ek/Ek-, < &:/sk’_, , k E Z(2, n), the solutions L,(t) of (4.2) 
are bounded for all 12 t,. 

Proof L,(t) satisfy the initial value problem (4.2). We observe that 
Yj = d,,,(t, t,; E,) L,(t,) ##(t,, t; Ej) satisfy the homogeneous part of (4.2) 
where 4,j(t,, t; sj) represents the state transition matrix of the adjoint 
system of (4.5). Using variation of parameters formula [12], we can write 

where S,(t) is given by (4.3). 
Using (Al ), we can choose ET, F:, . . . . E,+_, and E,+ 

t; q) ds, (4.7) 

such that 

8(n- l)~+ 
-5 CllD,A,,,I/ ~+,<y:;-, {~1&&,/1}161, 

a nn m ‘m>k 

for m~Z(l,n--1), 
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where p is defined by 

We now show that I\&, (1 < p for all t > t, and j E I( 1, n - 1). 
If it is not true, then there exists j, E I( 1, n - 1) and t* E (t,, t] such that 

IIL,jO(t*)ll =p and IIL,,(t)\( <p Vj#j, and t < t*. Taking the norms on 
both sides of (4.7) and after a few simple steps, we arrive at the contradic- 
tion p > 3/4p. Hence IJL, (I < p for all t b t, and j E I( 1, n - 1). Thus, we 
have Result 4.1. 

Next, we establish the convergence results for L,,(t). 

Result 4.2. Under Result 4.1 and assumption (A5), we have 

L,j(f)=Z*j(r)+O(E,IE,~l), 

where (4.8) 

Tnj(t) = CAnn(r)l -’ An~(r)3 jEZ(l,n-1). 

Proof Let Lnj( t) = z,(t) + dL,,( t). Then dL,( t) satisfies the differential 
equation 

[ 

n-l 
E, AL, = D,&,(t) + c 5 it,,(t) DkAkn(t) AL,,, 

k=l Ek I 

-: ALnjCDj(Ajj(t) - Ain Zr&t))l + pnj(t) (4.9) 
I 

ALnj(t,) = 0, 

where 
blE 

f’,(t) = 1 -I! { [IZnktt) + (1 -Sk,) ALrz/cl Dk, 
k=,Ek 

. [Akn(f) Z,(f) - (1 - 6kj) Akj(r)l 

+ AL,, DkAkn(f) AL,} -E,E,j. (4.10a) 

For the sake of clarity, we introduce the following notation: ck. = 
(&I? &j+ 1, .*.T Q), j < k. Let d,,,,Jf, r; E,~) and 4Aj(tr r; Ed) be the state transi- 
tion matrices of 

[ 

n-l 
&,@I= D,,&,,(t) + 1 ‘&$.(t) DkAk,,(t) m 

k=IEk I 

Ejp, =DjCA,~(t)-Aj~(t)CA,,(t)l -I At,(t)1 f’jt jEZ(l, n- 1). 
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Now, using the methods of differential inequalities and properties of the 
logarithmic norm, it is easy to prove that 

I14,dt3 2; E,~)I/ Gexp -(t-T)], 
E, 

t 3 7, ~Mn < a,,, 

l14,4,(f3 Ti &,)I1 6 exPC@.4j(t - 511, 
~,~>O,t>r,and jEZ(l,n-1). 

Then y, = dM,,(t, to; E,*) @q5A,(t0, t; Ej), y,(t,,) = @ is the solution for the 
unperturbed part of (4.9). Using variation of parameters formula, we get 

Taking norms on both sides and doing some calculations, we arrive at 

where 

“-‘& -, 
knj = C n bkj + in 1 Ilzn, II 

kc, &k 

bkj = CC1 - 6k,) II Lnk II + 6kj llzn, II 1 

x lIDk(Akn(f@n, - (1 -6,) Akj(t))ll + IiDkAk,,(t)ll (4.10b) 

X (11 Lnk /I + IIznk II )(IIznj II + IILnj II 1. 

As a consequence of assumption (Al), we can now choose E, small enough 
such that aMn - ~,,ct~~ > 0. Then, we have 

IIAL, II 6 + cl~,, kn’ NO *. 
n-l -&a~, ( > E n-l 

Thus, we have 

Lnj(t) = Z,(t) + O(EnIEn - I 1. 

Next, we proceed to show the boundedness of the elements in the (n - 1)th 
row of the transformation (3.2), i.e., L,- ,,is. Let us denote n - 1 = i. L;s 
satisfy the differential equation given by (3.3) with the corresponding initial 
condition given by (3.4). Using (4.8) and rearranging the terms 
appropriately, we can rewrite the equations for L,‘s as follows: 

409j129,‘2-1 I 
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t,i.=D.[a!li(t)+o(~)]L~(t)-~L,(t)qi 

.[a/:)(I)+O(~)]+~~(t) (4.11) 

L-.(&J = [A!?‘(tJ] A!!‘(t,), rJ II II 

where 

We now state and prove the following result. 

Result 4.3. Under (Al), (A3), (A4), and (A5), we have 

(i) there exist sh’)>O, kEJ(2, n- l), such that for all sk/sk_, < 
E~‘)/E~‘~ r, k E Z(2, n - 1 ), the solutions L,(t) of (4.11) are bounded for all 
t> to. 

(ii) The forms of L,(t) are given by 

L,(t)=&(t)+ i O(Ek/Ek-l)> 
k=i 

where 

Z..(t) = (A!!‘(t))-’ A!?‘(t) 
lJ II ! I  ’ 

jEZ(l,n--1). (4.12) 

Proof: First, let us consider the proof of (i). Lis satisfy (4.11). Let 
q5j!)(t, r; si), tjj’)(t, r; E,,~), and $‘)(t, z; sj, E,,~) be the state transition matrices 
of 

&.$=D.A!!)(t)y, 
I II 

ci)i = D,[Ai:)(t) + O(E,/E;)] y, 

and 

&.fi=D.[A!!)(t)+O(E /E-)]y 
J J JJ “I 1 

respectively, for Jo Z( 1, n - 1). Using (A4), it is easy to see that these state 
transition matrices have estimates of the form 
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ll~%‘Vt, 7; h)ll <exp 
[ I 

I$! (t- 7)], 

lldj”(4 7; Eni)ll dexp 
-@(‘I 

[ I 
-y-t) ) 1 cq)<uj,L), 

(4. 
Il~!“(f, 7; &j, Eni) <exp[$‘)(t - 511, J 

~~‘~>O,j~Z(1,i-1),forallt~7. 

1 3) 

fY Then, we observe that Y, = ~~5$‘)(t, t,; E,,~) L&t,), $j’)(t,, t; cl, E,,~) satis 
the homogeneous part of (4.11). Once again, making use of the variation of 
parameters formula, we can write 

+ jr qq"( t, 7; E,J &i_'lSii(7) qy'(7, t; El, E,;)dT. 

f0 

Assumption (Al) allows us to choose E$‘), E!‘), . . . . 8,“) such that 

where p is defined by 

We now show that IILii(t)ll <p for j~Z(l, i- 1) and for all ta to. The 
procedure is exactly the same as in the proof of Result 4.1. Thus, we have 
now established the boundedness of L,‘s. Now, let us consider the proof of 
(ii). 

Let L,(t) = Z,(t) + AL,. Then AL, satisfies the differential equation 

A;;)(t) - A$)(t)Z, + 0 E, ( )>I & + P;,(t), 
n-l 
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where 

+ AL,, D,A(;‘,‘) nlq -&iii + 0 
( 1 

-A- . 
n-l 

Let q$j(t, s; E,,~) and daj(t, T; cj, 8,;) be the state transition matrices of 

and 

&jJjj=Dj A:~‘(t)-Aj!‘(f)l~, + 0 E, 

L ( >I &,-I PI, jEZ(1, i- 1). 

It is easy to see that 

and 

lId!&V4 7; &j? &,,)I1 6 exp[l+,Yt - z)], tZz,a~~>O,jEj(l,n-1). 

Using the same procedures as in the proof of Result 4.2, we get 

where 

that is, 

hi;‘= CC1 - 6,) !ILik II + 6, Ilt;k II 1 
. IID,(Apt.. - (1 - 6,) Ag)ll 1, 

+ IIDkA!i)ll (IILi/tII + llz,k/)(IIL~\l + IIz,II), 
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where 

This implies 

and hence the result (ii). 
Using this process in a recessive fashion, we establish the boundedness 

and convergence results for the elements in the n th, (n - l)th, . . . . (p - 1)th 
rows of the transformation (3.2) and we get the corresponding 
approximations for these matrix functions as 

Lk,(t) = A&-k’ , 

for k=n,n-l,..., n-(n-p+l). (4.14) 

Let us now consider the elements in the pth row of the transformation. 
Using (4.14), we can write the differential equation for Lpy’s as 

+ Sp,(t) (4.15) 

L PY (to) = (A’qto))y A’d’(t ) 
PP PY 0’ qEz(L P- 11, 

where 

‘p,(t) = f ’ Lpk Dk{ (1 - 6,) Aj$‘(l)Lpq 
k=,&k 

-(1-&,).A~;‘(t)}+ i ’ 
k=p+l 

and d=n-p. 

We now state and prove the following result. 

Result 4.4. Under assumptions of Result 4.3, we have 

(i) There exist .sj$ > 0, k E Z(2, d), such that for all Ek/&&, < 
E&~)/E~~? 1, k E Z(2, d), the solutions Lpy(f) of (4.15) are bounded for all t 2 to. 
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(ii) The Lpq’s have the form 

Lpq(t) =Zpg(f) + 2 
k=P 

where (4.16) 

Z,,(t) = (A’d’(t))-’ A’d)(t) 
PP PY ’ qEz(l, P- 1). 

Proof. As before, let #$(t, t;sp), da)(t, r; E,,~), and dy)(t, r;.sy, E,~) be 
the state transition matrices of 

x4$‘(t) + i 0 
k=P+l 

y, 

and 

f 0 -k- 
i )I 

)‘, gEz(l, P- 1). 
k=P+l &k-l 

These transition matrices have the estimates on the norms similar to (4.13) 
with positive constants a$), c(r), and CI~), where aa) < a$). The proof of (i) 
is now similar to the proof of part (i) of Result 4.3, where the choice of sk’s 
is such that 

2s:) max(a\d), abd), . . . . a?! 1 } < a?) 

<l for k~Z(l, p-l), 
where p is defined by 

Consider the proof of (ii). We let Lp,(t) = Z,,,(t) + AL,,. Then AL,, 
satisfies the differential equation 

AL,, 

+- --” AL,, 
Eq 

D,(Al:‘,‘(t) - AZ’(t) z,,) 
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where 

P--l E 

Pp,(f) = c p { [z,, + (1 -i&) AL,,] 
k-1 Ek 

x &[z’$‘(t) z 
PY 

- (1 -a,,) AL;,‘(t)] 

+ AL,, DkAj$(t) AL,,) -Eptpq + f 

k=p+l 

The rest of the proof is analogous to the proof of (ii) of Result 4.3. 
Finally, the matrix function L21(t) satisfies the differential equation 

E2i2, = 

where 

h,(t)= i %kDk{(l-&2)A 
k=l ‘k 

&-‘)(t)L2, - (1 -&&f~-2’(t)} 

From the boundedness of Lp4)s, p E I(3, n), q E I( 1, p - 1 ), assumption (A5), 
and noting that the coefficient matrices in (4.17) are bounded, it follows 
that the solution L21(t) of (4.17) is bounded. The convergence of L21(t) is 
established in the next result. 

Result 4.5. Under (A4) and (A5), we have 

L,,(t)=&,(t)+ i O(Ek/Ek-I), 
k=2 

where 

t,,(t)= [A&2)(t)]p1 A$‘-2)(t). 

Proof Let L2,(t) = Z,,(t) + AL,, Then AL,, satisfies 

(4.18) 

E2 At,, = D2A&2)(t)+E2i?21A\;~2)(t)+ f 0 
k=3 

-E2 AL,, A\;-2’(t) + A’1;-2’(t)Z2, + + P21(t), 
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where 

The rest of the proof is analogous to the proof of (ii) of Result 4.3. 

By establishing the boundedness and convergence of the solutions L,,(t), 
p E 1(2, n), qE 1( 1, P- l), of the auxiliary system (3.3) with initial con- 
ditions (3.4), we have verified the validity of the transformation (3.2). 
Therefore, the transformed system (3.7) can be rewritten in terms of the 
original matrices of (3.1) as 

ti=&l, where the elements of B are given by 

EP b4 =D,Ab”,~y’(t)+(1-6,,,)(1 -6,J i 0 
k=y+l 

(4.19) 

4>P (4.20) 

h,, = 0, 4 < PT 

where 

(4.21) 

and 

0 5 =2 [D,(Ap’(t))-’ A$ -P’(t) A),“-4’(t)], 0 
(4.22) 

'i cl 

with initial conditions given by 

u,(to) =x10 
i-- 1 

j= I 

i= 1(2, n). 

In the next section, using the transformed system (4.19), we obtain our 
main result concerning the qualitative properties of the original system 
(3.1). 
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5. MAIN RESULT 

We are now in a position to use the triangular form of the transformed 
system (4.19) and establish stability of the orginal system (3.1). For this, we 
need to make the assumption concerning the stability of the reduced sub- 
system (2.8) (corresponding to j= n - 2) with the system matrix Ai;- ‘j(t). 

(A6) There exists a positive number CY.~ such that 

I?,{@-“(T)} d+ < -gR. (5.1) 

Assumption (A6) implies that the reduced subsystem is globally, 
exponentially stable. We now have the following main result. 

Result 5.1. Under (Al)-(A6), there exist positive numbers &, k= 
1) 2, . ..) n, such that if E, < E ,̂ and E~/E~ ~ r < ik/gk ~, for k = 2, 3, . . . . n, then 
the equilibrium of the system (3.1) is globally, exponentially stable. 

ProoJ: The inverse of the transformation T is given by the matrix 
R = (Rg) in (3.6). From the boundedness of the submatrix functions in 
(3.2), it is easy to see that T-’ = R is also bounded. From the boundedness 
of Tp’, it follows that the stability of (4.19) implies the stability of (3.1). To 
show stability of (4.19), it is necessary to verify the stability of each 
decoupled subsystem by considering the smallness of their interactions as 
regular perturbation terms. This is done as follows: 

First, consider the u, subsystem (or E,,-subsystem). u,, satisfies the dif- 
ferential equation 

D,,&,(t)+ 0 5 ( )I U,. 
E n-l 

(5.2) 

Let q5,(t, r; E,, E,- r) be the state transition matrix of (5.2). Then, using 
Lemma 4.1, it is easy to see that 

Iid,,(t> T;En, En-,)11 <eXP [=p-T)], tbz,a, <a,,. (5.3) 

This implies that the &-subsystem of (4.19) is stable. 
Next, consider the differential equation satisfied by u,,_~, , that is, the 

E n-, subsystem of (4.19): 

En-,&-, = D,-,A:‘l,,,,-I(t)+O 
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If $,- I(t, z; E,,,_~) is the state transition matrix of 

(t)+ i O(Ek/Ek- 1) I’> 
k=n-1 1 

then Il$n--l(f, T; E nn -z)/l has an estimate similar to that of 
II@‘1 I(?, 7’ E n , nn ~ ,)\I given by (4.13) with a constant a,, ~, , that is, 

~n-I(4r;~,,~,)<exp *(l-r)], 
[ 

t>r. (5.4) 
n-l 

Using the variation of parameters formula, we have 

%I(t)=Ll(c to)%-,(to) 

where 

and 

41(t) = &if, to, E,,> E,t- I) u,,(to). 

Taking norms on both sides of (5.5) and after a few simple calculations, we 
get 

where 

/lu,- ,(t)ll d k,- I,n exp 2 (r - to) 
II I I , (5.6) 

kz- ,.?I = I/G 1(to)ll 

+- En llSn-I,nI/ lI~,(~o)ll k,,-‘Cl -exp(-k,(t-t,))l (5.7) 
8,-l 

and 
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From (Al), we can choose $‘), 8L’11 sufficiently small such that for all 
&,I&, _ 1 < q’/sy, 1, we have k, >. Then (5.6) implies the stability of the 
E, _ I -subsystem. Consider the E, ~ 2-subsystem. u, ~ z satisfies 

En-2 n-2 ti =E,-,C~,-2,,-2(t)u,~-2(t)+~,-2,,(t)l, 

S,-,,(t)=&~~,(S,-,,“~,(t)u,~,(t)+S,-*,,(t)u,(t)), (5.8) 

and 

Dne2A.~g,n(f)+ 0 . 

From (5.3), (5.6), and (5.8), we see that 

IIL2.,Wll 6exp [ 
2!5(t-toto) 

En-1 1 x {IlSn.-2,n-,ll K-1,, + II%-2,“lI Il%(to)ll~ &,-12. 

Let Jn,_,(t, r; E,,-~) be the state transition matrix of 

E Dn-zA;2?2,,-2(t)+ i o -% Y. 
k=n-2 ( )I Ek-l 

Then, we can see that 

IliJn-2(ty t; ~,,-~)ll Gexp -(t-T) ) 
En-2 1 ii,_, <tlp2. (5.9) 

Using variation of parameters formula, we can write the expression for 
u,-2(t) as 

After some simple computations, we have 

II4-At)ll dexp 
[ 

-a,_, 
& n-2 

(t - to)] 

x ll~,-2(4,)ll +~k,I,CIlL,,n~, 
{ 

II k ~ ,,n(~,) 
n-2 

+ lISn-~.nIl II~AkJll (1 -expC-k,-,(t-to)]}1 , 
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Now, choose EL*! ,/gL2i 2 small enough such that for all E, ,/E+ 2 < 
EL? ,/a;21 *, we have k,_ , > 0. Thus, for all E,,/E,~ , < ai”/Ey!, and 
E _ 1/& _ 2 < E”(2) /E”‘2) n n n 1 n 2, we have 

llu,, - 2 II d k, - 2,n exp 
L 

-z%z2(1-I,) ) & n -2 1 (5.10) 
where 

k n-2.n = 114, -2(fo)/l +~k,‘, 
n- 2 

x CIlSn--2.c III k-,Ah,)+ llL2,nll Il~n(kJlll~ 

Equation (5.10) implies that the E, _ 2-subsystem is stable. 
Using a similar procedure, we show that there exist & > 0, k E Z( 1, n), 

such that for all sk/sk_ , < $’ P2)/C”_-~,2) and E,! <B,, we have the stability of 
u,c(t), k E W, ~1. 

Finally, consider the differential equation for u,(r): 

ti, =h,,u, = u,. 

Let $R(f, t; sH2) be the state transition matrix of (5.11) and m,(t)= 
IIQ,Jt, r; E,,~)(I. Solving the differential inequality 

I; I”} + ‘f k;+ 
1 

mR(f), 
/=2 J 1 

where k, is a positive number such that IIO(E~/E,~,)(/ <kj(~j/~jp,), we get 

m,(t) d exp 
I{ 1 

-& ‘L{Ap (O)d~+&, 
7 I 1 

(t--z) , (5.12) 

where k, = C;= 2 k,(E,/c, _ , ). From (A6), we have 

m,(f) d exp[I - (aR - k,)(f - t)l, t>,r+T, (5.13) 

and from (Al), we can choose skr/sk- ,,r, k E Z(2, n), such that for all 
Ekih- , < b/h ~- ,,rr We have (“R -k,) > 0. Thus, for t E [r, T + T], we can 
write (5.12) as 

mR(t)~kexpC-(a,-k,)(t-z)l, t E [r, z + T], (5.14) 
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where k is given by 

From (5.13) and (5.14), we have exponential stability for (5.11). We now 
choose 

kEZ(2, n). 

Then, for E~/E~ , cE^~/E^~- ,, kEZ(2, n), we have the overall stability of 
(4.19) and thus the stability of (3.1). 

In the remaining part of this section, we get the approximate solutions 
for u,(t), iEZ( 1, n), in terms of the solutions for the boundary layer system 
(2.9) and the overall reduced problem (2.8) (corresponding to the value of 
j= n - 2). Then, we make use of these solutions and the inverse of the 
transformation T to get the approximate solutions for x,(t) in terms of 
u,(t). 

To get the approximate solutions for u,(t), we need to make one last 
assumption. 

(A7) The matrix functions A:;“- j)(t) are Lipschitzian on R, that is, 
there exist constants zi such that 

IA:;“-j’(t,)-A~-‘)(t2)l <it, It, -fzl, Vt,, t, E R, je Z(2, n). 

First, consider the &,-subsystem. We have 

D,c,‘A,,(t)+ 0 

and the corresponding &,-boundary layer system is given by 

2= D,A,,(hd %(T,). 
n 

(5.15) 

(5.16) 

Let d,(t, r; E,,_ ,) and J,( t, z; E,) be the state transition matrices of (5.15) 
and (5.16), respectively. Denote 

b+n(G r; &“?I - ,I = d,(h t; E”, - 1) - J,(h r; 8,). 

Consider the differential equation satisfied by II/,: 

(5.17) 
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Now, II&(4 7; GA d expC( --C(,,Ih)(t - 7)1, t 2 7. Let m(t) = 
III)~(~,~;E~~-~)II. Computing limb,,+ ((m(t+h)--m(t))/h), we get 

where 

+’ Ilc?,(4 7, %,-IN 
n 

and 

Using the comparison principle, we get m(t) < r(t, 7, 0), t > 7, where 
r(t, 7,0) is the solution of the differential equation 

where 

s(t)=&,l ~,(A,,(~) - ‘4,,(7)) + 0 ( )I;1 + ,t I 
x exp 

[ 
-$Jt-7) . 

n 1 
The solution r(t) is given by 

r(c 73)= j+p {C [L {~WLW} +i /o (&);14] WJW. 

Using assumption (A7) and doing some simple computations, we get 

Thus, we have 

m(t) = Il$,(t, 7; &;-‘)I1 - 0 A!!-. 
( > E n-l 

(5.18) 
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Now, consider the expression 

II% -&II = Ili,(~, tO;E,,-,)U,(tO)-~n(t, to;%,-l)-w)ll. 

Substituting for u,(t,), a,(O) and rewriting, we get 

(I 

n-1 
II&l -%II G IIA 411 x,0 + 1 C~n,(hJl-’ A,(to) xjl 

j=l Ii 

$05 
I; ( E )I! 

IkL(~~ 209 Em- ,)ll. 
n-l 

From (5.18), we have llu, -inI/ = O(E,/E,-,), that is, u,(t) 2: 
a,((t - t,,)/~,) + O(E,/E, _ ). Let us now consider II u, _, - 2’, _ ,I1 : 

ii&,- I  11 II%-,,,(T)11 Ii%z(T)I/ & 

where 

I( 

n-2 

C n-1 = X n- I.0 + 1 CA!zl!l,~-~(fO)]-’ Ai’l I,j(tO)xjlJ . 
j=l II 

Letting m(t)= I$+,(?, T; ~,,,-~)l( = IIFn,_,(t, T)-$,,-,(t, z)ll and repeating 
the same procedure as before, we can show that 

Then, we have the estimate for I( u, _, - .C, _, I/ as 

II&-, -%-,I1 d ,Ii,O(&)[b +exp[*O-t,)ll 

+E,&’ Il~n-,I.nll II~n(~o)ll ev *(t-lo)]. 
n 

Now c,k;’ II~n-l,nII =O(E,/E,-,I. Then 
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Thus, we have 

Using this process repeatedly, we show that 

where a,(t) is the solution of the overall reduced system (2.8) and ii(t) are 
the solutions of the corresponding E, _ ,-boundary layer systems (2.9). 

Using the approximations for L,(t), i E Z(2, n), je Z( 1, i - 1 ), the inverse 
of transformation T (given by the matrix elements R,), and (5.19) we can 
write the approximate solutions for x,(t) as 

r-l 

Xi(l)=ii(t)- C cik(f)ik(f)+ f 0 

k=l k-2 

a,(t) = i’(f), 
(5.20) 

where 

c,(t)= [Aj,“-qt)]- Ai; -“(t) 
r-l 

-(l-dip,,,) 1 [‘dj;-‘)(t)]-“dj,” “(t)Ckj(t), 
k=j+l 

for iEZ(2, n) and jEZ(l, i- 1). 

Note that c,(t) are obtained in a recursive fashion. 
Thus (5.20) and (5.21) together give the approximate solutions of system 

(3.1) in terms of the reduced system and the various boundary layer 
systems. 
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